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Abstract
Stochastic actor-oriented (SAO) models are a family of models for network dynamics that enable
researchers to test multiple, often competing explanations for network change and estimate
the extent and relative power of various influences on network evolution. SAO models for the
co-evolution of network ties and actor behavior, the most comprehensive category of SAO models,
examine how networks and actor attributes—their behavior, performance, or attitudes—influence
each other over time. While these models have been widely used in the social sciences, and par-
ticularly in educational settings, their use in organizational scholarship has been extremely limited.
This paper provides a layperson introduction to SAO models for the co-evolution of networks and
behavior and the types of research questions they can address. The models and their underpinnings
are explained in nonmathematical terms, and theoretical explanations are supported by a concrete,
detailed example that includes step-by-step model building and hypothesis testing, alongside
an R script.
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Researchers across diverse domains of science are increasingly considering social phenomena from

a network perspective. This trend has manifested in a surge in research on social networks; in the

Web of Science, for example, the number of studies on the topic of “social networks” has nearly

tripled over the past decade (Borgatti, Mehra, Brass, & Labianca, 2009). Research in this vein is

based on the notion that actors (individuals, teams, organizations, countries, etc.) are embedded in

ties (social relations) and that these ties are important for individual and group outcomes because

they constrain and provide actors with opportunities for action (Kilduff & Brass, 2010; Kilduff &

Tsai, 2003).
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Actors possess attributes—characteristics, attitudes, perceptions, personality traits, emotions,

behaviors, and values—that influence how they “structure their ties,” that is, select other actors

with whom to connect (or from whom to disconnect; Emirbayer, 1997; Kalish & Robins, 2006;

Klein, Lim, Saltz, & Mayer, 2004). The structuring of an actor’s ties in turn shapes that actor’s

behavior, attitudes, perceptions, and emotions. For example, in a given team of individuals, team

members who possess a given attribute—for example, strong perceptions of being psychologically

safe—may be more likely than others to form friendships (ties) with other team members, and these

friendships in turn may further enhance their perceptions of psychological safety (Schulte, Cohen, &

Klein, 2012). Clearly, there is a temporal dimension inherent to this example: The attribute influ-

ences the tie structure, which later influences the attribute. Yet, traditional network analytic tech-

niques cannot adequately accommodate the passage of time or model the reciprocal influence of

attributes on network ties and vice versa. Accordingly, they are limited in their capacity to shed light

on the mechanisms underlying organizational phenomena, which are dynamic by nature. It is

necessary to overcome this limitation to bridge important knowledge gaps in organizational

research. For example, because resources flow through ties and ties facilitate sense-making

(cf. Kalish, Luria, Toker, & Westman, 2015), the capacity to link attributes and ties may provide

the micro-macro link in organizational scholarship (Kilduff & Tsai, 2003) by explaining the emer-

gence of various team characteristics such as shared perceptions of climate, leadership quality,

leadership roles, emotional tone, group identity, and attitudes toward turnover (see also Lang,

Bliese, & de Voogt, 2018).

The current article presents a network analysis approach that addresses the limitations outlined

previously: stochastic actor-oriented (SAO) models for the co-evolution of networks and behavior.

This family of models links changing individual attributes with evolving network structures and can

thereby elucidate a broad spectrum of organizational phenomena—including but not limited to

emergence of leadership and status hierarchies, development of shared perceptions, onboarding and

socialization, emergence of communities, collective turnover, emergence of team climate, and team

emotional tone. While SAO models have gained traction in the fields of sociology and education,

their use in organizational contexts has been limited: As of 2018, of over 650 articles referring to

SAO models, less than 6% examine inter- or intraorganizational contexts (compared with 39% in

educational contexts). Herein, I aim to provide a nonmathematical, hands-on introduction to SAO

models for the co-evolution of networks and behavior, oriented toward organizational researchers

who do not typically work with these types of models. I further present and develop examples of

research questions that these models can be used to address. Accordingly, this article complements

prior works that provide a more statistical, mathematical, or methodological introduction to SAO

models (Snijders, 1996, 2001, 2008; Snijders, Steglich, & Schweinberger, 2007; Snijders, van de

Bunt, & Steglich, 2010; Veenstra & Steglich, 2012).

Stochastic Actor-Oriented Models: An Overview

SAO models are a family of models that express empirically observed changes in network ties and in

many cases, changes in individual attributes as time-aggregated outcomes of a series of individual

decisions (Steglich, Snijders, & Pearson, 2010). Consider the emergence of shared climate, thought

to be the result of interactions between individuals (Lang et al., 2018). A situation in which inter-

acting partners agree with one another with regard to climate might emerge because actors decide to

change their own perceptions of climate after interacting with others with different perceptions (they

“catch” the others’ perceptions) or because members stop interacting with others who hold climate

perceptions that differ from their own (they “de-select” others because of their different perceptions

of climate). Each of these theoretical explanations can explain how interaction patterns are related to

individual attributes dynamically and can therefore bridge the theoretical gap between individual
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perceptions and the emergence of higher level constructs. Unfortunately, most existing techniques

cannot unpack these different explanations. SAO models overcome this limitation by (statistically)

modeling individual decisions of actors. They are “actor-oriented” in the sense that they model

change over time from the perspective of each actor, under the assumption that each actor has the

option to adjust the structure of his of her network (by “deciding” whom to start, continue, or stop

communicating with) or the level of a specific attribute (whether to increase or decrease the extent to

which he or she perceives the team’s climate as being positive). The decisions of a focal actor

(referred to as ego) are assumed to be based on the structure of the network at the time of the decision

as well as on ego’s own attributes and the attributes of other actors (referred to as alters).

SAO models enable researchers to use data from a first measured timepoint to test whether a

given set of hypothesized effects can produce the network structures and attribute levels measured at

later timepoints. Central to these models is the idea that changes in network ties and actors’ attributes

occur continuously even though data on the state of the network and its actors are collected at

discrete timepoints.1 These models also assume that the difference between observed timepoints can

be broken down into probabilistic, sequential small steps, called ministeps. At each ministep, a focal

actor is randomly selected and has the opportunity to make a single decision. In a network ministep,

the actor has the opportunity to modify one of his or her outgoing ties by creating a tie to a new actor,

terminating an existing tie, or maintaining current ties. In an attribute (or behavioral) ministep, the

actor can modify (increase, decrease, or maintain) his or her level of a given attribute.

To model these changes, the researcher constructs, on the basis of theoretical and empirical

considerations, a set of “rules” that might drive an actor’s decision to change a network tie or adjust

the level of one of his or her attributes. Rules represent four broad categories: Network evolution

rules determine how ties develop given the structure of ties in the previous timepoints. An example

might be that individuals prefer to communicate with those who communicated with them in

previous timepoints or that individuals prefer to communicate with those with whom many others

communicated in previous timepoints. Attribute evolution rules determine how attributes evolve

over time. An example might be that there is a general tendency for the attribute (negative affec-

tivity, turnover intention, identification with a program) to increase over time. Social selection rules

describe how ties develop in response to actors’ attributes (and ties) in the previous timepoint. For

these rules, actors’ attributes are considered to be the drivers of network ties. An example might be

that people who have higher levels of negative affectivity talk to fewer others over time or that

people prefer to communicate with others whose levels of turnover intentions resemble their own.

Finally, social influence rules describe how actors’ attributes change in response to ties (and

attributes) in the previous timepoint. For these rules, the network is considered to drive actors’

attributes. For example, communicating with fewer others over time may increase a person’s turn-

over intentions, or people may catch their network partners’ levels of negative affectivity over time

(emotional contagion).

The model estimates parameter values associated with each rule (called effects in SAO terminol-

ogy) such that it identifies parameter values that could have brought the collected panel observations

to follow one another. These parameter estimates can be used to test competing theoretical explana-

tions of social processes underpinning network (and attribute) evolution. Importantly, the fact that

actors’ decisions are assumed to be based on a set of rules—given the current state of the network

coupled with those actors’ (and their alters’) attribute levels—enables researchers to make strong

(statistical) inferences regarding temporal causality in the relationships between network structures

and attributes (Steglich et al., 2010), thereby allowing for a robust statistical test of emergence of

specific phenomena over time (Schulte et al., 2012).

SAO models can be applied to diverse data structures of different degrees of complexity. In the

current paper, I focus on SAO models for the co-evolution of network ties and behavior (Snijders

et al., 2007, 2010)—models that assume that both networks and actor attributes change over time
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and influence each other. As such, these models enable researchers to unpack and model a wide

range of theoretical questions, such as what drives the emergence of micro-climates within a team,

emergence of consensus over time, leadership emergence, and emotional contagion. Table 1 pre-

sents some of the organizational research questions and specific hypotheses that have been

addressed using SAO models for the co-evolution of networks and behavior. In what follows, for

convenience, I refer to this family of models simply as SAO models. Readers who are interested in

learning more about additional categories of stochastic actor-based models should refer to Tom

Snijders’s earlier work (e.g., Snijders, 1996, 2001, 2008; Snijders et al., 2007) and the excellent

RSiena manual (Ripley, Snijders, Boda, Voros, & Preciado, 2018a).

Decision Frequency and Decision Rules: Rate and Objective Functions

As outlined previously, SAO models assume that whereas network and attribute data are collected at

discrete timepoints, underlying time is continuous. At discrete, unobservable timepoints, a randomly

selected actor gets an opportunity to change his or her outgoing ties (a network ministep) or level of

the attribute (a behavioral ministep). This implies two separate subprocesses that need to be mod-

eled. The first subprocess involves modeling the frequency of change: how often a ministep occurs.

The rate function models expected opportunities for change on the network and on an attribute

between every two consecutive measured timepoints. The second subprocess models how change

occurs: what changes occur once an actor is given an opportunity to change his or her network or

attribute (in a network or behavioral ministep, respectively). These changes are expressed by two

interdependent mathematical functions termed objective functions, which model the course of action

that the actor selects. The actor makes his or her decision by evaluating the outcome of each possible

change (to his or her network or attribute, depending on the type of ministep) in terms of its effect on

the value of his or her objective function and then choosing the optimal change (with a small amount

of randomness). In a utility-based approach, the objective functions directly reflect the actors’

utilities such that in making their decisions, actors seek to maximize the utility they derive.

Equation 1, f net
i , denotes the objective function that actor i seeks to optimize in a network

ministep. Equation 2, f beh
i , represents the objective function that actor i seeks to optimize in an

attribute (behavioral) ministep.

f net
i ðx; zÞ ¼

X

k

bnet
k snet

ik ðx; zÞ ð1Þ

f beh
i ðx; zÞ ¼

X

k

bbeh
k sbeh

ik ðx; zÞ ð2Þ

In each equation, fi(x, z) denotes the value of the objective function for actor i for a given network

state x and i’s level of the attribute z. The value of f is dependent on a series of parameter values bk,

each of which is coupled to an effect, denoted sik. An effect represents a subgraph count in the

network neighborhood of the focal actor (or a function of the attributes of actors sending or receiving

ties) in a given ministep.2 Mathematical specifications of frequently used effects are presented in

Appendix B (available in the online version of the journal). The parameter value assigned to a given

effect translates into probabilities for change in actor i’s network and attributes and can be inter-

preted as the rules that govern change, or more simply as the attractiveness of the change—its cost or

benefit to the actor.3 Parameter values are estimated by an estimation technique called method of

moments (Snijders, 2001). The outcome of this process is a set of parameter values (and standard

errors) associated with effects that link evolving network ties and actor attributes and yield outcomes

that are most consistent with the series of panel measurements.
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Basic Example

To better explain the data structure and the internal calculations of SAO models, this section

presents a simple example concerning a network of friendship among individuals. Consider four

actors, denoted A to D, who form a business unit. At two points in time, data were collected

regarding the friendship relations among the actors (i.e., the network ties between them) and each

actor’s level of negative affectivity (NA), an attribute whose value is assumed to have the capacity

to change over time. Data were also collected regarding a constant attribute, actors’ gender. The

two attributes (gender and NA) are referred to, in SAO terminology, as covariates, where NA is

considered a changing covariate and gender is a constant covariate. Table 2 presents the infor-

mation for each actor; a 1 in cell (i, j) indicates that actor i (ego) chose actor j (alter) as a friend at

that observed timepoint.

We observe that at Time 1, Actor A, a female with relatively low levels of NA, nominated actor

D, another female with relatively low levels of NA, as a friend and that this relationship was

maintained at Time 2. Actor B, a male with high levels of NA, reported Actor A as a friend at

Time 1, but this friendship tie was not maintained at Time 2. By Time 2, B had also created a new

friendship tie, to Actor C (another male with relatively high levels of NA). Thus, by the end of Time

2, we observe that friendship ties reflect higher homophily on gender than they do at Time 1. One

possible explanation for this outcome is that individuals tend to select friendships on the basis of

similarity in gender. By the end of Time 2, we also observe that friendship ties reflect higher

homophily in NA than they do in Time 1. What could be the mechanism underpinning this similarity

in NA over time? It could be the case that people select as friends others who display similar levels

of NA (a social selection effect similar to that observed in the case of gender). However, it is

possible, for example, that people catch their friends’ level of NA (a social influence explanation,

also referred to as emotional contagion; Barsade, 2002). Note that both these processes reflect

different rules by which over time, we observe emergent consensus in NA among people who are

tied to each other.

An SAO model can unpack these two options by providing the net effect of each explanation

in contributing to the observed future states of the network and the attribute. To achieve this

goal, the model breaks the discrete network (friendship) measurements (Matrix 1 and 2) and

changing attributes (NA1 and NA2) down into very small (unobserved) network and attribute

ministeps, respectively.

Network ministep. In a network ministep, the SAO model randomly selects an actor. Let us assume

the selected actor is Actor A. At Time 1, Actor A has a tie only with Actor D. Actor A now

“considers” all her options: She can (a) create a new tie to actor B, (b) create a new tie to actor

C, (c) drop her existing tie to D, or (d) do nothing. Her final decision is based on the value of the

objective function (Equation 1) for each option. Let us assume for the sake of simplicity that the

Table 2. A Simplified Example of Data Structures Used for Stochastic Actor-Oriented Models.

Friendship
Network Time 1

Friendship
Network Time 2

Constant
Attribute Changing Attribute

A B C D A B C D Male Negative Affectivity Time 1 Negative Affectivity Time 2

A 0 0 0 1 A 0 0 0 1 0 2 1
B 1 0 0 0 B 0 0 1 0 1 5 5
C 0 1 0 0 C 1 1 0 1 1 4 5
D 1 0 0 0 D 1 0 0 0 0 1 2
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objective function comprises only two effects: (a) an outdegree effect, corresponding to the act of

changing one’s number of connections (establishing a new tie or terminating an existing tie), and (b)

a reciprocity effect, corresponding to the act of reciprocating a tie or dropping an unreciprocated tie.

Let us further assume that initial parameter values for those effects are automatically estimated by

RSiena at –0.4 and þ1.0, respectively.4 The meaning of the negative parameter value for the out-

degree effect is that each new tie “costs” the focal actor –0.4 (and dropping a tie entails a gain of

þ0.4), and the meaning of the positive parameter value for the reciprocity effect is that actors “gain”

þ1.0 by reciprocating ties sent to them (or dropping unreciprocated ties) or “lose” –1.0 by dropping

a tie that was previously reciprocated.

Let us consider Actor A’s choices again: If she creates a new tie to Actor B, the value of her

objective function will be –0.4þ 1.0¼ 0.6 because she has created a new tie to an alter (B), and that

new tie is now reciprocal (B already has a tie to A). The value of a new tie to Actor C will be –0.4

because A will have created a new (nonreciprocated) tie. The termination of a tie to Actor D will

yield the objective function value ofþ0.4þ –1.0 because A “frees” a tie yet damages her reciprocity

level. Finally, doing nothing (maintaining her tie to D) will elicit a value of 0. Each of these values

translates into a probability according to the exponential transformation, e0.6, e–0.4, e–0.6, e0 ¼ 1.82,

0.67, 0.54, and 1, for each of the four options, respectively. This suggests that at this network

ministep, and given the parameter values of –0.4 andþ1 for outdegree and reciprocity, respectively,

Actor A is most likely to create a new tie to B.

In the next network ministep, the model selects another actor, and that actor makes a decision

according to the same process. The model continues to randomly select actors in this way such that

each actor has, on average, the number of ministeps as estimated by the rate function; however, for

the sake of simplicity, let us assume that our model stops after two ministeps. In the second ministep

of our example, the model selects Actor C, who, given the parameter values for the objective

function, also decides to sever his existing tie to Actor B. Thus, at the end of these two ministeps,

Actor A has created a tie to Actor B, and Actor C has terminated his tie to Actor B. Yet, in the matrix

on the right (Table 2, representing the next measured timepoint), this is clearly not the case since

Actor A has no tie to Actor B and Actor C has maintained his tie to Actor B.

As a result, parameter values are recalibrated so that the actors’ actions better fit the observed

outcomes at the next timepoint. Estimation of the parameter values for the objective functions takes

place in an iterative process using the method of moments estimation technique (Snijders, 2001), as

noted previously, such that the final parameter values are the ones that best describe the decision

rules with which the network progresses from the matrix on the left to that on the right in Table 2.

Adding effects that are dependent on actor attributes to the objective function (Equation 1) works

in a similar way. Each actor attribute receives an initial weight and is weighted in the (network)

utility function. Let us assume, for example, that initial parameter estimates for females are –0.1,

þ0.2, andþ0.3 for each additional tie sent to anyone, each additional tie received, and for forming a

tie to an actor of similar gender, respectively.5 This suggests that for females (compared with males),

there is an additional cost associated with forming a new friendship tie (–0.1), females gain more

from receiving friendship ties (from either males or females, þ0.2), and all actors (male or female)

prefer to send ties to others of similar gender (þ0.3). The (network) objective function (Equation 1)

now contains five effects associated with initial parameter values (b): outdegree (–0.4), reciprocity

(þ1.0), sender effect for females (–0.1), receiver effect for females (þ0.2), and similarity effect on

gender (tie sent from females to females or from males to males, þ0.3).

Let us now examine the value of the (network) objective function for the focal actor, D, a female,

forming a new friendship tie to either Actor C, a male, and compare it to the value of the objective

function for her forming a new friendship tie to Actor C*, a female who has exactly the same

network relationships as Actor C. The value of the objective function for any actor forming a new tie

is –0.4 (outdegree). Since D is a female, there is an additional cost associated with her forming new
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ties (–0.1, the sender effect for females). Since the gender similarity effect is weighted as þ0.3,

everything else being equal, Actor D is 1.35 (e0.3 ¼ 1.35) more likely to form a tie to Actor C*

(a fellow female) compared with Actor C (a male).

Attribute ministep. A similar process operates for the attribute ministeps (modeled by the behavioral

objective function, Equation 2). Recall that the attribute ministep models how attributes change over

time due to previous levels of the attribute and network ties. Let us assume that the randomly

selected actor is Actor A and that Equation 2 only includes the average alter effect, an effect that

captures the average level of the attribute among the people ego is connected to (in our case, the

average level of negative affectivity among ego’s connections).6 Let us further assume that the

initial parameter value for the average alter effect is þ1.1. The effect coupled with the parameter

value means that when comparing two actors who are otherwise equal in all respects, if the friends of

the first actor are (on average) 1 point higher on NA compared with the friends of the second actor,

the first actor is three times (e1.1 ¼ 3.0) more likely than the second actor to increase his or her level

of NA (rather than maintain it). In other words, given an initial parameter of (þ1.1), we would

expect actors to strive to decrease the difference in the level of the attribute between themselves and

the average level of their alters.

Let us now consider Actor A, whose initial level of NA is 2. Recall that at Time 1, A is connected

only to Actor D, whose initial NA level is 1. With an initial average similarity parameter value

(þ1.1), the implication is that Actor A will tend to decrease her level of NA over time (to move

closer to her average alter’s level of NA), which is precisely what happens. Another actor is then

randomly selected (say, Actor C with an initial NA level of 4 and an average alter level of 5). Actor C

is also expected to adjust his attribute level to match the average level of his alters over time; indeed,

we observe that Actor C shifts to an NA level of 5 at Time 2. These observations support the initial

choice of parameter value for the average alter effect.

Overview of SAO Model Implementation

RSiena (Simulation Investigation for Empirical Network Analysis as implemented in the R envi-

ronment; Ripley et al., 2018b) is a program that implements SAO models in the R environment. In

what follows, we provide an overview of the steps involved in specifying and implementing an SAO

model in RSiena.

An RSiena script contains three parts: The first part prepares data structures, the second specifies

effects for the model, and the third tests for goodness of fit (GOF) of the obtained model. The heart

of RSiena is in the second part, the modeling of the co-evolution of networks and attributes. An SAO

model can incorporate diverse types of effects, and the researcher must select which ones to include

in his or her model in accordance with the characteristics of the network and the question the

researcher is studying. Modeling the co-evolution of networks and attributes may seem like an

ominous task. Table 1 presents the effects used to model different networks and attributes according

to the objective function that was modeled (network or behavioral) and the purpose of the effect. It

also includes examples of specific research hypotheses presented in the corresponding papers and

the effects used to directly test those hypotheses. An examination of Table 1 reveals that it is possible

to model diverse networks using similar effects.

Selection of effects is typically done in a few iterative steps, described (and exemplified) in the

following. The first step is to adequately model the (network) objective function without accounting

for attributes. Effects incorporated in this step are considered necessary controls because they model

the temporal evolution of the network independently of actor attributes. They pertain to default

effects, effects that model clusterability, and effects that model the degree distribution (Table 1). The

second step is to add actor attributes to the network (objective) function of the model. Three effects
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are typically added, some of which may already relate to specific hypotheses the researcher has

(these effects are elaborated in Table 1, “Network Function–Attributes” columns). Once the

network evolution part is modeled adequately, including actor attributes, researchers start model-

ing the second (behavioral) objective function. Two effects are incorporated automatically, and

additional effects are specified by the researcher and typically pertain to additional research

hypotheses (see Table 1, “Behavioral Function–Attributed-Based Effects” columns for hypotheses

and the effects that model them). At each step, the researcher examines model adequacy using

convergence and GOF (as described in the following). Once an adequate model is found, the

researcher interprets the results.

Modeling Steps in RSiena: An Empirical Example

In this section, I present an illustrative worked out example, including all the steps necessary for

successfully modeling the example. I first present the context, walk the reader through the steps that

are necessary to adequately model the data, and provide the relevant RSiena script.

Context

A researcher is interested in examining collective turnover—the tendency of similarly dissatisfied

employees to leave their organizations together (Feeley, Hwang, & Barnett, 2008; Felps et al., 2009;

Krackhardt & Porter, 1986). The researcher posits, following Bartunek, Huang, and Walsh (2008),

that friendships play a key role in collective turnover because they provide a route by which sense-

making occurs. Specifically, the researcher hypothesizes that because friends discuss their dissa-

tisfactions, ideas, and goals with each other, turnover intention may be contagious (social influence

explanation, Hypothesis 1), that people befriend one another because they hold similar attitudes

towards turnover (social selection explanation, Hypothesis 2), and that over time, people who are

thinking of quitting their job select fewer friends (Hypothesis 3) and are chosen by fewer others as

friends (Hypothesis 4). Note that Hypothesis 1 assumes that network structure drives the level of the

attribute and is therefore modeled by effects in the behavioral objective function, whereas Hypoth-

eses 2, 3, and 4 suggest that the level of the attribute drives the network structure and are therefore

modeled by effects in the network objective function.

To test the hypotheses, the researcher examines the friendship networks and turnover intentions

among individuals in a newly formed team. Participants included 32 respondents, 18 of whom were

male. Questionnaires were administered at three points in time during the first year of the team’s

activity: 1 month, 7 months, and 11 months post-formation. At each timepoint, participants com-

pleted a questionnaire asking which other participants they considered to be friends (network

questionnaire) and a questionnaire examining their turnover intentions (attribute questionnaire).

Specifically, in the network questionnaire, each participant was given a list of all others in the team

and was requested to identify those whom they considered as friends. In the attribute questionnaire,

participants completed a single item taken from the turnover intention scale (Bothma & Roodt,

2013): “How often have you considered leaving your job in the previous month?” Reponses were on

a 7-point Likert scale ranging from never to all the time. All participants agreed to complete the

questionnaires. Appendix A (available in the online version of the journal) provides the complete

RSiena script (see also Ripley et al., 2018a, for a more comprehensive illustrative script). Lines in

Appendix A (available in the online version of the journal) and in the excerpts that follow are

numbered (in brackets). Supplement 1 (available in the online version of the journal) provides the

output from the script. Lines and excerpts are numbered (in brackets, with the prefix r). Supplement

2 (available in the online version of the journal) provides the (network and attribute) data used for

the example.
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Step 1. Data Preparation

The first step in using RSiena involves data collection, data entry, creation of R objects, and an

examination of the suitability of the data to modeling using SAO models. Data collection for

network analytic studies is beyond the scope of this manuscript. Briefly, however, researchers must

first identify a relevant population and conduct a census using the full network method. Two types of

data need to be collected: the relationships between all actors in the population (collected either with

a survey or using available information such as email exchanges or attendance at meetings) and actor

attributes (again, either collected via self-completed questionnaires or through existing data). Inter-

ested readers are referred to Robins’s (2015) comprehensive book.

Step 1a. Data preparation and data considerations. Data preparation necessitates preparing text files

that represent network data (i.e., a complete set of data on network ties among actors) and attribute

data (attributes of each actor) observed for the same set of actors at several (at least three) discrete

timepoints. Networks should be binary (i.e., either a tie exists, or it does not) and directed (i.e., a tie

between actor i and j does not necessitate a tie between j and i; it is possible to model nondirected

networks as well; see RSiena manual [Ripley et al., 2018a] for details) and of a reasonable size

(ideally containing at least eight actors). The network data are represented as matrices, in which

rows and columns represent actors and cell (i, j) is a binary indicator of the existence (or lack

thereof) of a relationship between actors i and j at time t. It is possible to specify some ties that are

impossible (structural zeros)7 and deal with changes in the composition of the network over time

(e.g., addition or deletion of nodes; see the RSiena manual [Ripley et al., 2018a] for more details).

Attribute data in RSiena may contain dummy (e.g., gender) or ordinal (e.g., age bracket, person-

ality) covariates; attributes on an ordinal scale should be limited in terms of the number of values

they can take (preferably less than 10 and ideally 2 to 5). A distinction is drawn between constant

covariates (e.g., gender, personality traits) and varying covariates (e.g., level of stress, salary, turn-

over intention). Dyadic covariates, representing the attributes of pairs of actors (e.g., reporting lines),

can also be accommodated but are not the focus of this article.

Step 1b. Creation of RSiena objects. After inputting all data files into RSiena, the user creates RSiena

objects by specifying the role of each object. Each object is classified either as a (network or

attribute) dependent variable (SienaDependent) or an independent variable; in the latter case, the

object is further classified as either a constant (coVar) or changing (varCovar) covariate. An RSiena

data object is formed by linking the structures with the SienaDataCreate command.

[1] library(RSiena) #calls the RSiena library in R
[2] setwd(“C:/Users/User/Desktop/ORM

SAOM”)
#identifies the working directory

[3] friend1 <- as.matrix(read.table(“MH-
friend1.dat”))

#reads the data files (suffix.dat)

[4] friend2 <- as.matrix(read.table(“MH-
friend2.dat”))

#into R

[5] friend3 <- as.matrix(read.table(“MH-
friend3.dat”))

[6] quit <- as.matrix(read.table(“attribute -
quit.dat”))

#reads the turnover intention attribute file into R

[7] gender <- as.matrix(read.table(“attribute -
gender.dat”))

#read the gender attribute into R.

(continued)

10 Organizational Research Methods XX(X)



At the end of this step, we have created an RSiena data object, which contains the networks and

attributes, such that both the networks (friendship) and the attribute (quit) serve as both independent

and dependent variables in the temporal dynamics.

Step 1c. Create an initial effects object. Now that all data objects are specified, we need to create the

initial effects object using the getEffects command. Two effects are so important for longitudinal

network modeling that RSiena adds them automatically to any model; they do not need to be

specified manually. These effects are the outdegree effect, which reflects changes in the number

of ties in the network, and the reciprocity effect, which models the tendency to reciprocate ties sent

in a previous timepoint.

Step 1d. Print an initial report to check adequacy of running SAO model. While not necessary, it is good

practice to print a preliminary report that provides some descriptive statistics for each timepoint and

change between timepoints using the print01Report command. The main purpose of the printed

report is to get a “feel” for the data and—more importantly—check (using the Jaccard coefficients)

that enough change exists in the data to allow for longitudinal modeling.

The printed report (presented in full in Supplement 1, available in the online version of the

journal; excerpts in the following appear with corresponding line numbers prefixed with r) first

provides an analysis of the input data, including number of observations, number of actors, and the

specification of the variables in the analysis (r4-r9). Next, the report describes the various objects,

including the network objects (r19-r42) and the various attributes (r43-r75). For the turnover inten-

tion variable, quit, we observe that the range for responses is between 1 and 6 (r47), and there seems

(continued)

[8] friendship <-
sienaDependent(array(c(friend1, friend2,
friend3), dim¼c(32, 32, 3)))

# creates a dependent network object called “friendship”
that specifies the ordering of the networks and their
dimensions (32�32 people, 3 timepoints)

[9] gender<- coCovar(gender[,1]) #creates gender as a constant attribute
[10] quit<- sienaDependent (quit,

type¼“behavior”)
#creates quit as a changing covariate that serves as both an

independent variable (driving the friendship network)
and a dependent variable (the outcome of the network;
the dual role of quit is specified by the sienaDependent,
type¼“behavior” command, which also indicates to
RSiena that the model is one for the co-evolution of
networks and behavior

[11] MyData <- sienaDataCreate(friendship, quit,
gender)

#creates the full RSiena object (MyData) by adding the
networks and attribute objects

[12] MyEff <- getEffects(MyData) #creates an initial effects object, which includes outdegree and reciprocity
(as well as the rate parameters and shape parameters) – additional
effects will be added to this object later.

[13] print01Report(MyData, MyEff,
modelname ¼ ‘init’)

#prints the initial report from the data object and given the effects object
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to be an increase in level of turnover intention over time, as exemplified by the increasing means

across time (from 3.375 to 4.125; r52-r54).

[r44] Reading dependent actor variables.

[r45] ————————————————————————————————

[r46] 1st dependent actor variable named quit.

[r47] Maximum and minimum rounded values are 1 and 6.

<<snip>>

[r52] Means per observation:

[r53] observation 1 2 3 overall

[r54] quit 3.375 3.844 4.125 3.781

Next, the report provides some internal calculations used for centering of the variables (r67-r75).

Finally, it provides change indicators for all variables across the observed timepoints (r90-r93). For

example, between the first and second timepoints (r92), 29 new ties were formed, 45 existing ties

were terminated, and 29 ties were maintained.

[r90] Tie changes between subsequent observations:

[r91] periods 0 ¼> 0 0 ¼>1 1¼> 0 1¼>1 Distance Jaccard Missing

[r92] 1¼¼>2 889 29 45 29 74 0.282 0 (0%)

[r93] 2 ¼¼>3 900 34 29 29 63 0.315 0 (0%)

Of particular importance are the Jaccard coefficients, indicating the extent of change

between observations. For the modeling of network evolution, a moderate level of change

in both network and attributes is necessary; Jaccard coefficients ought to be above 0.2,

ideally higher than 0.3, and lower than 0.7. Jaccard coefficients in the current example are

adequate.

Given the aforementioned values, the software calculates initial parameter values for the out-

degree parameter (r103), the rate parameter for each pair of consecutive timepoints (r101-102),

and the changing covariate, quit (r104-r120), together with the initial value for the shape para-

meter (r125).

Step 2. Build Increasingly Complex Models Until Adequate Fit Is Achieved

As previously stated, modeling often starts with getting the network evolution part of the model

to adequately fit the observed panel data. The researcher starts by adding “pure” network

effects to the (network) objective function (Equation 1). Only then are attributes added to the

network objective function, and in the last stage, effects are added to the behavioral objective

function (Equation 2). As described previously, two effects are added automatically to the

network objective function—the outdegree effect and the reciprocity effect (alongside the rate

effects). The researcher then adds effects until an adequate fit is achieved in the following

order: First, effects that model clustering in the network are usually added, and the model’s fit

is assessed. If adequate fit is not achieved, effects that model the degree distribution are added,

and fit is assessed again. Finally, if adequate fit is still not achieved, effects that pertain to the

correlation between in- and outdegree distribution are added. Typically, these three types of

effects suffice to achieve adequate fit (Table 1). The RSiena manual (Ripley et al., 2018a)

provides additional model fit troubleshooting instructions.

Step 2a. Run the model and check for t-ratios for convergence. Let us run this initial (very basic, overly

simplistic) model, which includes only the default effects.
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Printing the model1.results object provides the output shown in Table 3. We first examine t ratios

for convergence. The t ratios for convergence provide an indication that parameter estimates are

stable, namely, that they converge across simulations. The t ratio (not to be confused with a t

statistic, used for hypothesis testing) examines to what extent do estimated parameter values differ

from parameter estimates simulated in (typically 1,000) simulated runs of network evolution. Ide-

ally, we want the t ratio to be 0, indicating that simulated parameter values are exactly the same as

estimated parameter values. Convergence is said to be excellent when the t ratios for convergence

are lower than 0.1 (in absolute value) for all effects. The RSiena manual (Ripley et al., 2018a,

Section 6.3) provides solutions on how to identify and troubleshoot convergence issues. The first

(and easiest) solution is to add the argument prevAns¼Model1.results to line [15] in the previous

example. This tells RSiena to start estimation again, beginning with the previous estimation results.

In our case (Table 3), all t ratios for convergence are smaller than |0.1|, indicating good convergence.

For instructive purposes, I now turn to interpreting the output obtained for the initial model, noting

that we are not yet certain that the model adequately fits the data. The following subsection, Step 3,

elaborates on the interpretation of the output of the complete model, incorporating all relevant

effects; this step is taken after both convergence is reached and GOF of the model is examined and

found to be adequate.

The output of the initial model is divided into the two objective functions: the network objective

function (top panel in Table 3, termed network dynamics) and behavior objective function (bottom

panel in Table 3, termed behavior dynamics). We see the rate functions for both periods on both

functions. On average, each actor was selected 5.8 times between Timepoints 1 and 2 and 4.7 times

between and Timepoints 2 and 3 and was given an opportunity to change his or her network (of

course, the actual number of changes in the network is lower than the number of opportunities to

change because some actors may “choose” to maintain their networks). The outdegree parameter is

negative, indicating that over time, the density of the friendship network decreases. More

[14] Model1 <- sienaModelCreate(useStdInits ¼
TRUE, projname ¼ ‘Model1-results’)

#creates a model object

[15] Model1.results <- siena07(Model1,
data¼MyData, effects¼MyEff, batch¼FALSE,
verbose¼FALSE, returnDeps¼TRUE)

#creates a results object that includes the results of
the estimated model. Model is estimated using the
Siena07 command. The data and effects objects (as
well as some default output requests) are specified.

[16] Model1.results #prints the results object

Table 3. Parameter Estimates, Standard Errors, and Convergence t Ratios for Model 1.

Estimate Standard Error Convergence t Ratio

Network dynamics
1. rate constant friendship rate (period 1) 5.7975 (1.1531) 0.0156
2. rate constant friendship rate (period 2) 4.6983 (1.0576) 0.0245
3. eval outdegree (density) –2.2702 (0.1533) –0.0133
4. eval reciprocity 2.5913 (0.2559) –0.0343

Behavior dynamics
5. rate quit (period 1) 1.8320 (0.5091) 0.0919
6. rate quit (period 2) 1.5399 (0.4808) –0.0383
7. eval behavior quit linear shape 0.4544 (0.1748) 0.0381
8. eval behavior quit quadratic shape –0.1665 (0.0874) 0.0625
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importantly, results indicate that reciprocity is statistically significant and positive (estimate¼ 2.59,

SE¼ 0.26, p < .01), indicating that over time, there is a significant tendency to reciprocate friendship

choices sent in the previous timepoint.

Turning to the behavioral objective function, after describing the rate functions, two effects that

are added by default are estimated: The linear shape parameter is positive and statistically significant

(its estimate is more than 1.96 times its standard error in absolute terms), indicating that over time,

turnover intentions become stronger (there is a steady, linear increase on the attribute over time).

The quadratic shape parameter is also statistically significant and negative, indicating that over time,

there is a tendency toward a unimodal distribution of turnover intention.

Step 2b. Assess the model’s GOF. Once satisfactory convergence has been reached, the researcher

assesses the model’s GOF to additional effects that were not directly modeled. Examples might

include the in- and outdegree distribution and the geodesic distance distribution—effects that

describe the global structure of the network over time. A model is said to be a good fit if the values

of these additional statistics across multiple simulations are close to (fall within the 95% confidence

interval [CI] of) the values observed in the data. We will examine the distribution of indegree [17],

outdegree [18], and geodesic distances [19] over time, all considered customary indicators of GOF.8

Plotting these three variables [20-22] provides the following graphs (Figure 1). The (red) line

connecting the (red) squares indicates the observed value of the statistic. The violin surrounding the

line provides a 95% CI of the estimated statistics. For the indegree distribution, the red square falls

within the 95% CI for expected values, indicating good fit, with an overall p value of .07—the model’s

expected indegree distribution over time is not significantly different from the observed indegree

distribution over time. The model captures the outdegree distribution well (p ¼ .839). Our very basic

model, however, clearly does not capture the distribution of geodesic distances over time well.

Step 2c. Improve the model’s GOF by adding additional effects. Failure to achieve adequate model GOF is

resolved by adding additional effects. Typically, effects are added in the following order: (a) effects

that model clusterability in the network, (b) effects that model the dynamics of in- and/or outdegree

distributions, and (c) effects that model the relationship between in- and outdegree distribution.

Effects that model clusterability. Beyond the two basic effects specified in the mode object by

default, researchers would typically add an effect that controls for the tendency for network

[17] gofi <- sienaGOF(Model1.results,
IndegreeDistribution, verbose¼TRUE,
join¼TRUE, varName¼“friendship”)

#creates three new objects that take the results
object and examine the distributions of
expected in- and outdegree distributions and the
geodesic distance distribution.

[18] gofo <- sienaGOF(Model1.results,
OutdegreeDistribution, verbose¼TRUE,
join¼TRUE, varName¼“friendship”)

[19] gofgeo <- sienaGOF(Model1.results,
GeodesicDistribution, levls¼1:12,
verbose¼TRUE, join¼TRUE,
varName¼“friendship”)

#specifies the distribution for levels 1 to 8 (default)
or 1 to 12 (customized) on the friendship
network.

[20] plot(gofi) #plots the objects
[21] Plot(gofo)
[22] Plot(gofgeo)
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closure—the tendency for clustering to appear in networks. Multiple such effects are specified in

RSiena; one or two of them are typically used, and the decision regarding which effect to use is

typically based on theoretical considerations. Thus, for example, transitivity is typically found in

friendship, leadership, and advice networks and should be captured with the effects denoted

GWESPFF or transTrip. As a rule of thumb, it is best to start by adding the GWESPFF effect. The

GWESPFF effect was initially developed for exponential random graph models and is more fully

explained in the RSiena manual and in Tom Snijders’s work (Snijders, Pattison, Robins, & Hand-

cock, 2006). Briefly, it examines the number of times ego chose an alter for which there exists both a

direct relationship and an indirect relationship through additional alters such that each additional

alter who is connected to ego’s alters is given a lower weight in the calculation of the statistic. As

such, it is a weighted aggregate of the transTrip effect. If the model’s fit is adequate, the researcher

can start adding actor attributes to the network objective function. If it is not, it may also be

necessary to add the 3cycle effect, which controls for cycles in the network (particularly relevant

for advice or trade networks).

As shown in Figure 2, the addition of the effect that controls for clustering improves our model: It

captures the outdegree distributions well, and the distribution of geodesic distances has improved,

but it is still not adequate.

Effects that model actors’ in- and outdegrees (and their correlation). If adequate fit is still not achieved

after incorporation of effects that model clusterability, researchers should add effects that model

actors’ in- and outdegrees over time. These effects are typically added when degrees are of theore-

tical importance (e.g., because they represent social status—as in friendship, advice, and/or leader-

ship nomination networks) or because there is high dispersion in degrees such that degree

Figure 1. Goodness-of-fit plots for Model 1.

[24] MyEff <- includeEffects(MyEff, gwespFF) #adds the GWESPFF effect to the effects object (MyEff)

Kalish 15



distribution on GOF plots does not adequately capture the observed degree distribution. Eight such

effects are available in RSiena, but the one most often used is the inPop effect (see Table 1), which

models the tendency of actors who were popular at previous timepoints to become more popular

over time (the Matthew effect; Merton, 1968). If the network contains many disconnected actors, it

might be important to add the isolate effect.

If adequate GOF is still not reached after directly modeling actors’ in- and/or outdegrees, it might

be necessary, in light of theoretical or empirical considerations, to add an effect that directly models

the relationship between actors’ indegrees and outdegrees (e.g., outPop, reflecting the tendency of

actors who select multiple others to be selected more over time). Addition of these effects typically

improves GOF on both degree distribution and geodesic distance distribution.

Returning to our example, because adequate GOF has not yet been reached (with the model

containing outdegree, reciprocity, and GWESPFF), we will add the inPop effect. The effect is

not significant (not shown; this is not surprising given that the indegree distribution is already

adequately modeled). Perhaps we need to add an effect that controls for the relationship

between actors’ in- and outdegrees—this effect may assist in modeling the more problematic

geodesic distribution. A researcher might argue that above and beyond reciprocity, the more

actors choose others as friends at earlier timepoints, the more popular they become at later

timepoints. Let us test whether the outPop effect should be included in the model (by fixing it

to 0 and testing whether the assumption that the effect is 0 is valid [26]) by using the score test

(Schweinberger, 2012).

summary(model2.results) provides the following result:

Figure 2. Goodness-of-fit plots for Model2 .

[25] MyEff <- setEffect(MyEff, outPop, fix ¼ TRUE,
test ¼ TRUE, initialValue ¼ 0)

#tests whether we should include the outPop
Effect by fixing it to 0. This is the way to test for the
inclusion of effects in RSiena.
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Generalized score test <c>

Testing the goodness of fit of the model restricted by

eval: outdegree – popularity ¼ 0.0000

______________________________________________

w2 ¼ 15.6541 df ¼ 1 p value < .0001

one-sided (normal variate): –3.9565

_________________________________________________

The score-test suggests that we should include the outPop effect in our model (chi-square ¼
15.651, df ¼ 1, p < .05). Using the model with outdegree, reciprocity, clustering, and an effect

controlling for the correlation between in- and outdegrees and rerunning GOF diagnostics (not

shown) suggests that the model now fits the data well.

With dozens of possible effects specified in RSiena and the built-in ability to create

user-specified effects, modeling can be an ominous task. However, at the end of the day,

modeling the network evolution part of the model is relatively simple and straightforward

(Table 1).

Step 2d. Add actor attribute effects to the network objective function. Having controlled for (endogen-

ous) network evolution effects, the researcher can now proceed to include effects related to

actor attributes—some of these might already pertain to the researchers’ hypotheses. Adding

attributes to the network objective function typically involves adding three additional effects,

which link an actor’s level on a given attribute with the evolution of the actor’s ties (see

Table 1). The covariate-similarity effect models the tendency of actors to create ties to others

with similar levels on a given attribute. This is an effect that directly measures social

selection (or homophily). The covariate-ego and covariate-alter effects model the preferen-

tial tendency of people who are higher on an attribute to select more others or to be selected

more often by others over time, respectively. Table 1 clearly reveals the types of hypotheses

that are represented by these effects. For example, the covariate-ego effect, egoX, may

represent hypotheses such as actors with higher status control more others over time (de

Klepper, Labianca, Sleebos, & Agneessens, 2017) or actors with higher levels of stress will

communicate with fewer others (Kalish et al., 2015). In our illustrative example, the quit-ego

effect measures the tendency for people with higher levels of turnover intention to form more

friendship ties over time—and is a direct test of Hypothesis 3. We expect a significant

negative parameter estimate for this effect.

The covariate-alter effect, altX, measures the tendency of people with higher levels of the

attribute to be selected more (less) over time. Examples for such hypotheses might be that warm

(Fransen, Delvaux, Mesquita, & Van Puyenbroeck, 2018) and intelligent (Kalish & Luria, 2016)

individuals are selected more as leaders over time. In our example with turnover intention, the quit-

alter effect measures the tendency for people to befriend others who have higher levels of turnover

intentions over time. We expect a significant negative parameter estimate for this effect as support

for Hypothesis 4.

The covariate-similarity effect, simX, measures the tendency for people to form ties with others

with similar levels of the attribute. As such, it is a direct test of homophily. It has been used to test

hypotheses such as high-performing firms cooperate with other high-performing firms (Checkley,

Steglich, Angwin, & Endersby, 2014) or people seek advice from others with similar levels of

psychological safety (Schulte et al., 2012). In our example, a significant positive parameter estimate

would support Hypothesis 2, stating that people choose each other as friends because of similarity in

their levels of turnover intentions.
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We added the same three effects for gender as controls.

Step 2e. Model the behavioral objective function. In modeling ego’s choice regarding the level of an

attribute (Equation 2), by default, RSiena includes two effects that control for the distributional

shape of the attribute over time: the shape effect, which models the tendency for an attribute level to

shift over time toward the midpoint of the range, and the quadratic shape effect, which models

whether over time the values on the attribute shift toward a unimodal or a bimodal distribution. In

addition to these effects, researchers typically incorporate two types of effects into the behavioral

utility function. When researchers are interested in examining social influence, they should include

the average similarity effect (avSim) or one of its theoretical variants, which model the tendency of

actors to become more similar on the attribute to their alters over time. Examples might include

students adjust their discipline to be more similar to their friends over time (de Klepper, Sleebos, van

de Bunt, & Agneessens, 2010) or firm performance is contagious (Checkley et al., 2014).

When researchers are interested in examining how changes in levels of connectivity affect actors’

attributes, they often include the indegree effect (indeg) or outdegree effect (outdeg), which exam-

ines how changes in an actor’s popularity or expansiveness over time influence his level of a given

attribute. Examples (Table 1) might include increases in firm connectivity influence firm perfor-

mance over time (Checkley et al., 2014) or the fewer others a person communicates with, the higher

his or her level of stress (Kalish et al., 2015).

In our turnover intention example, we include the avSim effects, which directly model social influ-

ence (Hypothesis 1)—the idea that people catch their friends’ average level of the attribute. A significant

positive parameter value for this effect would suggest the presence of social influence in the network.

Because we are now modeling the evolution of both the network and the attribute (turnover

intention), we will add an additional indicator to evaluate GOF; namely, does the model capture the

distribution of actors’ attribute levels over time?

Step 3. Interpret the Output

Assuming that convergence has been reached and GOF is adequate, it is now possible to interpret the

output. Figure 3 provides GOF diagnostics for the final model. All GOF statistics are well above the

required 0.05. Parameter estimates, standard errors, and t statistics for convergence are presented

in Table 4.

[30] MyEff <- includeEffects(MyEff, egoX, altX,
simX, interaction1¼“quit”)

#includes the three attribute effects for both attributes. We
are only testing hypotheses for the three effects for “quit”.
The effects for gender are added as controls.[31] MyEff <- includeEffects(MyEff, egoX, altX,

simX, interaction1¼“gender”)

[32] MyEff <- includeEffects(MyEff, name¼“quit”,
avSim, interaction1¼“friendship”)

#includes the average similarity effect on the quit
attribute and the friendship network.

[33] gofbeh <- sienaGOF(Model4.results,
BehaviorDistribution, levls¼1:6,
verbose¼TRUE, join¼TRUE,
varName¼“quit”)

#creates a GOF results object for the distribution of
the attribute (quit) over time, and presents all 6
levels of the attribute.
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Hypothesis 1 suggests that people catch their friends’ turnover intentions over time. The

average similarity effect (effect 17) does not reach (two-sided) statistical significance—the

hypothesis is not supported, but we note a trend in the predicted direction. Hypothesis 2

suggested that people select others as friends because of similarity in turnover intentions. The

quit similarity effect (effect 12) is significant and positive as expected. Thus, Hypothesis 2 is

supported. Hypotheses 3 and 4 suggested that people with higher levels of turnover intentions

select fewer others as friends (Hypothesis 3, effect 11) and are selected by fewer others as

Figure 3. Goodness-of-fit plots for final model.

Table 4. Parameter Estimates, Standard Errors, and Convergence t Ratios for the Final Model.

Estimate Standard Error Convergence t Ratio

Network dynamics
1. rate constant friendship rate (period 1) 6.3187 (1.4402) –0.0220
2. rate constant friendship rate (period 2) 4.5908 (0.9391) 0.0367
3. eval outdegree (density) –2.3348 (0.2985) –0.0118
4. eval reciprocity 3.0950 (0.4512) 0.0193
5. eval GWESP I -> K -> J (69) 3.5061 (0.6328) –0.0413
6. eval outdegree - popularity –0.4479 (0.1601) –0.0034
7. eval gender alter –0.0336 (0.2380) –0.0078
8. eval gender ego –0.0038 (0.2772) –0.0459
9. eval gender similarity 0.2248 (0.2002) –0.0749
10. eval quit alter –0.0719 (0.1588) 0.0352
11. eval quit ego 0.1049 (0.1906) 0.0433
12. eval quit similarity 2.3262 (1.0414) –0.0070

Behavior dynamics
13. rate rate quit (period 1) 2.0494 (0.7097) 0.0016
14. rate rate quit (period 2) 1.5827 (0.5344) –0.0414
15. eval behavior quit linear shape 0.5703 (0.2937) 0.0569
16. eval behavior quit quadratic shape –0.0579 (0.1071) –0.0475
17. eval behavior quit average similarity 6.2381 (3.8873) 0.0456
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friends (Hypothesis 4, effect 11) over time. Neither effect was statistically significant; that is,

neither hypothesis was supported.

Additional interesting effects emerge from our analysis: There is indeed evidence for significant

reciprocity and transitivity in the network over time: Over time, people select those who selected

them as friends (effect 4), and people want their friends’ friends to become their own friends (effect

5). People who are expansive in their choice of friends become less popular over time (effect 6):

Being overly inclusive in (nonreciprocated) friendship harms a person’s popularity. As for gender, it

does not seem to affect network evolution: We observe no effect for gender either on being selected

as a friend over time (effect 7), selecting more others as friends over time (effect 8), or selecting

similar others over time (effect 9).

Taken together, these (fictional) results may explain previous results on collective turnover

(Feeley et al., 2008; Felps et al., 2009). Results suggest that in the network under investigation,

both selection and (possibly) influence effects may be at play, strengthening each other: Individuals

with higher levels of turnover intentions select similar others as friends, and there is some indication

that they may then catch their friends’ levels of turnover intention. Individuals with low levels of

turnover intention also select similar others, and they too catch their friends’ (lower) levels of

turnover intention. These effects are observed even after controlling for the tendency to reciprocate

friendship choices and more importantly, for the tendency of the friendship network to form clusters.

Without SAO models for the co-evolution of networks and behavior, it would have been exceedingly

difficult to obtain such a complex, detailed analysis of human behavior. It should be noted that

because the network objective function models change in n � (n – 1) network ties, whereas the

behavioral function models n attributes, it is generally easier to find statistically significant effects

that pertain to the former compared with the latter due to the increased power of the former analysis.

The implication is that larger samples are needed to examine social influence as compared with

social selection. Owing to the difficulty in collecting complete network and attribute data in large

samples (this would require every person to complete a questionnaire on every other person),

researchers often aggregate results from multiple small groups either by using structural zeros to

highlight impossible ties between groups (cf. Kalish et al, 2015) or preferably, meta-analyzing

results from multiple small groups using the RSiena meta-analysis option. The utilization of multiple

groups also addresses the replicability issue that is often a concern is network analytic studies

(Forbes, Wright, Markon, & Krueger, 2017).

Concluding Remarks

Organizations are characterized by change: Employees change over time in their commitment,

performance, behaviors, and attitudes. Organizations and countries change in their levels of democ-

racy, attitudes toward governance mechanisms, and hostility. The structures of relationships also

change over time: Employees befriend new people and sever existing friendships; countries form

and alter trade agreements. Only recently has an effective technique been developed for modeling

these changes in networks and attributes and unpacking the complex dependencies between them:

SAO models for the co-evolution of networks and behavior (Snijders et al., 2007, 2010). This paper

provided a tutorial introduction to these models.

Notably, though these powerful models have been in use for quite some time in the fields of

sociology and education, their potential has yet to be fully realized in organizational scholarship.

Applications of SAO models for co-evolution of networks and actor attributes in applied organiza-

tional settings include research examining the co-evolution of advice and leadership networks and

(in)civility (Porath, Gerbasi, & Schorch, 2015), communication networks and perceived stress

(Kalish et al., 2015), trust networks and job satisfaction (Agneessens & Wittek, 2008), interfirm

networks and governance orientation (Benton, 2016), interfirm collaborative networks and firm
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performance (Checkley et al., 2014), status networks and peer control attempts (de Klepper et al.,

2017), information sharing networks and evidence-based practice (Mercken, Saul, Lemaire,

Valente, & Leischow, 2015), friendship networks and unethical behavior (Zuber, 2015) and advice,

and friendship and difficult tie networks and psychological safety (Schulte et al., 2012).

I propose that SAO models can—and should—be considered more often by organizational

scholars. They allow researchers to model the temporal dynamics of networks and attributes and

the complex interrelationships between them. Researchers who are interested predominantly in the

dynamics of networks can use these models to explain emergence of status, leadership, or power

hierarchies. In particular, these models can empirically address theoretical questions such as: When

and how does shared leadership occur? When does centralization of power emerge? And when and

how do “bad apples” emerge (Carter, DeChurch, Braun, & Contractor, 2015)? Likewise, these

models might be useful to scholars interested in identifying the mechanisms—and specifically, the

attributes and network relationship patterns—that drive the evolution of attributes such as group

climate, norms, emotions, and attitudes (Lang et al., 2018). Researchers interested in examining how

attributes drive network relationships might benefit from using SAO models to answer questions

such as which attributes drive cooperation and which attributes drive helping behavior. Regardless

of the specific research question involved, I propose that SAO models can provide researchers with a

fine-grained analysis of multiple social and psychological processes and their interactions with each

other and the manner in which these processes generate higher level, emergent structures. As such,

these models may be an important step in bridging the micro-macro gap in organizational scholar-

ship (Kilduff & Tsai, 2003). Since networks may—or may not—coincide with formal structures

(Krackhardt & Hanson, 1993), utilizing SAO models may help reconcile the widely divergent results

obtained when attempting to aggregate from the individual level to the team level (Kalish, 2013).

The SAO models discussed herein can be expanded in various directions (not included in the

scope of this tutorial); such extensions include SAO models for multiple networks, whereby the

evolution of one type of tie can depend on another type of tie; SAO models for the co-evolution of

two-mode networks, whereby actors are tied to objects and both evolve simultaneously; and models

that accommodate different weights on the effect of tie formation and the effect of tie dissolution. To

implement an SAO model in RSiena, it is necessary to have some familiarity with the R framework,

which may pose a challenge to some researchers. However, given this tutorial and the excellent

RSiena manual (Ripley et al., 2018a), coupled with the immense value that SAO models can offer

organizational scholarship, I hope that the use of SAO models will increase in this domain.
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Notes

1. Formally, the model assumes that changes in network ties and attributes occur following a Markov process,

that is, the conditional probability distribution of future states of the network (and attributes) depends on the

past states only as a function of the present states. In other words, the current state of the network at time t

probabilistically determines the future state of the networks (see Snijders, van den Bunt, & Steglich, 2010)
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2. For example, the reciprocity effect simply counts the number of reciprocated ties that the focal actor has

(defined as snet
i ðxÞ ¼

P
j xijxjiÞ.

3. More formally, parameter values are log-odds ratio for choosing between two alternatives: the result of

changing the tie (or attribute) and the result of maintaining the current network (or attribute). For

example, a positive reciprocity effect means that over time, there is a tendency to reciprocate ties—it is

beneficial for actors to reciprocate ties sent to them in previous timepoints. This is further explained in

the simplified example, and see Ripley, Snijders, Boda, Voros, and Preciado (2018a, p. 67) for a more

comprehensive explanation.

4. Estimation of parameter values is conducted in three phases. In the first phase, initial values are estimated by

the RSiena program through an initial inspection of data. In the second phase, multiple runs (typically 1,000)

are conducted, and the program searches for parameter values where deviations between generated and

observed statistics across time average out to 0. In the third phase, (now final) parameter values are held

constant, and standard errors are computed. A more comprehensive introduction to the estimation procedure

in RSienacan be found in Snijders (2001).

5. The calculations presented in the following example are a simplification of the calculations that stochastic

actor-oriented (SAO) models perform. In reality, variables are centered prior to any calculations. This

oversimplified example is provided to assist the reader in understanding the internal calculations of the

model. The interested reader should refer to Snijders et al. (2010).

6. There are additional basic effects related to attributes that are incorporated into Equation 2 by default; they

are referred to as the shape and the quadratic shape effects. For simplicity’s sake, we will not consider them

in this discussion. See the following section for a more comprehensive discussion of these effects.

7. Structural zeros are often used to represent impossible ties between actors who are not allowed to interact

with each other because they belong to different groups or teams. As such, they are one solution often used to

aggregate results from multiple groups (cf. Kalish, Luria, Toker, & Westman, 2015). An alternative, pre-

ferable solution is to run a meta-analysis of RSiena results (see the RSiena manual [Ripley et al., 2018a],

section 11.2 for more details).

8. For geodesic distances, researchers need to run an additional script that formalizes the function. The

function, presented in Appendix A (available in the online journal), can be used “as is.” An additional

distribution that is often useful to troubleshoot GOF issues is the triad census.
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