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Overview

A Introduction: the Stochastic Actor-Oriented Model

and the Siena program;

coevolution.

B Analysis of Multilevel Networks

multiple node sets, multiple networks.

C Multilevel Analysis of Networks

multiple parallel networks.

D Multilevel Network Event Models.
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A1. Actor-Oriented Model for Network Dynamics Network Panel Data

Stochastic Actor-Oriented Model

Kinds of data:

1 Network panel data

= repeated measures of a network on the same node set

(some exogenous node changes are permitted).

2 Network and behavior panel data

= the same, with also behavioral dependent variables measured

⇒coevolution of networks and behavior.

3 Multivariate network / behavior panel data

= the same, multiple networks and/or multiple behaviors

⇒further coevolution.

Networks may also be two-mode networks:

rectangular adjacency matrices.
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A1. Actor-Oriented Model for Network Dynamics Network Panel Data

E.g.: Study of smoking initiation and friendship

(following up on earlier work by P. West, M. Pearson & others).

One school year group from a Scottish secondary school

starting at age 12-13 years, was monitored over 3 years,

3 observations, at appr. 1-year intervals,

160 pupils (with some turnover: 129 always present),

with sociometric & behaviour questionnaires.

Smoking: values 1–3;

drinking: values 1–5;
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A1. Actor-Oriented Model for Network Dynamics Network Panel Data

wave 1 girls: circles

boys: squares

node size: pocket money

color: top = drinking

bottom = smoking

(orange = high)
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A1. Actor-Oriented Model for Network Dynamics Network Panel Data

wave 2 girls: circles

boys: squares

node size: pocket money

color: top = drinking

bottom = smoking

(orange = high)
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A1. Actor-Oriented Model for Network Dynamics Network Panel Data

wave 3 girls: circles

boys: squares

node size: pocket money

color: top = drinking

bottom = smoking

(orange = high)
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A1. Actor-Oriented Model for Network Dynamics Network Panel Data

Questions:

⇒ how to model network dynamics from such data?

⇒ how to model joint dependence between networks

and actor attributes such as drinking and smoking?

The Glasgow cohort data set is a panel,

and it is natural to assume latent change going on

between the observation moments:

continuous time probability model,

discrete time observations.

Panel data sets are common for networks representing

relations between human actors like friendship, advice, esteem,

which can be regarded as states rather than events.
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A1. Actor-Oriented Model for Network Dynamics Continuous-time Markov chains

Continuous-time Markov chains: simplicity

Holland & Leinhardt (1977) framework for network dynamics:

1 continuous-time Markov models for panel data

(changes between observations being unobserved);

this allows expressing feedback: network builds upon itself;

2 decompose change in smallest constituents,

i.e., single tie changes: ministeps.

3 This means that coordination between actors is not modeled; only

feedback, as the actors constitute each others’ changing environment.

Note: continuous-time modeling for non-network panel data

developed by Kalbfleisch & Lawless, Bergstrom, Singer, et al.
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A1. Actor-Oriented Model for Network Dynamics Actor-oriented

Simulations – actor orientation

A simulation approach allows to extend this

to include triadic and other complex dependencies.

Actor-oriented perspective (Snijders, 1996, 2001)

(‘SAOM = Stochastic Actor-oriented Model ’) :

in a directed network,

tie changes are modeled as resulting from

actions by nodes = actors to change their outgoing ties;

An alternative is a tie-oriented perspective (Koskinen & Snijders, 2013)

in the ERGM tradition (‘LERGM ’):

tie changes are modeled as dependent on the current network

without a specific process role for the nodes.
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A1. Actor-Oriented Model for Network Dynamics Principles

Stochastic actor-oriented models: principles

⇒ model for network dynamics;

⇒ probability model is continuous-time stochastic process,

observations are discrete-time;

⇒ unobserved changes are ministeps (one variable at the time)

⇒ estimation theory elaborated for panel data

(i.e., finitely many observation moments, mostly just a few: ≥ 2);

⇒ elaborated also for network & behaviour panel data,

multivariate networks, two-mode networks;

⇒ actor-oriented: in line with social science theories

that focus on choices by nodes = actors

(can be individuals or organizations) ;

⇒ estimation by R package RSiena .
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A1. Actor-Oriented Model for Network Dynamics Notation

Notation

1 Actors i = 1, . . . , n (network nodes).

2 Array X of ties between them : one binary network X ;

Xij = 0 (or 1) if there is no tie (or there is a tie), from i to j .

Matrix X is adjacency matrix of digraph.

Can be extended to multiple networks or discrete ordered values.

Xij is a tie indicator or tie variable.

3 Exogenously determined independent variables:

actor-dependent covariates v , dyadic covariates w .

These can be constant or changing over time.

4 Continuous time parameter t,

observation moments t1, . . . , tM .
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A1. Actor-Oriented Model for Network Dynamics Principles

Model assumptions

1 X (t) is a Markov process.

Strong assumption;

covariates and state space extensions may enhance plausibility.

2 Condition on the first observation X (t1) , do not model it:

no assumption of a stationary marginal distribution.

3 At any time moment, only one tie variable Xij can change.

This precludes swapping partners or coordinated group formation.

Such a change is called a ministep (also ‘micro-step’).

4 Heuristic: Each actor “controls” her outgoing ties

collected in the row vector
(
Xi1(t), ...,Xin(t)

)
.

Actors have full information on all variables (can be weakened).
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A1. Actor-Oriented Model for Network Dynamics Rate function

Timing model: rate functions

‘how quick is change?’

At randomly determined moments t,

actors i get opportunity to change a tie variable Xij : ministep.

(Actors are also permitted to leave things unchanged.)

Each actor i has a rate function λi (α, x), with λ+(α, x) =
∑

i λi (α, x):

1 Waiting time until next ministep for current state x

∼ Exponential
(
λ+(α, x)

)
;

2 P
{

Next ministep is for actor i
}

=
λi (α, x)

λ+(α, x)
.

Rate functions may be constant between waves (∼ homogeneous Poisson

processes) or depend on actor characteristics or positions.
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A1. Actor-Oriented Model for Network Dynamics Objective function

Choice model: objective functions

‘what is the direction of change?’

The objective function fi (β, x
old, xnew) for actor i

models change probabilities to go from xold to xnew

(cf. potential function for xnew).

xold and xnew are two consecutive network states differing by only one tie.

Ministep: When actor i gets an opportunity for change,

s/he has the possibility to change one outgoing tie variable Xij ,

or leave everything unchanged.

By x (±ij) is denoted the network obtained from x

when xij is changed (‘toggled’) into 1− xij .

Formally, x (±ii) is defined to be equal to x .
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A1. Actor-Oriented Model for Network Dynamics Probabilities

Probabilities in ministep

Conditional on actor i being allowed to make a change,

i.e., i taking a ministep,

the probability that Xij changes into 1− Xij is

pij(β, x) =
exp

(
fi (β, x , x

(±ij))
)

n∑
h=1

exp
(
fi (β, x , x

(±ih))
) ,

and pii is the probability of not changing anything.

Higher values of the objective function indicate

the preferred direction of changes.

16 / 55



A1. Actor-Oriented Model for Network Dynamics Algorithm

Simulation algorithm network dynamics

Generate

∆ time

λ

Choose

actor i

λ

Choose

tie change i → j

i , f

Effectuate changes

t, x
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A1. Actor-Oriented Model for Network Dynamics Specification

Model specification :

Objective function fi reflects network effects

(endogenous) and covariate effects (exogenous).

Convenient specification of objective function is a linear combination.

In basic model specifications,

objective function does not depend on the ‘old’ network:

fi (β, x
old, xnew = x) =

L∑
k=1

βk sik(x) ,

where the weights βk are statistical parameters

indicating strength of ‘effect’ sik(x).

Dependence on actor-dependent covariates (vi )

or dyad-dependent (wij) is left out of the notation.
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A1. Actor-Oriented Model for Network Dynamics Specification

Examples of effects (1)

Some possible network effects for actor i , e.g.:

1 out-degree effect, controlling the density / average degree,

si1(x) = xi+ =
∑

j xij

2 reciprocity effect, number of reciprocated ties

si2(x) =
∑

j xij xji
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A1. Actor-Oriented Model for Network Dynamics Specification

Examples of effects (2)

Various effects related to network closure:

3 transitive triplets effect,

number of transitive patterns in i ’s ties

(i → j , i → h, h→ j)

si3(x) =
∑

j ,h xij xih xhj

i

h

j

transitive triplet
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A1. Actor-Oriented Model for Network Dynamics Specification

Examples of effects (3)

4 GWESP effect (cf. ERG models)

(geometrically weighted edgewise shared partners)

which gives a more moderate contribution of transitivity

GWESP(i , α) =
∑
j

xij e
α
{

1 −
(
1− e−α

)∑
h xihxhj

}
.

0 1 2 3 4 5 6

0

2

4

6

s

G
W

E
S

P
w

ei
gh

t α =∞
α = 1.2
α = 0.69
α = 0

Figure: Weight of tie i → j for s =
∑

h xihxhj two-paths.
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A1. Actor-Oriented Model for Network Dynamics Specification

Examples of effects (4)

Various objective function effects associated with actor covariate v .

Those to whom ‘ego’ i is tied are called i ’s ‘alters’.

1 covariate-related popularity, ‘alter’

sum of covariate over all of i ’s alters

si1(x) =
∑

j xij zj ;

2 covariate-related activity, ‘ego’

i ’s out-degree weighted by covariate

si2(x) = zi xi+;

3 covariate-related interaction, ‘ego × alter’

si3(x) = zi
∑

j xij zj ;
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A1. Actor-Oriented Model for Network Dynamics Rate function

Rate function: basic specification

The rate function λi (x) defines how often actor i gets

opportunities for change / makes microsteps.

The observations are taken at times (‘waves’) t1, t2, . . . , tM (M ≥ 2)

and the time interval [tm, tm+1] is called a period.

A basic feature is to include period-dependent multiplicative parameters

λi (ρ, α, x) = ρm λ
0
i (α, x)

where λi (ρ, α, x) applies in period [tm, tm+1].

λ0
i (α, x) may be constant, or depend on i and x and parameters α;

the free parameters ρm reflect that observations may be taken any time,

without interfering with the network process,

and that we have no prior knowledge about the ‘speed of social time’.
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A1. Actor-Oriented Model for Network Dynamics Rate function

Rate function: extended specification

A non-constant rate function λi (α, x)

represents that some actors change their ties more quickly than others,

depending on covariates or network position.

Dependence on covariates:

λi (ρ, α, x) = ρm exp(
∑
h

αh vhi ) .

Dependence on network position, e.g., on an actor variable V :

λi (ρ, α, x) = ρm exp(α1 vi ) .

ρm is a period-dependent base rate.

24 / 55



A1. Actor-Oriented Model for Network Dynamics Estimation

Estimation

For estimating the parameters, if there are complete continuous-time data

(all ministeps known), we could use maximum likelihood.

For panel data, estimation is less straightforward.

Estimation methods have been developed using

Method of Moments, Generalized Method of Moments,

Bayes, and Maximum Likelihood methods.

Method of Moments is used the most:

statistical efficiency quite good, time efficiency good.
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A1. Actor-Oriented Model for Network Dynamics Method of moments

Estimation: Method of moments

Method of moments (‘estimating equations’) ‘MoM’ :

Choose a suitable statistic Z = (Z1, . . . ,ZK ),

the statistic Z must be sensitive to the parameter θ in the sense that

∂Eθ(Zk)

∂θ
> 0 ;

determine value θ̂ of θ for which

observed and expected values of Z are equal:

Eθ̂ {Z} = z .
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A1. Actor-Oriented Model for Network Dynamics Method of moments

Statistics for MoM

Assume that there are M = 2 observation moments,

and rates are constant: λi (x) = ρ.

ρ determines the expected “amount of change”.

A sensitive statistic for ρ is the Hamming distance,

C =

g∑
i , j=1
i 6=j

| Xij(t2)− Xij(t1) | ,

the “observed total amount of change”.
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A1. Actor-Oriented Model for Network Dynamics Method of moments

For the weights βk in the objective function

fi (β, x) =
L∑

k=1

βk sik(x) ,

a higher value of βk means that all actors

‘strive more strongly after’ a high value of sik(x),

so sik(x) will tend to be higher for all i , k .

This leads to the statistic

Sk =
n∑

i=1

sik
(
X (t2)

)
.

This statistic will be sensitive to βk :

a higher βk will tend to lead to higher values of Sk .

(Recall: the model is conditional on x(t1).)
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A1. Actor-Oriented Model for Network Dynamics Stochastic approximation

How to solve the moment equation?

Moment equation Eθ̂{Z} = z is difficult to solve, as

Eθ{Z}

cannot be calculated explicitly.

However, the solution can be approximated, e.g., by the

Robbins-Monro (1951) method for stochastic approximation.

Iteration step (cf. Newton-Raphson) :

θ̂N+1 = θ̂N − aN D−1(zN − z) , (1)

where zN is a simulation of Z with parameter θ̂N ,

D is a suitable matrix, and aN → 0 .

This yields (with tuning) a surprisingly stable algorithm.
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A1. Actor-Oriented Model for Network Dynamics Glasgow data

Example: Glasgow data

The following page presents estimation results for the Glasgow data:

friendship network between 160 pupils, observed at 3 yearly waves.

The model was the result of an extensive goodness of fit exercise,

considering distributions of outdegrees, indegrees, and triad motifs.

Transitive closure is represented by the

geometrically weighted shared partners (‘gwesp’) effect:

i j

k1

k2

k3

•
•
•
•
•
•
•

GWESP 30 / 55



A1. Actor-Oriented Model for Network Dynamics Glasgow data

Effect par. (s.e.)

rate (period 1) 11.404 (1.289)

rate (period 2) 9.155 (0.812)

outdegree (density) –3.345∗∗∗ (0.229)

reciprocity: creation 4.355∗∗∗ (0.485)

reciprocity: maintenance 2.660∗∗∗ (0.418)

GWESP: creation 3.530∗∗∗ (0.306)

GWESP: maintenance 0.315 (0.414)

indegree – popularity –0.068∗ (0.028)

outdegree – popularity –0.012 (0.055)

outdegree – activity 0.109∗∗ (0.036)

reciprocated degree – activity –0.263∗∗∗ (0.066)

sex (F) alter –0.130† (0.076)

sex (F) ego 0.056 (0.086)

same sex 0.442∗∗∗ (0.078)
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A1. Actor-Oriented Model for Network Dynamics Glasgow data

Some conclusions:

Evidence for reciprocity; transitivity;

reciprocity stronger for creating than for maintaining ties;

transitivity only for creating ties;

gender homophily;

those with many reciprocated ties are less active

in establishing new ties or maintaining existing ties.

Note: definition of reciprocated degree – activity:

sik(x) =
∑
j

xij x
rec
i+

where

x rec
i+ =

∑
j

xij xji .
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A2. Non-directed networks

A2. Non-directed networks

The actor-driven modeling is less straightforward

for non-directed relations,

because two actors are involved in deciding about a tie.

Various modeling options are possible,

representing different ways of coordination

between the two actors at both sides of the tie.
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A2. Non-directed networks Model options

1 Forcing (dictatorial) model:

one actor takes the initiative and unilaterally imposes

that a tie is created or dissolved.

2 Unilateral initiative with reciprocal confirmation:

one actor takes the initiative and proposes a new tie

or dissolves an existing tie;

if the actor proposes a new tie, the other has to confirm,

otherwise the tie is not created.

(Cf. Jackson & Wolinsky, 1996)
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A2. Non-directed networks Model options

3 Pairwise conjunctive model:

a pair of actors is chosen and reconsider whether a tie

will exist between them; a new tie is formed if both agree.

4 Pairwise disjunctive (forcing) model:

a pair of actors is chosen and reconsider whether a tie

will exist between them;

a new tie is formed if at least one wishes this.

5 Pairwise compensatory (additive) model:

a pair of actors is chosen and reconsider whether a tie

will exist between them; this is based

on the sum of their utilities for the existence of this tie.
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A2. Non-directed networks Model options

Option 1 is close to the actor-driven model for directed relations.

In options 3–5, the pair of actors (i , j) is chosen

depending on the product of the rate functions λi λj

(under the constraint that i 6= j ).

The numerical interpretation of the ratio function

differs between options 1–2 compared to 3–5.

In options 2–5, the decision about the tie is taken on the basis of the

objective functions fi , fj of both actors.
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A3. Co-evolution Principles

A3. Co-evolution

In the SAOM for a single network,

the actors change their network neighbourhoods :

these co-evolve as the common changing environment = system state.

This can be extended to a system with multiple variables:

other networks, discrete actor-level variables, two-mode networks.

The basic ideas remain the same:

continuous-time Markov chain, now with larger state space;

heuristic: actors can change outgoing ties and their own variables;

at times of change, only one variable can change;

behavior is discrete, changes –1 / 0 / +1 / (ministeps!).
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A3. Co-evolution Principles

Rate functions, objective functions, specified

separately for each dependent variable.

Dependence of rate and objective functions of variable Y

on another dependent variable Z expresses directed dependence:

effect Z ⇒ Y .

Given the longitudinal panel data, this allows

to estimate separately dependence Z ⇒ Y and Y ⇒ Z ;

under the assumption that the model holds...

38 / 55



A3. Co-evolution Principles

Computer simulation algorithm

The co-evolution Markov chain is a succession of ministeps;

variables can be networks or actor-level variables.

Generate

∆ time

λ

Choose

variable h

λ

Choose

actor i

h, λ

Choose

tie change x
(h)
ij

or behavior change x
(h)
i

h, i , f

Effectuate changes

t, x
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A3. Co-evolution Networks and behaviour

Networks and Behaviour Studies

Co-evolution of a network and one or more actor variables

representing behavioural tendencies of actors

are Networks and Behaviour Studies that can be used to

study mechanisms of social influence and social selection.

E.g.: network of adolescents,

co-evolution friendship network ⇔ smoking behaviour.
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A3. Co-evolution Networks and behaviour

Actor-oriented models for networks and behavior

Each actor “controls” his outgoing ties

collected in the row vector
(
Xi1(t), ...,Xin(t)

)
,

and also her behavior Zi (t) =
(
Zi1(t), ...,ZiH(t)

)
,

where it is assumed there are H ≥ 1 behavior variables.

Network change process and behavior change process

run concurrently, with a common state space,

with transition probabilities depending on this joint state.
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A3. Co-evolution Networks and behaviour

Outline of model definition

Microsteps now can be either a change to the network,

or a change to the behavior.

Rate functions are defined separately

for changes in network: λX

for changes in behavior h: λZh .

Objective functions likewise are defined separately

for the network f X and the behaviors f Zh .

X and Z are interdependent because the objective functions

depend on both variables; they are applied as

f Xi
(
X (t),Z (t)

)
and f Zh

i

(
X (t),Z (t)

)
42 / 55



A3. Co-evolution Networks and behaviour

Behavior ministep

Whenever actor i may make a change in variable h of Z ,

she changes only one behavior, say zih , to the new value v

(recall: changes can be –1, 0, +1).

The new vector is denoted by z(i , h ; v).

Change probabilities are given by

pihv (β, z , x) =
exp(f (i , h, v))∑
u

exp(f (i , h, u))

where

f (i , h, v) = f
Zh
i (β, z(i , h ; v), x) .
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A3. Co-evolution Networks and behaviour

Specification of behavior model

Objective function for behavior f Zh
i also is linear predictor:

f Zh
i (β, x , z) =

L∑
k=1

βZh
k sZh

ik (x , z) ,

Some basic effects:

1 Linear shape ,

sZh
i1 (x , z) = zih

2 quadratic shape, ‘effect behavior on itself’,

sZh
i2 (x , z) = z2

ih

Quadratic shape effect important for model fit.
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A3. Co-evolution Networks and behaviour

For a negative quadratic shape parameter,

the model for behavior is a unimodal preference model.

zh

f
Zh

i
(β, x, z)

1 2 3 4

For positive quadratic shape parameters ,

the behavior objective function can be bimodal

(‘positive feedback’).
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A3. Co-evolution Networks and behaviour

3 behavior-related similarity,

sum of behavior similarities

between i and his friends

sZh
i3 (x , z) =

∑
j xij

(
1−|zih − zjh |

)
,

if Zh assumes values between 0 and 1;

may be divided by xi+ =
∑

j xij ;

4 average behavior alter — an alternative to similarity:

sZh
i4 (x , z) = zih

1
xi+

∑
j xijzjh

5 popularity-related tendency, (in-degree)

sZh
i5 (x , z) = zih x+i

6 activity-related tendency, (out-degree)

sZh
i6 (x , z) = zih xi+
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A3. Co-evolution Networks and behaviour

Effects (3) and (4) both express the idea of influence,

but in mathematically different ways.

Theory plus data will have to differentiate between them.

7 dependence on other behaviors (h 6= `) ,

sZh
i7 (x , z) = zih zi`

For both the network and the behavior dynamics,

extensions are possible depending on the network position.
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A3. Co-evolution Multivariate networks

Multivariate Networks

Co-evolution of several networks allows studying how these networks

influence each other. The same co-evolution principles apply.

E.g.: networks in organizations,

relevant networks are advice – collaboration – friendship;

other example: bullying in schools,

some relevant networks are friendship – bullying – defending.

A multitude of mixed structural effects are interesting.

E.g.: direct entrainment: advisors become friends;

mixed transitive closure patterns:

advisors of friends become advisors, etc.;

actor-level dependencies:

those who have many friendships give less advice.
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A3. Co-evolution Two-mode Networks

Two-mode Networks

Networks may also be two-mode networks,

where the first node set is the set of actors

and the second node set can be, e.g., activities, meeting places

representing further contextual aspects; or cognitions.

For co-evolution of friendship, associations, and behavior this opens

the possibility to study whether actors are influenced by their friends

or by their co-members of associations.

Two-mode networks have less structural possibilities

because the second mode is unrelated to the first mode.
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A3. Co-evolution RSiena

The procedures are implemented in the R package

R

S imulation

I nvestigation for

E mpirical

N etwork

A nalysis

which is available from CRAN and (up-2-date) R-Forge

http://www.stats.ox.ac.uk/siena/

Material, papers, can be found on SIENA website.

50 / 55



References

Some references (time-ordered)

Tom A.B. Snijders (2001). The Statistical Evaluation of Social Network Dynamics.

Sociological Methodology, 31, 361–395.

Johan H. Koskinen and Tom A.B. Snijders (2007).

Bayesian inference for dynamic social network data.

Journal of Statistical Planning and Inference, 13, 3930–3938.

Tom Snijders, Christian Steglich, and Michael Schweinberger (2007),

Modeling the co-evolution of networks and behaviour.

Pp. 41–71 in Longitudinal models in the behavioral and related sciences,

eds. Kees van Montfort, Han Oud and Albert Satorra; Lawrence Erlbaum.

Steglich, C.E.G., Snijders, T.A.B. and Pearson, M. (2010).

Dynamic Networks and Behavior: Separating Selection from Influence.

Sociological Methodology, 40, 329–392.

Tom A.B. Snijders, Johan Koskinen, and Michael Schweinberger (2010).

Maximum Likelihood Estimation for Social Network Dynamics.

Annals of Applied Statistics, 4, 567–588.

Johan H. Koskinen and Tom A.B. Snijders (2013). Longitudinal models.

Pp. 130–140 in Exponential Random Graph Models,

edited by Dean Lusher, Johan Koskinen, and Garry Robins. Cambridge University Press.

51 / 55



References

Some references (continued)

Tom A.B. Snijders, Alessandro Lomi, and Vanina Torlò (2013). A model for the multiplex
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Extras Convergence criterion

Extra 1. Convergence criterion

In the implementation in RSiena, the algorithm runs for a preset number

of iterations, after which convergence is assessed.

Determine how close we are to Eθ{Z} = z

One way to measure this uses the ‘t-ratios for convergence’,

tconvk =
ZNk − zk

s.d.(Z1k , . . . ,ZNk)
,

where Z = (Zn1, . . . ,ZnK ), and requires, e.g.,

max
k
|tconvk | ≤ 0.1 .
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Extras Convergence criterion

Overall maximum convergence ratio

A better criterion turns out to be the maximum t-ratio for convergence for

any linear combination of the parameters,

tconv.max = max
b

 b ′
(
ZN − z

)√
b ′ Ĉov(Z ) b

 .

This is equal to
(

use Cauchy-Schwarz, Σ = Ĉov(Z )
)

max
c

{
c ′Σ−1/2

(
Z − z

)
√
c ′c

}
=
(
Z − z

)′
Σ−1

(
Z − z

)
.

The definition implies that

tconv.max ≥ max
k
|tconvk | .
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Extras Convergence criterion

The current rule for practical use is that

tconv.max ≤ 0.25 and max
k
|tconvk | ≤ 0.1 .
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