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Introduction

Social networks define an important type of data structure 
that has been gaining attention in recent years. Social net-
works are dyadic relations between social actors (e.g. indi-
viduals, organizations, or teams). Important examples are 
affective relationships such as trust and friendship, or task-
oriented relationships like advice seeking. Networks are 
commonly represented by directed graphs or more compli-
cated structures, where the nodes in the graph represent the 
social actors and the arcs (directed) or edges (non-directed) 
represent the ties between them. A classical textbook is 
Wasserman and Faust (1994), and recent textbooks are, for 
example, Kolaczyk (2009) and Borgatti et al. (2018).

For the study of network dynamics, Snijders (2001) intro-
duced stochastic actor-oriented models (SAOMs), and pro-
posed estimators for parameters in these models given 
network panel data using the method of moments (MoM). 
Bayesian estimators were proposed by Koskinen and Snijders 
(2007) and maximum likelihood estimators by Snijders et al. 
(2010a). The model was extended to the coevolution of net-
works and actor-level variables (Snijders et al., 2007; 
Steglich et al., 2010) and to the evolution of multivariate net-
works (Snijders et al., 2013). It is implemented in the R 
package RSiena (Ripley et al., 2019) and has been widely 
applied in the social sciences (e.g. Veenstra et al., 2013). An 
overview is given in Snijders (2017).

Compared with these developments, issues of model 
selection have not been elaborated in as much detail. Model 
selection for SAOMs usually proceeds guided by research 
questions, and utilizing substantive knowledge combined 
with forward model selection and hypothesis testing 
(Lospinoso et al., 2011; Schweinberger, 2012). Some guide-
lines were given in Snijders et al. (2010b), but not propped 
with formalized methods. This article proposes methods for 
assessing goodness of fit (GOF) of estimated models, thereby 
complementing the existing methodology.

In the statistical tradition of GOF (cf. Lehmann and 
Romano, 2005), we consider evidence as to whether the 
observed data is consonant with the assumption that it came 
from the fitted model under study. Hypothesis testing focuses 
on a specific alternative hypothesis. In contrast, the proposed 
GOF method has no particular alternative in mind. It evaluates 
how well the model fits in general. Because of the complex 
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nature of network data, we do not think an omnibus GOF test 
is feasible. Therefore, we focus on a wide set of features for 
which a good fit between model and data is desirable, and 
study the correspondence for these features by Monte Carlo 
methods, much as was done by Hunter et al. (2008) for GOF 
studies for non-longitudinal network modeling.

We propose a data-driven methodology for assessing the 
fit between data and model based on a set of features that 
may be chosen by the user, but for which we make some 
suggestions, and we propose methods assisting the data 
analyst to find the directions, within a larger set of options, 
that seem most promising for improving the model fit if it 
is found to be lacking. These empirical considerations must 
be used in practice together with considerations based on 
substantive theories and whatever is available as knowl-
edge of the processes determining network change; data-
driven procedures can supplement, but not supplant, 
subject-matter knowledge.

The ideal for network modeling is that by specifying 
rules for network formation based on local information, 
the global properties of the network will also be repre-
sented in a satisfactory way. Local properties depend on 
neigbourhoods of the nodes, that is, other nodes directly 
connected (by incoming or outgoing ties) or connected 
through at most one intermediary. Examples of local prop-
erties are reciprocation, characteristics of tied nodes, and 
the frequency of various triadic configurations (Holland 
and Leinhardt, 1976). An example of a global property is 
the frequency distribution of geodesic distances, the geo-
desic distance between two nodes being defined as the 
minimum length of a path connecting them. Thus, the sto-
chastic models will be based on local information, while 
the features used for checking will be based on local as 
well as global information.

The estimation method mainly used for SAOMs is the 
MoM, because it is much less time-consuming than likeli-
hood-based approaches. Fit comparison based on likeli-
hoods, therefore, is not available in many practical situations, 
and will not be considered here. Instead, fit assessment will 
be based on comparing features of the observed network to 
their expected values in the estimated distribution of net-
works, estimated from a large number of simulations. When 
this assessment leads to a conclusion of poor fit, it is desira-
ble to remediate this by proposing model elaborations. 
Estimation is computationally intensive, and testing large 
numbers of candidate models can be time-consuming. 
Therefore, we also propose a computationally cheap predic-
tor for the improvement of fit if the model were to be 
extended by specific additional effects. This estimator can be 
evaluated using only ingredients calculated already for the 
MoM estimation of the restricted model.

This article proceeds by first providing a brief introduc-
tion to SAOMs. We then present some possibilities for 
GOF features, which we call auxiliary statistics. Next, we 
propose a Monte Carlo–based GOF test based on the 

auxiliary statistics. Most interesting auxiliary statistics are 
multi-dimensional; they are therefore combined using the 
Mahalanobis distance (Mahalanobis distance–based Monte 
Carlo (MDMC)). A computationally cheap estimator for the 
Mahalanobis distance that would be obtained from specific 
model extensions, based on a first-order Taylor series, is 
developed to give suggestions to the researcher for choos-
ing model extensions to remediate lack of fit, the so-called 
modified model distance (MMD) estimator. A set of simula-
tion studies is conducted to demonstrate the effectiveness 
of both the GOF test and of the MMD estimator. The pro-
posed GOF procedure is summarized in a workflow. This 
workflow is demonstrated in a brief forward model selec-
tion exercise. The article concludes with a discussion on 
some future directions.

This MDMC approach was proposed in the conference 
paper Lospinoso and Satchell (2011) and the unpublished 
DPhil dissertation Lospinoso (2012), and has already been 
widely applied. However, until now it was not formally 
described in a publication. The MMD estimator was not yet 
described or applied in other publications (except for the 
mentioned dissertation). The simulation studies are new.

Stochastic actor-oriented models

We present the model as developed in Snijders (2001); see 
Snijders (2017) for a treatment focusing on statistical issues 
and Snijders et al. (2010b) for a friendly introduction. A 
social network composed of n  actors is modeled as a directed 
graph (digraph) with nodes 1, , n , represented by an adja-
cency matrix ( )xij n n× , where xij = 1  if there is a tie from 
actor i  to actor j , xij = 0  if there is no such tie, and 
x iii = 0  for all  (self-ties are not permitted). For the tie vari-
ables xij , node i  is called the sender and j  the receiver of 
the tie; senders are often referred to as “ego” and receivers as 
“alter.” The number Σ j xij of outgoing ties of actor i  is 
called the outdegree and the number Σ j xji of incoming ties 
is the indegree of this actor. Well-known features of social 
networks are tendencies toward reciprocation of ties, and 
toward transitive network closure, signifying the tendency 
that if two actors are indirectly tied, that is, through an inter-
mediary, they will probably also be directly tied. Network 
closure will lead to the existence of cohesive subgroups in 
the network, with internally many ties but relatively fewer 
ties outside; mostly, however, such subgroups are not very 
clearly separated.

The network is observed at discrete time points called 
observations occurring at times t t tM1 2, , , ∈ , for some 
M ≥ 2 . Intervals between successive observations are 
called periods, and the mth period is the interval 
{ : }1t t t tm m∈ ≤ ≤ + .

The model assumes that the social network evolves in 
continuous time over an interval  ⊂  . Accordingly, the 
digraph x t( )  models the state of social relationships at time 
t∈ , unobserved unless t  is one of the observation times 
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tm . The actors, represented by the nodes of the network, are 
assumed to get opportunities for changing one of their out-
going ties at discrete time points, and such opportunities are 
called ministeps.

The stochastic process { ( ) : }X t t∈  is modeled as a 
Markov process on the space of all digraphs so that for any 
time t∗ ∈ , the conditional distribution for the future 
{ ( ) : > }X t t t∗  given the past { ( ) : }X t t t≤ ∗  depends only on 
X t( )∗ .

The SAOMs consider two principal concepts in con-
structing the intensity matrix: the frequency at which actors 
i  get opportunities to update one of their outgoing tie vari-
ables Xij , and their choice of which tie variable to update. 
The expected frequency per time unit for actor i  to get an 
opportunity for change is called the rate function, and is 
denoted as λi x( ) . Waiting times between opportunities for 
actor i  to make an update to the digraph are exponentially 
distributed with parameter λi x( ) , but another actor might 
make a change earlier, which then might change the value of 
x  and of λi x( ) . Therefore, the definition is that waiting 
times between opportunities for change by any actor are 
exponentially distributed with rate parameter 

λ α λ α+ ( )( ) ( )( )∑x t x t
i

i| |=  (1)

where α  is a parameter, and the conditional probability that 
it is actor i  who has an opportunity for change, if some actor 
has this opportunity, is

λ α

λ α
i x t

x t

( )( )
( )( )+

|

|
 (2)

Rate functions may depend on actor-level covariates and 
the network position of actors. For simplicity, we here con-
sider rate functions depending on neither i  nor x , but only 
on the period, that is, λ ρi mx( ) =  for t t tm m< 1≤ + .

Now suppose that an opportunity for change arises for 
actor i , while the current digraph is x . Define x ij( )± ∈  as 
the digraph in which, starting from digraph x , only the 
binary variable xij  is toggled. In other words, x xij

ij
ij

( ) = 1± −  
and x xhk

ij
hk

( ) =±  for all ( , ) ( , )h k i j=/ , and formally define 
x xii( ) =±  for all i . The probability that actor i  selects xij  as 
the tie variable to change, so that the next state will be x ij( )± , 
is denoted as p xij ( ) . Actors are not required to make a 

change when an opportunity occurs, which is reflected by the 

requirement 
j i ijp x
≠∑ ≤( ) 1 , without the need for this to be 

equal to 1. The probabilities p xij ( )  are dependent on the so-
called evaluation function. This function gives an evaluation 
of the attraction toward each possible next state of the net-
work, and is denoted by f xi ( )| β . This attraction is conveni-
ently modeled as a linear combination of the relevant features 
of the network

f x s xi
T

i| β β( ) ( )=  (3)

where si  is a vector-valued function containing structural 
features of the digraph as seen from the point of view of actor 
i  and covariate effects, and β  is a parameter vector. The 
components of si  are called effects.

The selection of the tie variable xij  to be changed in a 
ministep by actor i  is modeled by a conditional logit model. 
This leads to conditional choice probabilities p xij ( )| β  
given by

p x
f x

f x
ij

i
ij

i
ik

k

n
|

exp |

exp |

β
β

β
( )

( ){ }
( ){ }

±

±∑
=

( )

( )
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 (4)

In accordance with the formal definition x xii( ) =± , the 
choice j i=  is interpreted as keeping the current digraph as it 
is, without making a change. The probabilities (equation 4) can 
be obtained from the assumption that actor i  acts according to 
myopic stochastic optimization of the evaluation function for 
the state that will be reached by this change (Snijders, 2001). 
The myopic stochastic optimization can of course not be more 
than an “as if” assumption; it is a sufficient, but not a necessary 
condition for the choice probabilities given by equation (4).

A basic menu of effects si  is given in Snijders et al. 
(2010b); the full set available in the R package RSiena is 
defined in Ripley et al. (2019). An example of some effects, 
used in the example, is the following. The formula for the 
component s xki ( )  of s xi ( )  is given, with a minimal sub-
graph illustrating the component:

1. Outdegree effect

j
ijx  

represents the tendency for actors to have outgoing ties. This 
parameter is analogous to a constant term in regression mod-
els. In practice, it is always included in the model to fit the 
trend in the total number of ties.

2. Reciprocity effect

j
ij jix x  

represents the tendency for actors to reciprocate incoming 
ties with outgoing ties.

3. Transitive triplets

j h

ij ih hjx x x
,

 

Σ

Σ

Σ
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represents the tendency for an actor to create transi-
tively closed structures, where “friends of friends are 
friends.”

4. Geometrically weighted shared partners (“gwesp”) 

j

n

ij

t
ijx e e

=1

1 1∑ − −( ){ }−α α

where

t x xij
h

ih hj=  

is another representation of the tendency to create transi-
tively closed structures, where the number of indirect con-
nections (“two-paths”) tij  has a decreasing marginal effect. 
In this article, the parameter α  is fixed to ln(2) 0.69∼∼ . See 
Snijders et al. (2006) and Hunter and Handcock (2006).

5. Three-cycles

j h
ij jh hix x x

,
 

represents the tendency for an actor to create closed cycles 
i j h i→ → → .

6. Transitive reciprocated triplets

j h

ij ji ih hjx x x x
,

 

is an interaction between reciprocity and transitivity (see 
Block, 2015).

7. Dense triads

Σ
j h

ij ji ih hi hj jhx x x x x x
,

 

represents the tendency for an actor to be a part of triads 
where everybody is mutually connected.

8. In-degree popularity

j
ij

h
jhx x∑ ∑












 

represents the tendency of actors to send ties to other actors 
with currently high in-degrees.

9. Out-degree popularity

j
ij

h
jhx x∑ ∑












 

represents the tendency of actors to send ties to other actors 
with currently high out-degrees.

10. Out-degree activity

j
ij

h
ihx x∑ ∑












 

represents the tendency of actors with currently high out-
degrees to create new ties.

11. Reciprocated-degree activity

j
ij

h
ih hix x x∑ ∑












 

represents the tendency of actors with currently many recip-
rocated ties to create new ties.

12. Same covariate

j
ij i jx v v∑ { }1 =  

for a categorical actor covariate V , where 1  is the indicator 
function, represents the tendency of actors to create ties to 
other actors that have the same value of this covariate. In the 
picture, the covariate is binary and indicated by the node 
color.

13. Similar covariate

j
ij

i j
x

v v

V∑ −
−













1
( )Range

 

for a numerical actor covariate V  represents the tendency of 
actors to create ties to other actors that have a similar value 
of this covariate.

Some of these effects can have seemingly similar conse-
quences for the generated networks. For example, transitive 
triplets, gwesp, dense triads, and the same or similar covari-
ate effects all will lead to some kind of clustering in the net-
work. One of the purposes of the GOF studies is to determine 
which of these provides the best fit.

The mostly used estimation method for these models is 
the MoM (Snijders, 2001, 2017). Denoting the parameter by 
θ ρ ρ ρ β= ( , , , , ),1 2 1 M −  and the observed sequence of 

Σ

Σ

Σ
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networks by x t m Mm( ) ( = 1, , ) , the MoM estimate θ  is 
here defined as the solution of

m

M

m m m m

m

M

m m

E z X t X t X t x t

z x t x t

=1

1

1

=1

1

, =

= ,
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+

−

∑

∑

( ) ( )( ) ( ) ( ){ }

( )

θ
|

++( )( )1

 (5)

for a suitable vector of statistics z , which are sensitive to the 
parameters in θ . For the model specification given here, z  
may be chosen to contain the statistics

i j
ij m ij mx t x t m M

,
1| | 1 <∑ ( )− ( ) ≤( )+  (6a)

which are sensitive to the rate parameters ρm , and

m

M

i
i ms x t

=1

1

1

−

+∑∑ ( )( )  (6b)

which is sensitive to the parameter β . The solution of equa-
tion (5) can be approximated well by stochastic approxima-
tion (Snijders, 2001, 2017). This is implemented in the 
RSiena package (Ripley et al., 2019).

Statistics

The “GOF” problem is one of testing the hypothesis that the 
model which generated the observed data is equal to the fitted 
model. Due to (1) the vastness of the state space of networks 
and (2) the idea that we have a “sample of size 1” observed 
over time, the approaches that have been developed for stand-
ard statistical modeling cannot be applied. Here, we follow 
the approach proposed by Hunter et al. (2008) and used also 
by Robins et al. (2009) for assessing the GOF of exponen-
tially random graph models representing cross-sectionally 
observed networks. Many of the statistics proposed below are 
adopted from, or inspired by their work. This approach takes 
one auxiliary statistic, which is a vector of features of the data 
that is not directly included in the model, that is, it is not a 
function of the estimation statistics (equation 6). The value of 
this auxiliary statistic is compared between the observed data 
and their distribution as implied by the SAOM with the esti-
mated parameters. In practice, usually several auxiliary statis-
tics will be considered; the explanation of the procedure is for 
one vector-valued auxiliary statistic.

Before proposing the form of the GOF test, we present a 
number of possible auxiliary statistics. This list is by no 
means exhaustive, but we provide concrete examples which 
will be used in the simulation study and the example applica-
tion later in this article:

Triad census. There are 16 possible isomorphic sub-
graphs of three nodes and the 3 2 = 484×  possible edge 
configurations between them, as illustrated in Figure 1. 

The vector of frequencies of these subgraphs in the net-
work is called the triad census. Holland and Leinhardt 
(1976) proposed to study this as the “local network struc-
ture.” Further interpretations can be found, for example, 
in Borgatti et al. (2018).

The triad census can be used to assess whether the nuances 
of local network structure, such as network closure (i.e. 
transitivity)—a fundamental feature of social networks—
are accurately represented by the fitted model.

Edgewise shared partners (ESP). We can also  
consider, for a given C , the vector of statistics 
A x A x A x A xE E E EC

T( ) = ( ( ), ( ), , ( ))1 2   containing elements

A x x x x cEc
i j

ij
k i j

ik jk( )











∑ ∑

≠

= =
, ,

1  (7)

where 1{.}  is the indicator function. These elements count 
the number of node pairs which share c  outgoing part-
ners. The ESP counts will help to capture the importance 
of redundancy (i.e. multiple indirect connections) in net-
work closure; this feature is not represented directly in the 
triad census. The use of ESP counts originates from the 
work of Hunter and Handcock (2006) and Snijders et al. 
(2006).

Outdegree distribution. This is the vector of statistics 
A x A x A x A xD D D DC

T( ) = ( ( ), ( ), , ( ))1 2   given by

A x x cDc
i k

ik( )











∑ ∑= =1  (8)

Figure 1. The 16 possible triads for transitivity in a digraph, 
adapted from Holland and Leinhardt (1976). The Mutual/
Asymmetric/Null (MAN) notation for each triad is also given 
below each figure. For certain MAN classes, for example, 030C, a 
letter is appended to make the notation unique.
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These statistics count the number of nodes with c  outgo-
ing ties. In the social networks literature, this is often inter-
preted as the activity of the nodes. The dimension C  of this 
statistic will be chosen based on the observed network and 
the interests of the researcher. While average outdegree is 
modeled explicitly by virtually all SAOM models used in 
practice, the distribution of outdegrees can have many differ-
ent shapes, and these will not automatically be represented 
well by an estimated model.

Indegree distribution. This is the vector of statistics 
A x A x A x A xP P P PC

T( ) = ( ( ), ( ), , ( ))1 2  , defined by

A x x cPc
j k

kj( )











∑ ∑= =1  (9)

These elements count the number of nodes with c  
incoming ties, in the social networks literature often inter-
preted as popularity. Indegree and outdegree distributions 
are quite distinct from one another, and should be consid-
ered separately.

Geodesic distances. Define G xij ( ) , the geodesic dis-
tance, as the length of the shortest path between nodes 
i  and j  in the graph. This path length may be defined 
with or without taking into account directionality of 
edges. The geodesic distances are in the vector of sta-
tistics A x A x A x A xG G G GC

T( ) = ( ( ), ( ), , ( ))1 2  , contain-
ing elements

A x G x cGc
j

ij( ) ( ){ }∑= =1  (10)

The distribution of geodesic distances is an emergent 
property of social networks which is important, for example, 
for how quickly ideas and norms can spread. Importantly, 
geodesic distance is among the statistics presented here the 
only non-local characteristic of the network.

Edgewise similarity. Covariates are denoted V i( )  where 
i  is the actor, and lead to statistics such as

A x V i V jV
i j

ij= ,
,
∑ ( ) ( )( )S  (11)

where S( , )v v′  is a function representing the similarity 
between values v  and ′v . This function be specified in sev-
eral ways depending on the type of covariate. For binary 
covariates, the function

S 1v v v v, = =′( ) ′{ }

is a sensible choice. For numerical covariates, a transformed 
mean absolute difference can be used, as in

S v v
v v

V
, =1

| |′( ) −
− ′

( )Range

The choice of similarity function should depend on sub-
stantive theory and field knowledge, and on which aspects of 
fit are deemed important.

A Monte Carlo Mahalanobis distance 
based GOF test

In the previous section, we outlined a number of important 
features of digraph and covariate data that can be used for 
assessing GOF. From these auxiliary statistics, we now 
focus on only one GOF statistic A x( ) , but we must still 
consider how to make inference about the alignment of this 
statistic between the data and the fitted model under investi-
gation with estimated parameter θ . Note that the statistic 
A x( )  should be quite distinct from the functions s xi ( )  used 

to model the network (see equations (3) and (6)), as we wish 
to assess whether the model also is adequate in the represen-
tation of features of the network that are not explicitly used 
to define the model.

Recall that we assume to have panel data, that is, a 
sequence of observed networks x t x t x tM( ), ( ), , ( )1 2   for 
M ≥ 2 . The approach to analyzing such a sequence advo-
cated by Snijders (2001) is to consider each observation con-
ditional on the previous one. The testing problem, therefore, 
is to compare the observed value of the auxiliary statistic 
A x tm( ( ))1+  to the estimated conditional distribution of 
A X tm( ( ))1+  given x tm( ) , for 1 1≤ ≤ −m M . This condi-

tional distribution is not analytically tractable, and we handle 
this by taking recourse to Monte Carlo simulation. As we 
shall see, it will not be required to conduct additional simula-
tions beyond what is already required for MoM estimation.

For simplicity, we deal with a single period. Since the 
estimation conditions on x t( )1 , this part of the observa-
tions is fixed and the only random part is x t( )2 , which for 
notational simplicity we denote by x . We will make use of 
expectations Eθ  over the distribution implied by θ  of 
X t( )2  given x t( )1 . For transparency, we also drop from 

the notation the conditioning on x t( )1  and denote X t( )2  
by X . The case of multiple periods is an important elabo-
ration; however, at present we will concern ourselves with 
the case of one period. We return below to the issue of 
multiple periods.

The approach taken here is to construct a function D  that, 
for a given vector of statistics A X( ) , measures some notion 
of distance between the observed A x( )  and the distribution 
of the statistics A X( )  where X  has the distribution implied 
by θ . This raises the question of how to map the multidi-
mensional A X( )  onto a scalar D . A good way of doing so 
is provided by the Mahalanobis (1936) distance. Denoting 
the expected value of A X( )  by µ θ( )  and the covariance 
matrix by Σ( )θ , we propose the Mahalanobis distance
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D x A x A x
T

, =
1θ µ θ θ µ θ( ) ( ) − ( )( ) ( ) ( ) − ( )( )−Σ  (12)

as our test statistic. We cannot in general compute equation 
(12) analytically; therefore, we use its Monte Carlo estimate 
D , obtained by replacing µ and Σ  by estimates. With a 
large number N  of simulations xh

( )sim  for h N= 1, ,  from 
the SAOM with parameter θ , we estimate µ θ( ) , Σ( )θ , and 
D x( , )θ  by

µ

µ µ



  

=
1

=
1

=1

( )

=1

( ) ( )

N
A x

N
A x A x

h

N

h

h

N

h h

∑

∑

( )

∑ ( ) −( ) ( ) −

sim

sim sim(( )
( ) ( ) −( ) ∑ ( ) −( )−

T

T
D x A x A x   =

1
µ µ

 (13)

This D x( )  will be briefly called the MDMC. The MDMC 
test is constructed by considering the p -value

Pθ θ θD X D x� � � �, > ,( ) ( ){ }  (14)

If the central limit theorem would apply, we would expect 
that equation (12) has approximately a chi-square distribu-
tion. However, we have no proof of this, and therefore follow 
a parametric bootstrap procedure. Then, plugging in the vari-
ous values leads to

p
N

D x D x
h

N

h
  =

1
>

=1

( )∑ ( ) ( ){ }1 sim  (15)

as the estimator for the p -value (equation (14)). A very low 
value indicates a poor fit.

For p , we should be concerned about the difference 
between a straight 0 and a very small positive value. 
Suppose that N = 1000  simulations are carried out. If 
p = 0.001  or larger, the observed statistics are somewhere 

within the total multivariate cloud of simulated values of 
statistics A xh( )( )sim , but if p = 0  precisely, the observed 
statistics are outside this cloud of values, and might be far 
away. Therefore, when interpreting the value of equation 
(15), the distinction between the values 0, on one hand, 
and 1/ N  or larger, on the other hand, should be taken 
very seriously.

Summarizing, this approach uses Monte Carlo simulations 
for parameter estimate θ  thrice. First, the simulations are 
obtained in the algorithm used for the usual MoM estimation 
(Ripley et al., 2019; Snijders, 2001) for computing standard 
errors and convergence checking. Next, they are used to esti-
mate µ, Σ , and D  as in equation (13). Finally, they are used 
to estimate the p -value (equation (14)) on which the MDMC 
test is based. These three computations can all use the same set 
of N  simulations. By estimating the p -value according to 

equation (15), we do not use assumptions about the distribu-
tion of D  directly, although we do use the assumption that X  
was generated by the SAOM and that θ  is a good estimate. It 
is not required that A X( )  have a multivariate normal distribu-
tion; although the use of the Mahalanobis distance is more jus-
tified when the multivariate distribution has a more nearly 
elliptical shape. This p -value addresses the hypothesis that 
the SAOM with parameter θ  generated the observed A x( )  
against the unspecified composite hypothesis that some other 
model generated it. Due to the use of estimated parameters in 
equation (13), there will be some measure of overfitting; this 
will be the stronger for statistics highly correlated with the sta-
tistics used for estimation. This will lead to a conservative test 
(cf. Schweinberger, 2012). Below we will investigate the 
severity of this conservatism.

MMD estimator

The development of the MDMC allows the researcher to test 
GOF. If the fit is satisfactory, the researcher can go on with 
the analysis. In the event that fit is not acceptable, the 
researcher may have some theoretically based ideas on reme-
diation. Even so, there may be a large number of effects that 
are plausible for inclusion. The richness and complexity 
inherent in networks provides the researcher with an enor-
mous menu of effects to choose from, as is illustrated by the 
implemented effects in the RSiena package (Ripley et al., 
2019). In most cases, theory and experience will not suffice 
to give a definite conjecture about the effect that should be 
added to improve the fit. Trying out many different effects 
will be time-consuming. This section presents an approxima-
tion to suggest which model improvements might be empiri-
cally promising, without requiring to estimate the 
correspondingly extended model.

The “MMD” estimator is an estimator for the Mahalanobis 
distance D x( , )θ  for the situation where a baseline model is 
considered with parameter estimated as θ 0 , the focus is on 
one auxiliary statistic, and a variety of effects is considered, 
not included in the baseline model, that might be used to 
extend the model. Each effect corresponds to a potential 
model extension, and we are interested in knowing the extent 
to which each of these model extensions would improve the 
fit as measured by D x( , )θ . Thus, if for a given auxiliary 
function it turns out that the fit is unsatisfactory, the MMD 
can be calculated for a set of potential model extensions, and 
the extension producing the largest improvement in 
Mahalanobis distance can be selected as the tentative new 
model. Since parameter estimation for all extended models 
would be time-consuming, we forego the step of estimation 
and we are satisfied with an approximation.

The method proposed here is similar to methods used in 
model specification of structural equation models (SEMs) 
(cf. Kaplan, 1990, 1991). Specifically, they are to some 
extent analogous to the model modification index (MMI) of 
Sorbøm (1989) and the expected parameter change of Saris 
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et al. (1987). An important difference with the use of the 
MMI in structural equation modeling is that in SEMs the 
GOF function (usually the log likelihood) is also maximized 
for obtaining estimates. This approach is unavailable to us in 
the current context. For MoM estimation, we have only an 
estimating function which cannot be used as a GOF function 
(for a MoM estimate, the estimating function is the differ-
ence between the left-hand and the right-hand sides of (5), 
and the estimate is defined by this being zero). Furthermore, 
the purpose of our GOF approach is to consider the fit spe-
cifically for statistics that were not used for the estimation.

For a given extension of the model, supposing it is the true 
one, denote the parameter value by θ1 . For this parameter 
value and the given data set x , we wish to estimate the 
Mahalanobis distance D x( , )1θ  without going through the 
full procedure of estimating θ1  by the MoM (Snijders, 2001) 
or by Maximum Likelihood (Snijders et al., 2010a). Instead, 
we may use the approach of Schweinberger (2012) and cal-
culate a one-step estimate θ1  (so called because it is based 
on a single Newton-Raphson step for optimizing the estima-
tion function approximated from calculations done for 
θ θ= 0
 ). The one-step estimation essentially comes for free, 

being based entirely on data sets simulated under parameter 
value θ 0 ; these simulations are typically conducted anyway 
for convergence checking and standard error calculation for 
θ 0  (the “third phase” of the algorithm, see Snijders, 2001).

The question now is how to approximate the value 
D x( , )θ  as defined in equation (12) for θ θ= 1

 . We assume 
D x( , )θ  is a twice differentiable function of θ . For deter-
mining the one-step estimate θ1 , a Taylor expansion is used, 
and we may likewise use a Taylor expansion for approximat-
ing D x( , )1θ . As a second-order expansion is used for deter-
mining one-step estimates, it seems natural to consider a 
second-order expansion for D x( , )θ . Such an expansion was 
elaborated in Lospinoso (2012), but this requires computa-
tion of the observed (Fisher) information matrix and is com-
putationally considerably more complex. A main purpose of 
the present GOF test is to dovetail with the relatively expedi-
ent MoM estimation procedure. We, therefore, deal exclu-
sively with the first-order expansion here, which contains 
ingredients immediately available as by-product of the MoM 
estimation procedure of Snijders (2001), and which proves to 
work satisfactorily in practice.

Letting ∇ ∂ ∂θ θ= / , the first-order expansion is

D x D x D x, , ,1 0 1 0 = 0
θ θ θ θ θθ θ θ( )≈ ( )+ −( )∇ ( ) 



|  (16)

The gradient ∇θ θD x( , )  has elements

∂
∂

( ) ( ) − ( )( ) ( ) ( ) − ( )( )

− ′ ( ) ( ) ( )−

θ
θ µ θ θ µ θ

µ θ θ

i

T

i

i
T

D x A x A x

A x

, =

2
1

Ξ

Σ −− ( )( )µ θ

 (17a)
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′ ( ) ( )  ( ){ }µ θ θ θi i
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 (17c)

− ′( ) ( ) − ( ) ′ ( )µ θ µ θ µ θ µ θi
T

i
T  (17d)

and

u X p X( ) ∇ ( )= θ θlog  (17e)

is the score function for the probability function p Xθ ( ) . A 
derivation is provided in the Appendix 1.

The derivatives are expressed in equations (17b) and 
(17d) using the score function u Xθ ( ) . To keep the Monte 
Carlo error for estimating these quantities within reasonable 
bounds, it is important to use a linear control variable, as was 
done also in Schweinberger and Snijders (2007). Therefore, 
we rewrite equations (17b) and (17d) as

′ ( ) ( )  ( ) − ( )( ){ }

( )
( )  ( ) − (

µ θ

θ

θ θ

θ

θ

i i

i
i

E u X A X A x

E
u X A X A x

=

=Γ
))( )

( ) − ( )( )











A X A x
T

 (18)

using the property that

E u Xθ θ ( ){ }=0

This leads to the Monte Carlo estimators

µ θ

θ
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h
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h
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N
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T

 (19)

The MMD estimator for D x( , )1θ  uses a Monte Carlo 
simulation set-up as above with simulations for the estimated 
value θ 0 . The estimation proceeds as follows: estimate θ1  
by the one-step estimator θ1  from Schweinberger and 

Snijders (2007); use equation (13) to estimate µ θ( )0
  and 

Σ( )0θ ; estimate ′µ θi ( )0
˘  and Γi ( )0θ̆  by (17c), with θ θ= 0

 ; 
estimate Ξi ( )0θ̆  using (17a), and finally, plug these results 
into equations (17a) and (16).
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Concluding, this approximation can be computed using 
simulations xh

( )sim  under parameter estimate θ 0 , where in 
addition to the auxiliary statistics A xh( )( )sim  we also need to 
compute the score functions u xhθ ( )( )sim .

Two warnings should be given here. First, the MDMC for 
an extended model does not need to be smaller than for the 
baseline model. This is because the MoM estimator is not 
oriented toward minimizing the function D x( , )θ . Second, 
the value of the MMD is not guaranteed to be positive. This 
is because it is an approximation only. Therefore, a researcher 
should not be surprised in sometimes finding that a model 
extension seems to lead to a worse fit for some auxiliary sta-
tistic, nor in sometimes finding that the MMD predicts a 
worse fit, or a negative Mahalanobis distance. However, 
these are exceptions.

For a given auxiliary statistic, when considering a set of 
potential model improvements, the improvement yielding 
the largest decrease in the Mahalanobis distance may be con-
sidered to be the best choice. Let us call this the MMD-1 
model modification. We are just considering one-dimen-
sional modifications, so there is no issue of different a priori 
advantages because of involving different degrees of free-
dom. A more subtle possibility is available when a set of sev-
eral auxiliary statistics and a set of model improvements is 
under consideration. Then one may use the following proce-
dure, to be called MMD-2, for model modification:

1. If all MDMC p -values are larger than some thresh-
old, for example, the conventional α = 0.05 , then 
continue with the baseline model;

2. If for some auxiliary statistics the MDMC p -value is 
less than α , use for the following step the auxiliary 
statistic having the smallest MDMC p -value;

3. Choose the effect that gives for this auxiliary statistic 
the best improvement as predicted by the MMD, and 
add this to the model.

Evidently, this procedure can be iterated.

Simulation study

In this section, we provide a small simulation study of (1) the 
validity and power of the proposed MDMC test, and (2) the 
effectiveness of the one-step Mahalanobis distance estima-
tors in guiding model selection. We use a subset of the 
Teenage Friends and Lifestyle Study (TFLS) as the basis for 
our study. The TFLS data set was collected by West and 
Sweeting (1996) and utilized in many publications including 
Michell and Amos (1997), Pearson and Michell (2000), and 
Steglich et al. (2010). The panel data were recorded over a 
3-year period starting in 1995, when the pupils were aged 13, 
and ending in 1997. A total of 160 pupils took part in the 
study, 129 of whom were present at all three measurement 
points. We utilize a subset of 50 girls from the study, called 
the TFLS-50, who were present at all three measurement 

points, chosen only for demonstration purposes, and distrib-
uted with the RSiena package (Ripley et al., 2019). Friendship 
networks were formed by allowing the pupils to name up to 
six best friends.

We simulate data in the following way: using the first 
observation of the TFLS-50 as the time-1 measurement, per-
form independent Monte Carlo simulations, according to 
three different SAOM specifications, each yielding 250 net-
works for the time-2 measurement. A binary actor covariate 
V  is constructed, with values 0 for the first 25 and 1 for the 
last 25 girls. Since the order of the individuals in the data set 
is arbitrary, this is like a random covariate. We simulate with 
a constant rate ρ = 4  and the following evaluation function:

f x x

x x

ij
j

ij

j
ij ji

( | )=  1

2

β β
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(indegree popularity effect)

1   (same  effect)V

These 750 simulations are then used as the time-2 
observation.

Three combinations of parameter values are used; in 
these combinations, one of the values β β β3 4 5, , and is non-
zero, the other two are zero. The value of β1  in all three 
specifications is tuned so that the average degree for the 
simulated data is between 4 and 5, a value that is reasona-
ble in practice. The reciprocity parameter is set at 2.0, also 
a value close to what is often found for friendship net-
works. To achieve some further similarity between the 
specifications, the non-zero parameter among β β β3 4 5, , and
is determined (based on trial and error) so that the value of 
E SE( ) / ( )β β 

k k  for each of k = 3,4,5  is about 3, corre-
sponding to a power of very roughly 0.8 for detecting this 
effect by a one-parameter test. (This reasoning is based on 
an approximation where β β 

k k/ ( )SE  is assumed to have a 
normal distribution with mean equal to 0 if βk = 0  and 
continuously increasing as a function of βk , and variance 
equal to 1.) This leads to the parameter combinations A, B, 
and C in Table 1.

In this demonstration, we use for the GOF study the fol-
lowing auxiliary statistics:

•• The triad census (see Figure 1);
•• The geodesic distance distribution for C = 5 , where 

C  is the number of statistics (equation (10)), that is, 
the dimension of the auxiliary statistic;

•• The indegree distribution for C = 5 ;
•• The outdegree distribution for C = 5 .
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The number of Monte Carlo simulations to compute the 
p -values (equation (15)) is N = 1000 . The procedure is 

comprised of the following steps:

1. Estimate the parameters of an improperly specified 
base model with an incorrect evaluation function

f x x

x x

ij
j

ij

j
ij ji

0
1

0

2
0

| =  ( ) ( )

( )

( ) ( )

+

∑

∑

β β

β

outdegree effect

 recciprocity effect( )
 (20)

This may be considered to be a minimal model.

2. The proposed GOF test is evaluated at β (0)
, for each 

of the four auxiliary statistics.
3. Three model elaborations are considered. Each elab-

oration entails adding one of the following terms to 
the evaluation function

β3
,

 TT

j k j
ij jk ijx x x( )

≠
∑ ( )transitive triplets  (21)

β4
IP

i
ij

k
kjx x( )∑ ∑ ( )indegree popularity  (22)

β5 =  SV

j
ij i jx v v V( )∑ ( ) ( )1 same  (23)

These effects were explained above. For each elabora-
tion, the MMD is calculated. Note that for each simulated 
data set, one of these three is the properly specified model. 
The frequencies of selecting the correct model are reported. 
Using the MMD values, model selection procedure MMD-2 
is applied.

4. As a sanity check, for the correct model we perform 
MoM estimation, and assess whether the estimates 
according to the properly specified model are close 
enough to the true parameter values.

5. For a new set of parameter values, we perform Steps 
1–3 and evaluate the MDMC values D x( )  of equation 

(13) at β β β  

( ) ( ) ( )
, ,

TT SC IP
. The MMD values calcu-

lated in Step 3 are compared with these MDMC values, 
to see whether they are good enough approximations.

The results of these steps are as follows.

Step 1: estimation improperly specified model

Table 2 provides observed 95% intervals for β
(0)

 estimated 
using the misspecified model (equation 20). The number of 
cases for each column here is 250, the number of generated 
time-2 networks for each specification. Across all three mod-
els, the reciprocity parameter β2

(0)  is contained in the corre-
sponding frequency interval, while outdegree β1

(0)  is in this 
interval only for model A. Although the simulation study is 
quite limited in scope, it is encouraging that the estimates for 
the reciprocity parameter seem reasonably robust to misspeci-
fication. For the outdegree parameter, differences are to be 
expected because the omitted effect leads to a different refer-
ence point (this is the point where the other effects all are 0).

Step 2: perform the MDMC test

The proposed MDMC test is executed at the improperly 
specified model. Assembling the resulting tests into receiver 
operating characteristic (ROC) curves will allow us to inves-
tigate how well the test detects the misspecification. These 
curves tell us, for a specified false positive rate, the probabil-
ity of rejecting the model. See Fawcett (2006) for more infor-
mation on ROC curves. This is estimated here by calculating, 
for any given α ∈ (0,1) , the proportion among the simula-
tion results for a given model specification and a given aux-
iliary statistic that the p -value (equation 15) is less than α . 
The test has power if the ROC curve is above the diagonal, 
and power is better when the curve is higher. The results in 
Figure 2 show that power varies considerably depending on 
the effect/auxiliary statistic combination. For same covari-
ate, none of the four auxiliary statistics were effective at 
detecting the misspecification. In fact, some of the tests 
appear a bit conservative (indicated by the concavity of the 
ROC curve). For indegree popularity, the results are mixed; 
indegree distribution and triad census both have good power 
to detect the misspecification (indicated by the convexity of 
their ROC curves) whereas outdegree distribution and geo-
desic distribution do not. The transitive triplets effect is 
detected only by the triad census. These results reflect the 

Table 1. Specifications of three models for simulation.

Model A B C

β1  outdegree –1.30 –1.65 –1.35
β2  reciprocity 2.00 2.00 2.00
β3  transitive triplets 0.27 0.0 0.0
β4  indegree popularity 0.0 0.12 0.0
β5  same V 0.0 0.0 0.45

Table 2. Frequency intervals for β̂ (0)  under misspecification.

A B C

Outdegree β̂1
(0)  (L) –1.35 –1.34 –1.32

Outdegree β̂1
(0)  (U) –0.62 –0.75 –0.77

Reciprocity β̂2
(0)  (L) 1.63 1.46 1.59

Reciprocity β̂2
(0)  (U) 2.59 2.34 2.47

Lower (L) and upper (U) end points for 95% relative frequency intervals 
obtained via simulations.
Columns refer to Models A, B, and C in Table 1.
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differential connections between the effects and the auxiliary 
statistics: for example, the indegree distribution has an asso-
ciation with the indegree popularity effect, while the triad 
census has a connection with the transitive triplets effect; for 
some other combinations, the connection is weak. This 
potentially loose connection should entreat researchers to 
consider several auxiliary statistics for GOF testing rather 
than relying on one or two.

To interpret the conservative nature of the results of all aux-
iliary statistics for the same covariate effect, we point out two 
issues. These results suggest that misspecification with respect 
to covariates is not easily detected by auxiliary variables 
reflecting network structure; more research is needed to inves-
tigate whether this is generalizable. Other auxiliary statistics, 
considering specifically the occurrence of ties depending on 
the covariate values for sender and receiver, may be expected 
to have a better sensitivity for this type of misspecification. 
Second, insensitivity leads to conservativeness because the 
Mahalanobis p -value is not corrected for the use of estimated 
parameter values; this is analogous to what would happen if, 
for example, the chi-square test for a contingency table were 
used without decreasing the degrees of freedom to account for 
the estimation of the marginal distributions.

Step 3: MMD for candidate model elaborations

The most practically important characteristic of an MMD 
estimator is how often it would lead the researcher to select 
the appropriate model elaboration, given a misspecification. 

Table 3 gives the distribution of the rankings of MMD evalu-
ated for each model elaboration. Again, the number of cases 
is 250, the number of simulated data sets.

When the model misspecification is A, the omission of the 
transitive triplets effect (equation 21), the results in the first 
panel of Table 3 show that the MMD estimators based on 
geodesic distance, triad census, and outdegree distribution 
have the highest probability of selecting this model exten-
sion indeed. Only the indegree distribution selects more fre-
quently the indegree popularity effect.

For the indegree popularity model B defined by equation 
(22), the triad census and the indegree distribution-based 
MMD estimators select the correct model more than 80% of 
the time. The results are much weaker for the geodesic and 
outdegree distributions, although for the latter the correct 
model still has the highest estimated probability.

The MMD estimator orderings for the same covariate 
model C, given by equation (23), do not perform well. None 
of the auxiliary statistics results in more than a 41% selection 
rate of the correct elaboration. This corresponds to the con-
servative nature for all auxiliary statistics for model C of the 
MDMC tests in Step 2.

The results of model selection procedure MMD-2 are 
given in Table 4. These are in line with the earlier results: the 
detectability of the transitive triplets effect and especially the 
indegree popularity effect are good, whereas the same covar-
iate effect is not detectable by these auxiliary statistics. We 
remind the reader that the parameter values in the three cases 
were chosen so that the Wald test directed at this specific 

Figure 2. Receiver operating characteristic curve: the ROC curve gives indication of the power versus false positive (“alpha”) trade-off 
of MDMC using various auxiliary statistic specifications.
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effect has a power of approximately 0.80. In this sense the 
effect sizes in the three cases are equally strong, and the dif-
ference in detectability depends on the correspondence 
between the auxiliary statistics and the misspecification, not 
on differences in effect size.

Step 4: MoM estimation of candidate models

During this step, we do a complete MoM estimation of each 
candidate model. All 95% coverage frequency intervals (not 
given for lack of space) include the true model parameters, a 
result in line with simulation studies of, for example, Snijders 
(2001) and Lospinoso et al. (2011).

Step 5: MDMC tests of candidate models

To assess the performance of the MMD estimator, we con-
duct a set of simulations varying the true extent to which one 
of the three model extensions is called for.

Define βk  as the columns of Table 1 for k = A  B  C, , , 
and β0 = ( 1,2,0,0,0)− . The value of β0  is similar to the 
parameters in Table 1 in the sense that it also leads to time-2 
networks having an average degree between 4 and 5. The 
simulations are done for parameter values λβ λ βk + −(1 ) 0 , 
and also for λ β β λ β( ) (1 ) 0h m+ + − , where k  is one of A, B, 
C, and h  and m  are two different out of A, B, C. For each of 
these six combinations of A, B, C, a total of 100 simulations 
is done with random values of λ , drawn from the uniform 
distribution on (0.5,1.5) . This gives a set of 600 data sets 

generated by parameter values where for each of the param-
eters β3

( )TT , β4
( )IP , and β5

( )SV , a total of 300 have the value 
0 and another 300 have a positive value.

For each data set, parameters are estimated under the base 
model (equation 20), and for each of the four auxiliary statis-
tics, the MMD estimators for the three candidate models are 
calculated. Negative MMD values are truncated to 0. Then 
for each of the three candidate models, the full MoM estima-
tion is carried through and the four Mahalanobis GOF 
MDMC statistics are computed. Thus, for each of the 600 
data sets, there are 12 pairs of a MMD estimator and an 
MDMC statistic. To each of these pairs corresponds an 
MDMC value for the base model. The question now is, 
whether the MMD yields an adequate prediction of the 
improvement, that is, decrease, in the Mahalanobis distance 
when comparing the base model to the estimated candidate 
model. In other words, how good is the MMD as an approxi-
mation of the MDMC of the candidate model, where the 
MDMC of the base model can be used as a reference value.

Figure 3 presents the improvement of the Mahalanobis 
distance with respect to the base model, as realized (vertical 
axis) and as predicted by the MMD (horizontal axis). In the 
axis labels, MDMC(0) refers to the MDMC for the base 
model. The MDMC refers to the realized MDMC for the 
candidate model, and MMD refers to the MMD truncated to 
nonnegative values. In view of the skewness, all Mahalanobis 
distances were transformed by the square root.

The figure shows a strong agreement. The realized 
improvements tend, however, to be smaller than the pre-
dicted improvements, as most points are below the equality 
line. The correlation between the differences MDMD—
MDMC(0) and MMD—MDMC(0) is equal to 0.94, which is 
a confirmation of the value of this approximation.

Workflow

In this section, we suggest a possible GOF assessment 
approach for SAOM analysis that incorporates the MDMC 
testing procedure into the model fitting context. This can be 
carried out using the R package RSiena (Ripley et al., 2019), 
in which the MDMC test and the MMD estimator are imple-
mented in the function sienaGOF.

Table 3. Probability distribution of MMD rankings at Step 3.

A B C

Transitive triad census 0.97 0.03 0.00
Outdegree distribution 0.58 0.10 0.32
Geodesic distance distribution 0.88 0.02 0.10
Indegree distribution 0.28 0.42 0.30

 A B C

Transitive triad census 0.03 0.87 0.10
Outdegree distribution 0.33 0.39 0.28
Geodesic distance distribution 0.24 0.36 0.40
Indegree distribution 0.00 0.82 0.18

 A B C

Transitive triad census 0.52 0.38 0.10
Outdegree distribution 0.38 0.35 0.26
Geodesic distance distribution 0.53 0.24 0.23
Indegree distribution 0.09 0.50 0.41

MMD: modified model distance.
The three panels correspond to the three true models, indicated by the 
bold face column header.
Auxiliary statistics are in the rows. For each corresponding MMD  
estimator, the row gives the estimated probabilities of selecting the  
candidate elaboration of the column, that is, rows sum to 1.

Table 4. Relative frequencies of models selected by procedure 
MMD-2 in Step 3.

Selected extension

 None A B C

True model extension
Transitive triplets 0.42 0.51 0.06 0.01
Indegree popularity 0.22 0.02 0.76 0.00
Same covariate 0.92 0.04 0.03 0.01

For each true model extension, the proportions of models selected by 
procedure MMD-2 are given; “none” means all goodness of fit p̂ -values 
for the baseline model were above 0.05.
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First, we should point attention to time heterogeneity, 
which is a special kind of misspecification that is possible for 
data with M ≥ 3  waves. There is time heterogeneity if 
parameters β  in equation (3) differ between periods. This 
can be tested in RSiena by the function sienaTimeTest, 
implementing a procedure of Lospinoso et al. (2011). This 
means that in practice, a researcher fitting SAOMs has two 
approaches available to assess whether the model fits the 
data, the one comparing data and model expectations for 
auxiliary statistics, and the other comparing parameters 
between periods. It is impossible to establish a rule that a 
researcher should first pay attention to one and subsequently 
to the other. In the case of lack of fit, the researcher may have 
to switch in unforeseen ways between these two approaches. 
Some further considerations and examples are given in 
Lospinoso and Satchell (2011).

A proposed workflow is the following. The preceding 
remarks imply that the order of Steps 5, on the one hand, and 
6–7 combined, on the other hand, is not fixed.

1. Select a provisional SAOM specification: this model 
should be parsimonious, based on the research ques-
tion and existing knowledge about the processes 
driving the evolution of the network under study.

2. Reflect about time heterogeneity: if the data have 
three or more waves, and the average degree per 
wave has important jumps up as well as down, this is 
a sign of time heterogeneity for which it might be 
necessary to include time as a covariate. Whether this 
should be a linear time effect or some transformation 
of time depends on the pattern shown by the average 
degrees over the waves. One possibility is to include 
dummy variables for the waves.

 In the case of three or more waves, if there is a suspi-
cion of strong time heterogeneity, or if there is per-
sisting lack of fit or lack of convergence, it is 
advisable to estimate by period, that is, for each pair 
of subsequent waves separately. This is possible only 
if the data set is large enough to make estimation by 
period feasible.

3. Estimate the parameters for the provisional model.
4. Check the convergence of the estimation: for MoM 

estimation, good convergence means that simulations 
drawn from the fitted model yield simulated values 
of the estimating statistics (6) that are very close to 
the observed values. The manual (Ripley et al., 2019) 
gives criteria. If convergence is poor, try re-estimat-
ing the model; the manual offers advice for how to 
proceed. If poor convergence is systemic, this may be 
evidence of poor agreement between the provisional 
model and the data. Experience has shown that sys-
temic poor convergence may reflect, for example, 
that covariates should be included reflecting meeting 
opportunities (e.g. “same classroom” if the network 
is situated in a school context); or that additional 
degree-related effects should be included (e.g. reflect-
ing isolated nodes); or that outdegree effects on the 
rate of change should be included; or that there is 
major time heterogeneity. In this case, the researcher 
should go back to Steps 1 or 2.

5. Check for time heterogeneity, if appropriate: if there 
are three or more waves, time heterogeneity can be 
tested using the function sienaTimeTest, as men-
tioned above, with remedial possibilities mentioned 
in Step 2.

6. Assess GOF with the proposed MDMC GOF test: the 
GOF test can be carried out for several auxiliary statis-
tics. We recommend in any case to use the two degree 
distributions and the triad census, with the geodesic 
distances distribution as a valuable addition.

 The GOF test provides a p -value (equation 15). The 
conventional threshold of α = 0.05  is here even 
more arbitrary than in other cases—it may be used as 
a benchmark but should not considered as a precise 
and important borderline value.

 If the observed p -value is considered too low, we 
recommend visualizing the simulated auxiliary sta-
tistics versus the observed auxiliary statistics to get 
an intuitive feel for what is not fitting well. A plot for 
this purpose is also available in the RSiena package. 
Examples are given in Figures 4 and 5. This plot con-
sists of a sequence of violin plots (Hintze and Nelson, 
1998) for each dimension of the simulated auxiliary 
statistics, with confidence bands, and an overlay of 
the observed statistics. The plot helps us to see where 
the fit is poor.

7. Extend the model, if the fit is inadequate: if the 
GOF test points out that the fit is not satisfactory, 

Figure 3. The decrease in Mahalanobis distance compared with 
the base model, as predicted by the MMD (horizontal axis) and 
as realized (vertical axis). The straight line indicates equality. All 
distances square root transformed; MMD left truncated at 0.



14 Methodological Innovations

the model will have to be extended. The plot, fur-
ther knowledge about the data, and theoretical con-
siderations may point us to a list of candidate 
effects that could be added to the model. These can-
didate effects can be added directly to the model, or 
they may be evaluated approximately for their 
promise to improve fit by the MMD test described 
above. If there is a choice between several effects 
indistinguishable by theory, the one that yields the 
lowest MMD for the modified model may be cho-
sen. The results of the simulation study above dem-
onstrate that this is not a fail-safe procedure but it 
nevertheless can give meaningful guidance.

8. Iterate: depending on the results, some of the steps 
may have to be repeated.

There are potential theoretical pitfalls here, however. (1) 
As with any model selection procedure, if it is applied with-
out theory in mind, it will be much harder to defend the 
validity of the final model. (2) There may well be different 
possibilities for improving fit when it is found to be inade-
quate, so the result of this procedure may depend on random 
circumstances. (3) It may be desirable also to drop effects 
from the model at certain moments during the procedure—
depending on theory and insight into the data; this is illus-
trated by the example below. Considerations about the 
research question and theoretical insights will always need to 
play a fundamental role.

Example

We provide a small example of our model fitting procedure 
applied to the subset of the TFLS data introduced above. 
The data set includes three observations of friendship net-
works and alcohol consumption habits (on a scale with val-
ues 1–5). We demonstrate a forward stepping model 
selection exercise, assuming—for the sake of this example 
only—that the researcher wishes to specify a priori only the 
reciprocity effect, has a list of candidate effects, and wishes 
to inductively select a set of effects that lead to an accepta-
ble fit with respect to the indegree and outdegree distribu-
tions, the triad census, and the distribution of geodesic 
distances. “Acceptable” fit is defined by the usual 5% level 

for the MDMC p -value (equation 15). Note that we regard 
this as an extreme example because it is totally inductive 
and devoid of theory; we do not favor this kind of theory-
blind forward model selection in practice. But we hope it is 
a useful demonstration.

The list of candidate effects consists of transitive triplets, 
“gwesp,” three-cycles, transitive reciprocated triplets, dense 
triads, indegree popularity, outdegree popularity, outdegree 
activity, reciprocated degree activity, and covariate similar-
ity (for alcohol consumption). These effects were defined 
above. All these effects are used in practice by researchers 

applying SAOMs, although the dense triads effects is not 
used frequently.

The procedure was planned to have the following steps:

1. An initial model was estimated including only the 
outdegree and reciprocity effects.

2. Repeat:
	Add the candidate effect that is predicted by the 

MMD to have the greatest decrease for the first 
auxiliary statistic that does not have an accepta-
ble ( )p ≥ 0.05  GOF, and estimate this model.

 The word “first” is used here in the order (1) 
indegree distribution, (2) outdegree distribution, 
(3) triad census, and (4) geodesic distances dis-
tribution. The first in this list to have a p -value 
less than 0.05 is the “critical” statistic, determin-
ing the selection of the next included effect.

3. Stop when all four auxiliary statistics have an accept-
able ( )p > 0.05  GOF.

This led to a sequence of six models. They are presented 
in Tables 5 and 6. Each column presents the estimated 
model and the four GOF p -values. Some candidate effects 
are not mentioned at all, because they were never selected. 
From the first model on, the indegree and outdegree distri-
butions had an acceptable fit, so they never played an 
explicit role.

Figure 4. Goodness of fit diagnostic plot for the first model, 
with as auxiliary statistic the geodesic distance distribution. 
Observed values are indicated by numbers connected by a line. 
The simulated statistics are represented by the violin plots. 
Dotted lines give 95th percentile bands. The p̂ -value for the 
Mahalanobis distance-combination is given at the bottom.
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In view of the length of this article, we present only few 
plots. Figure 4 is a plot for the GOF results for the first 
model, containing only the outdegree and reciprocity 
effects, for the geodesic distance distribution of the auxil-
iary statistic. The fit is clearly very poor, with p = 0 ; the 
simulated distributions for the number of pairs with geo-
desic distance from 2 to 5 are much higher than the 
observed frequencies, and for the number of pairs at infi-
nite distance, that is, not being in the same connected com-
ponent, the reverse is true. In other words, the simulated 
networks have too few components, and within the compo-
nents the distances are too large.

In the first two steps the critical statistic was the triad cen-
sus, and the effects added were transitive triplets and recipro-
cated degree-activity. In the third step the critical statistic 
was the geodesic distance distribution, and the gwesp effect 
was added. This led to an unforeseen result: the transitive 
triplets effect, included earlier, became insignificant. Also, 
the triad census GoF p -value dropped below 0.05. It was 
decided to leave out the transitive triplets effect; this 
increased the triad census GoF p -value somewhat, but it 
remained less than 0.05. The triad census still was the critical 
statistic in this step, and the MMD now led to including the 
dense triads effect. This was the sixth model, and it satisfied 
all GOF requirements.

For the final model, a plot for the GOF results is in  
Figure 5. For the visual comparison of Figures 4 and 5, keep 
in mind that the observed values are the same, and the simu-
lated distributions now are much closer to the observations.

Discussion

This article proposed a GOF testing procedure for SAOMs 
which relies on a battery of auxiliary statistics, selected 
by the researcher, as GOF criteria. These statistics are 

used to construct a Monte Carlo Mahalanobis distance 
based test. Because remediating poor fit on these statis-
tics can be a complex and time-consuming undertaking, 
we proposed the MMD estimator for the Mahalanobis 
distance, evaluated at some provisional model, to assess 
which model among a set of candidates can be expected 
to improve fit best.

Figure 5. Goodness of fit diagnostic plot for the final model with 
as auxiliary statistic the geodesic distance distribution. Observed 
values are indicated by numbers connected by a line. The 
simulated statistics are represented by the violin plots. Dotted 
lines give 95th percentile bands. The p̂ -value for the Mahalanobis 
distance-combination is given at the bottom.

Table 5. MoM results first three models: parameter estimates (par.), standard errors (SEs), and goodness of fit (GOF) p̂ -values.

Effect Par. (SE) Par. (SE) Par. (SE)

Rate 1 5.79 (0.92) 6.50 (1.08) 7.44 (1.41)
Rate 2 4.49 (0.67) 5.22 (0.89) 5.69 (1.05)
Outdegree −2.38*** (0.10) −2.69*** (0.12) −2.32*** (0.13)
Reciprocity 2.86*** (0.19) 2.46*** (0.20) 3.61*** (0.35)
Transitive triplets – 0.62*** (0.07) 0.80*** (0.08)
Reciprocated degree-activity – – −0.39*** (0.09)

Statistic GoF p̂ -value GoF p̂ -value GoF p̂ -value

Indegree distribution 0.52 0.38 0.75
Outdegree distribution 0.50 0.22 0.62
Triad census 0 0.003 0.11
Geodesic distance distribution 0 0 0

***p < 0.001; overall maximum convergence ratios ⩽ 0.1.
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The techniques proposed in this article can be directly 
extended to more elaborate SAOMs, for example, to studies 
of networks and behavior (Steglich et al., 2010).

The GOF test proposed and applied in this article, and the 
example data set, are freely available in the R package RSiena 
through the sienaGOF function. For more information on 
RSiena, the reader is referred to its homepage at http://www.
stats.ox.ac.uk/~snijders/siena/. Scripts using this function, 
complete with annotations, are available from the homepage.
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Appendix 1

For the derivation of (17a), we begin with the i  th coordinate 
of the derivative
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Noting that A x( )  does not depend on θ
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The middle term requires some more work. Since Σ( ) 1θ −  
is symmetric, we have (cf. Harville, 1997)
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where we have denoted
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Putting these together, we obtain
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