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Abstract

Stochastic actor-based models are models for network dynamics that can
represent a wide variety of influences on network change, and allow to es-
timate parameters expressing such influences, and test corresponding hy-
potheses. The nodes in the network represent social actors, and the collec-
tion of ties represents a social relation. The assumptions posit that the net-
work evolves as a stochastic process ‘driven by the actors’, i.e., the model
lends itself especially for representing theories about how actors change
their outgoing ties. The probabilities of tie changes are in part endogenously
determined, i.e., as a function of the current network structure itself, and in
part exogenously, as a function of characteristics of the nodes (‘actor covari-
ates’) and of characteristics of pairs of nodes (‘dyadic covariates’). In an
extended form, stochastic actor-based models can be used to analyze longi-
tudinal data on social networks jointly with changing attributes of the actors:
dynamics of networks and behavior.

This paper gives an introduction to stochastic actor-based models for
dynamics of directed networks, using only a minimum of mathematics. The
focus is on understanding the basic principles of the model, understanding
the results, and on sensible rules for model selection.

Keywords: statistical modeling, longitudinal, Markov chain, agent-based model,
peer selection, peer influence.
∗Draft article for special issue of Social Networks on Dynamics of Social Networks. We are

grateful to Andrea Knecht who collected the data used in the example, under the guidance of Chris
Baerveldt. We also are grateful to Matthew Checkley and two reviewers for their very helpful
remarks on earlier drafts.
†University of Oxford and University of Groningen
‡Free University, Amsterdam
§University of Groningen

1



1. Introduction

Social networks are dynamic by nature. Ties are established, they may flourish
and perhaps evolve into close relationships, and they can also dissolve quietly, or
suddenly turn sour and go with a bang. These relational changes may be con-
sidered the result of the structural positions of the actors within the network –
e.g., when friends of friends become friends–, characteristics of the actors (‘actor
covariates’), characteristics of pairs of actors (‘dyadic covariates’), and residual
random influences representing unexplained influences. Social network research
has in recent years paid increasing attention to network dynamics, as is shown,
e.g., by the three special issues devoted to this topic in Journal of Mathematical
Sociology edited by Patrick Doreian and Frans Stokman (1996, 2001, and 2003;
also see Doreian and Stokman, 1997). The three issues shed light on the under-
lying theoretical micro mechanisms that induce the evolution of social network
structures on the macro level. Network dynamics is important for domains rang-
ing from friendship networks (e.g., Pearson and Michell, 2000; Burk, Steglich,
and Snijders, 2007) to, for example, organizational networks (see the review ar-
ticles Borgatti and Foster, 2003; Brass, Galaskiewicz, Greve, and Tsai, 2004).

In this article we give a tutorial introduction to what we call here stochas-
tic actor-based models for network dynamics, which are a type of models that
have the purpose to represent network dynamics on the basis of observed longi-
tudinal data, and evaluate these according to the paradigm of statistical inference.
This means that the models should be able to represent network dynamics as be-
ing driven by many different tendencies, such as the micro mechanisms alluded
to above, which could have been theoretically derived and/or empirically estab-
lished in earlier research, and which may well operate simultaneously. Some ex-
amples of such tendencies are reciprocity, transitivity, homophily, and assortative
matching, as will be elaborated below. In this way, the models should be able
to give a good representation of the stochastic dependence between the creation,
and possibly termination, of different network ties. These stochastic actor-based
models allow to test hypotheses about these tendencies, and to estimate param-
eters expressing their strengths, while controlling for other tendencies (which in
statistical terminology might be called ‘confounders’).

The literature on network dynamics has generated a large variety of mathe-
matical models. To describe the place in the literature of stochastic actor-based
models (Snijders 1996, 2001), these models may be contrasted with other dynamic
network models.

Most network dynamics models in the literature pay attention to a very spe-
cific set of micro mechanisms –allowing detailed analyses of the properties of
these models–, but lack an explicit estimation theory. Examples are models pro-

2



posed by Bala and Goyal (2000), Hummon (2000), Skyrms and Pemantle (2000),
and Marsili, Vega-Redondo, and Slanina (2004), all being actor-based simulation
models that focus on the expression of a single social theory as reflected, e.g., by a
simple utility function; those proposed by Jin, Girvan, and Newman (2001) which
represent a larger but still quite restricted number of tendencies; and models such
as those proposed by Price (1976), Barabási and Albert (1999), and Jackson and
Rogers (2007), which are actor-based, represent one or a restricted set of tenden-
cies, and assume that nodes are added sequentially while existing ties cannot be
deleted, which is a severe limitation to the type of longitudinal data that may be
faithfully represented. Since such models do not allow to control for other influ-
ences on the network dynamics, and how to estimate and test parameters is not
clear for them, they cannot be used for purposes of theory testing in a statistical
model.

The earlier literature does contain some statistical dynamic network mod-
els, mainly those developed by Wasserman (1979) and Wasserman and Iacobucci
(1988), but these do not allow complicated dependencies between ties such as are
generated by transitive closure. Further there are papers that present an empiri-
cal analysis of network dynamics which are based on intricate and illuminating
descriptions such as Holme, Edling, and Liljeros (2004) and Kossinets and Watts
(2006), but which are not based on an explicit stochastic model for the network
dynamics and therefore do not allow to control one tendency for other (‘confound-
ing’) tendencies.

Distinguishing characteristics of stochastic actor-based models are flexibility,
allowing to incorporate a wide variety of actor-driven micro mechanisms influ-
encing tie formation; and the availability of procedures for estimating and testing
parameters that also allow to assess the effect of a given mechanism while control-
ling for the possible simultaneous operation of other mechanisms or tendencies.

We assume here that the empirical data consist of two, but preferably more,
repeated observations of a social network on a given set of actors; one could call
this network panel data. Ties are supposed to be the dyadic constituents of rela-
tions such as friendship, trust, or cooperation, directed from one actor to another.
In our examples social actors are individuals, but they could also be firms, coun-
tries, etc. The ties are supposed to be, in principle, under control of the send-
ing actor (although this will be subject to constraints), which will exclude most
types of relations where negotiations are required for a tie to come into existence.
Actor covariates may be constant like sex or ethnicity, or subject to change like
opinions, attitudes, or lifestyle behaviors. Actor covariates often are among the
determinants of actor similarity (e.g., same sex or ethnicity) or spatial proximity
between actors (e.g., same neighborhood) which influence the existence of ties.
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Dyadic covariates likewise may be constant, such as determined by kinship or
formal status in an organization, or changing over time, like friendship between
parents of children or task dependencies within organizations.

This paper is organized as follows. In the next section, we present the assump-
tions of the actor-based model. The heart of the model is the so-called objective
function, which determines probabilistically the tie changes made by the actors.
One could say that it captures all theoretically relevant information the actors
need to ‘evaluate’ their collection of ties. Some of the potential components of
this function are structure-based (endogenous effects), such as the tendency to
form reciprocal relations, others are attribute-based (exogenous effects), such as
the preference for similar others. In Section 3 we discuss several statistical is-
sues, such as data requirements and how to test and select the appropriate model.
Following this we present an example about friendship dynamics, focusing on the
interpretation of the parameters. Section 4 proposes some more elaborate models.
In Section 5, models for the coevolution of networks and behavior are introduced
and illustrated by an example. Section 6 discusses the difference between equilib-
rium and out-of-equilibrium situations, and how these longitudinal models relate
to cross-sectional statistical modeling of social networks. Finally, in Section 7, a
brief discussion is given, the Siena software is mentioned which implements these
methods, and some further developments are presented.

2. Model assumptions

A dynamic network consists of ties between actors that change over time. A
foundational assumption of the models discussed in this paper is that the network
ties are not brief events, but can be regarded as states with a tendency to endure
over time. Many relations commonly studied in network analysis naturally satisfy
this requirement of gradual change, such as friendship, trust, and cooperation.
Other networks more strongly resemble ‘event data’, e.g., the set of all telephone
calls among a group of actors at any given time point, or the set of all e-mails being
sent at any given time point. While it is meaningful to interpret these networks as
indicators of communication, it is not plausible to treat their ties as enduring states,
although it often is possible to aggregate event intensity over a certain period and
then view these aggregates as indicators of states.

Given that the network ties under study denote states, it is further assumed, as
an approximation, that the changing network can be interpreted as the outcome
of a Markov process, i.e., that for any point in time, the current state of the net-
work determines probabilistically its further evolution, and there are no additional
effects of the earlier past. All relevant information is therefore assumed to be in-
cluded in the current state. This assumption often can be made more plausible by
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choosing meaningful independent variables that incorporate relevant information
from the past.

This paper gives a non-technical introduction into actor-based models for net-
work dynamics. More precise explanations can be found in Snijders (2001, 2005)
and Snijders, Steglich, and Schweinberger (2007). However, a modicum of math-
ematical notation cannot be avoided. The tie variables are binary variables, de-
noted by xij . A tie from actor i to actor j, denoted i → j, is either present or
absent (xij then having values 1 and 0, respectively). Although this is in line with
traditional network analysis, an extension to valued networks would often be the-
oretically sound, and could make the Markov assumption more plausible. This is
one of the topics of current research. The tie variables constitute the network, rep-
resented by its n×n adjacency matrix x =

(
xij

)
(self-ties are excluded), where n

is the total number of actors. The changes in these tie variables are the dependent
variables in the analysis.

2.1. Basic assumptions

The model is about directed relations, where each tie i → j has a sender i, who
will be referred to as ego, and a receiver j, referred to as alter. The following
assumptions are made.

1. The underlying time parameter t is continuous, i.e., the process unfolds in
time steps of varying length, which could be arbitrarily small. The param-
eter estimation procedure, however, assumes that the network is observed
only at two or more discrete points in time. The observations can also be
referred to as ‘network panel waves’, analogous to panel surveys in non-
network studies.

This assumption was proposed already by Holland and Leinhardt (1977),
and elaborated by Wasserman (1979 and other publications) and Leenders
(1995 and other publications) – but their models represented only reci-
procity, and no other structural dependencies between network ties. The
continuous-time assumption allows to represent dependencies between net-
work ties as the result of processes where one tie is formed as a reaction to
the existence of other ties. If, for example, three actors who at the first ob-
servation are mutually disconnected form at the second observation a closed
triangle, where each is connected to both of the others, then a discrete-time
model that has the observations as its time steps would have to account for
the fact that this closed triangle structure is formed ‘out of nothing’, in one
time step. In our model such a closed triangle can be formed tie by tie, as a
consequence of reciprocation and transitive closure. Thus, the appearance
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of closed triangles may be explained based on reciprocity and transitive pro-
cesses, without requiring a special process specifically for closed triangles.

Since many small changes can add up to large differences between con-
secutively observed networks, this does not preclude that what is observed
shows large changes from one observation to the next.

2. The changing network is the outcome of a Markov process. This was ex-
plained above. Thus, the total network structure is the social context that
influences the probabilities of its own change.

The assumption of a Markov process has been made in practically all mod-
els for social network dynamics, starting by Katz and Proctor’s (1959) dis-
crete Markov chain model. This is an assumption that will usually not be
realistic, but it is difficult to come up with manageable models that do not
make it. We could say that this assumption is a lens through which we look
at the data – it should help but it also may distort. If there are only two panel
waves, then the data have virtually no information to test this assumption.
For more panel waves, there is in principle the possibility to test this as-
sumption and propose models making less restrictive assumption about the
time dependence, but this will require quite complicated models.

3. The actors control their outgoing ties. This means not that actors can change
their outgoing ties at will, but that changes in ties are made by the actors
who send the tie, on the basis of their and others’ attributes, their position
in the network, and their perceptions about the rest of the network. This
assumption is the reason for using the term ‘actor-based model’. This ap-
proach to modeling is in line with the methodological approach of structural
individualism (Udehn, 2002; Hedström, 2005), where actors are assumed to
be purposeful and to behave subject to structural constraints. The assump-
tion of purposeful actors is not required, however, but a question of model
interpretation (see below).
It is assumed formally that actors have full information about the network
and the other actors. In practice, as can be concluded from the specifica-
tions given below, the actors only need more limited information, because
the probabilities of network changes by an actor depend on the personal net-
work (including actors’ attributes) that would result from making any given
change, or possibly the personal network including those to whom the actor
has ties through one intermediary (i.e., at geodesic distance two).

4. At a given moment one probabilistically selected actor – ‘ego’ – may get the
opportunity to change one outgoing tie. No more than one tie can change at
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any moment – a principle first proposed by Holland and Leinhardt (1977).
This principle decomposes the change process into its smallest possible
components, thereby allowing for relatively simple modelling. This implies
that tie changes are not coordinated, and depend on each other only sequen-
tially, via the changing configuration of the whole network. For example,
two actors cannot decide jointly to form a reciprocal tie; if two actors are not
tied at one observation and mutually tied at the next, then one of the must
have taken the initiative and extended a one-sided tie, after which, at some
later moment, the other actor reciprocated and formed a reciprocal tie. This
assumption excludes relational dynamics where some kind of coordination
or negotiation is essential for the creation of a tie, or networks created by
groups participating in some activity, such as joint authorship networks.

For directed networks, this usually is a reasonable simplifying assumption.
In most cases, panel data of directed networks have many tie differences
between successive observations and do not provide information about the
order in which ties were created or terminated, so that this is an assumption
about which the available data contain hardly any empirical evidence.

Summarizing the status of these four basic assumptions: the first (continuous-
time model) makes sense intuitively; the second (Markov process) is an as-if ap-
proximation and it would be interesting in future to construct models going be-
yond this assumption; the third (actor-based) is often a helpful theoretical heuris-
tic; and the fourth (ties change one by one) is an assumption which limits the
applicability to a wide class of panel data of directed networks for which this
assumption seems relatively harmless.

The actor-based network change process is decomposed into two sub-processes,
both of which are stochastic.

5. The change opportunity process, modeling the frequency of tie changes by
actors. The change rates may depend on the network positions of the actors
(e.g., centrality) and on actor covariates (e.g., age and sex).

6. The change determination process, modeling the precise tie changes made
when an actor has the opportunity to make a change. The probabilities of
tie changes may depend on the network positions, as well as covariates, of
ego and the other actors (‘alters’) in the network. This is explained below.

The actor-based model can be regarded as an agent-based simulation model
(Macy and Willer 2002). It does not deviate in principle from other agent-based
models, only in ways deriving from the fact that the model is to be used for statis-
tical inference, which leads to requirements of flexibility (enough parameters that
can be estimated from the data to achieve a good fit between model and data) and
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parsimony (not more fine detail in the model than what can be estimated from the
data). The word ‘actor’ rather than ‘agent’ is used, in line with other sociolog-
ical literature (e.g., Hedström 2005), to underline that actors are not regarded as
subservient to others’ interests in any way.

The actor-based model, when elaborated for a practical application, contains
parameters that have to be estimated from observed data by a statistical procedure.
Since the proposed stochastic models are too complex for the straightforward ap-
plication of classical estimation methods such as maximum likelihood, Snijders
(1996, 2001) proposed a procedure using the method of moments implemented
by computer simulation of the network change process. This procedure uses the
basic principle that the first observed network is itself not modeled but used only
as the starting point of the simulations. In statistical terminology: the estimation
procedure conditions on the first observation. This implies that it is the change
between two observed periods time points that is being modeled, and the analysis
does not have the aim to make inferences about the determinants of the network
structure at the first time point.

2.2. Change determination model

The first step in the model is the choice of the focal actor (ego) who gets the op-
portunity to make a change. This choice can be made with equal probabilities
or with probabilities depending on attributes or network position, as elaborated
in Section 4.1. This selected focal actor then may change one outgoing tie (i.e.,
either initiate or withdraw a tie), or do nothing (i.e., keep the present status quo).
This means that the set of admissible actions contains n elements: n− 1 changes
and one non-change. The probabilities for a choice depend on the so-called ob-
jective function. This is a function of the network, as perceived by the focal actor.
Informally, the objective function expresses how likely it is for the actor to change
her/his network in a particular way. On average, each actor ‘tries to’ move into a
direction of higher values of her/his objective function, subject to the constraints
of the current network structure and the changes made by the other actors in the
network; and subject to random influences. The objective function will depend
in practice on the personal network of the actor, as defined by the network be-
tween the focal actor plus those to whom there is a direct tie (or, depending on
the specification, the focal actor plus those to whom there is a direct or indirect
– i.e., distance-two – tie), including the covariates for all actors in this personal
network. Thus, the probabilities of changes are assumed to depend on the per-
sonal networks that would result from the changes that possibly could be made,
and their composition in terms of covariates, via the objective function values of
those networks.

The precise interpretation is given by equation (4) in the appendix. This is the

8



core of model and it must represent the research questions and relevant theoretical
and field-related knowledge. The objective function is explained in more detail in
the next section.

The name ‘objective function’ was chosen because one possible interpretation
is that it represents the short-term objectives (net result of preferences and struc-
tural as well as cognitive constraints) of the actor. Which action to choose out
of the set of admissible actions, given that ego has the opportunity to act (i.e.,
change a network tie), follows the logic of discrete choice models (McFadden,
1973; Maddala, 1983) which have been developed for modeling situations where
the dependent variable is a choice made from a finite set of actions.

2.3. Specification of the objective function

The objective function determines the probabilities of change in the network,
given that an actor has the opportunity to make a change. One could say it rep-
resents the ‘rules for network behavior’ of the actor. This function is defined on
the set of possible states of the network, as perceived from the point of view of
the focal actor, where ‘state of the network’ refers not only to the ties but also to
the covariates. When the actor has the possibility of moving to one out of a set
of network states, the probability of any given move is higher accordingly as the
objective function for that state is higher.

Like in generalized linear statistical models, the objective function is assumed
to be a linear combination of a set of components called effects,

fi(β, x) =
∑

k

βk ski(x) . (1)

In this section and elsewhere, the symbol i and the term ‘ego’ are ways of re-
ferring to the focal actor. Here fi(β, x) is the value of the objective function for
actor i depending on the state x of the network; the functions ski(x) are the effects,
functions of the network that are chosen based on theory and subject-matter know-
ledge, and correspond to the ‘tendencies’ mentioned in the introductory section;
and the weights βk are the statistical parameters. The effects represent aspects
of the network as ‘viewed’ from the point of view of actor i. As examples, one
can think of the number of reciprocated ties of actor i, representing tendencies
toward reciprocity, or the number of ties from i toward actors of the same gender,
representing tendencies toward gender homophily. Many more examples are pre-
sented below. The effects ski(x) depend on the network x but may also depend
on actor attributes (actor covariates), on variables depending on pairs of actors
(dyadic covariates), etc. If βk equals 0, the corresponding effect plays no role in
the network dynamics; if βk is positive, then there will be a higher probability of
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moving into directions where the corresponding effect is higher, and the converse
if βk is negative.

For the model selection, an essential part is the theory-guided choice of ef-
fects included in the objective function in order to test the formulated hypotheses.
A good approach may be to progressively build up the model according to the
method of decreasing abstraction (Lindenberg, 1992). An additional considera-
tion here is, however, that the complexity of network processes, and the limitations
of our current knowledge concerning network dynamics, imply that model con-
struction may require data-driven elements to select the most appropriate precise
specification of the endogenous network effects. For example, in the investiga-
tion of friendship networks one might be interested in effects of lifestyle variables
and background characteristics on friendship, while recognizing the necessity to
control for tendencies toward reciprocation and transitive closure. As discussed
below in the section on triadic effects, multiple mathematical specifications are
available (as ‘effects’ ski(x) to be included in equation (1)) expressing the concept
of transitive closure. Usually there are no prior theoretical or empirical reasons
for choosing among these specifications. It may then be best to use theoretical
considerations for deciding to include lifestyle-related and background variables
as well as tendencies toward reciprocation and transitive closure in the model, and
to choose the best specification for transitive closure, by one or several specific
effects, in a data-driven way.

In the following we give a number of effects that may be considered for in-
clusion in the objective function. They are described here only conceptually, with
some brief pointers to empirical results or theories that might support them; the
formulae are given in the appendix. Effects depending only on the network are
called structural or endogenous effects, while effects depending only on exter-
nally given attributes are called covariate or exogenous effects. The complexity
of networks is such that an exhaustive list cannot meaningfully be given. To sim-
plify formulations, the presentation shall assume that the relation under study is
friendship, so the existence of a tie i→ j will be described as i calling j a friend.
Higher values of the objective function, leading to higher tendencies to form ties,
will sometimes be interpreted in shorthand as preferences.

Basic effects
The most basic effect is defined by the outdegree of actor i, and this will be in-
cluded in all models. It represents the basic tendency to have ties at all, and in
a decision-theoretic approach its parameter could be regarded as the balance of
benefits and costs of an arbitrary tie. Most networks are sparse (i.e., they have a
density well below 0.5) which can be represented by saying that for a tie to an
arbitrary other actor – arbitrary meaning here that the other actor has no charac-
teristics or tie pattern making him/her especially attractive to i –, the costs will
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usually outweigh the benefits. Indeed, in most cases a negative parameter is ob-
tained for the outdegree effect.

Another quite basic effect is the tendency toward reciprocity, represented by
the number of reciprocated ties of actor i. This is a basic feature of most social
networks (cf. Wasserman and Faust, 1994, Chapter 13) and usually we obtain
quite high values for its parameter, e.g., between 1 and 2.

Transitivity and other triadic effects
Next to reciprocity, an essential feature in most social networks is the tendency
toward transitivity, or transitive closure (sometimes called clustering): friends of
friends become friends, or in graph-theoretic terminology: two-paths tend to be,
or to become, closed (e.g., Davis 1970, Holland and Leinhardt 1971). In Figure
1.a, the two-path i→ j → h is closed by the tie i→ h.

Figure 1. a. Transitive triplet (i, j, h) b. Three-cycle

i

h

j

i

h

j

The transitive triplets effect measures transitivity for an actor i by counting the
number of pairs j, h such that there is the transitive triplet structure of Figure 1.a.
However, this is just one way of measuring transitivity. Another one is the transi-
tive ties effect, which measures transitivity for actor i by counting the number of
other actors h for which there is at least one intermediary j forming a transitive
triplet of this kind. The transitive triplets effect postulates that more intermediaries
will add proportionately to the tendency to transitive closure, whereas the transi-
tive ties effect expects that given that one intermediary exists, extra intermediaries
will not further contribute to the tendency to forming the tie i→ h.

An effect closely related to transitivity is balance (cf. Newcomb, 1962), which
in our implementation is the same as structural equivalence with respect to out-
ties (cf. Burt, 1982), which is the tendency to have and create ties to other actors
who make the same choices as ego. The extent to which two actors make the
same choices can be expressed simply as the number of outgoing choices and
non-choices that they have in common.

Transitivity can be represented by still more effects: e.g., negatively, by the
number of others to whom i is indirectly tied but not directly (geodesic distance
equal to 2). The choice between these representations of transitivity may depend
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both on the degree to which the representation is theoretically convincing, and on
what gives the best fit.

A different triadic effect is the number of three-cycles that actor i is involved
in (Figure 1.b). Davis (1970) found that in many social network data sets, there is
a tendency to have relatively few three-cycles, which can be represented here by
a negative parameter βk for the three-cycle effect. The transitive triplets and the
three-cycle effects both represent closed structures, but whereas the former is in
line with a hierarchical ordering, the latter goes against such an ordering. If the
network has a strong hierarchical tendency, one expects a positive parameter for
transitivity and a negative for three-cycles. Note that a positive three-cycle effect
can also be interpreted, depending on the context of application, as a tendency
toward generalized exchange (Bearman, 1997).

Degree-related effects
In- and outdegrees are primary characteristics of nodal position and can be impor-
tant driving factors in the network dynamics.

One pair of effects is degree-related popularity based on indegree or outde-
gree. If these effects are positive, nodes with higher indegree, or higher outdegree,
are more attractive for others to send a tie to. This can be measured by the sum
of indegrees of the targets of i’s outgoing ties, and the sum of their outdegrees,
respectively. A positive indegree-related popularity effect implies that high inde-
grees reinforce themselves, which will lead to a relatively high dispersion of the
indegrees (a Matthew effect in popularity as measured by indegrees, cf. Merton,
1968 and Price, 1976). A positive outdegree-related popularity effect will increase
the association between indegrees and outdegrees, or keep this association rela-
tively high if it is high already.

Another pair of effects is degree-related activity for indegree or outdegree:
when these effects are positive, nodes with higher indegree, or higher outdegree
respectively, will have an extra propensity to form ties to others. These effects
can be measured by the indegree of i times i’s outdegree; and, respectively, the
outdegree of i times i’s outdegree, that is, the square of the outdegree.1 The
outdegree-related activity effect again is a self-reinforcing effect: when it has a
positive parameter, the dispersion of outdegrees will tend to increase over time,
or to be sustained if it already is high. The indegree-related activity effect has the
same consequence as the outdegree-related popularity effect: positive parameters
lead to a relatively high association between indegrees and outdegrees. There-
fore these two effects will be difficult, or impossible, to distinguish empirically,

1Experience has shown that for the degree-related effects, often the ‘driving force’ is measured
better by the square roots of the degrees than by raw degrees. In some cases this may be supported
by arguments about diminishing returns of increasingly high degrees. See the formulae in the
appendix.
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and the choice between them will have to be made on theoretical grounds. These
four degree-related effects can be regarded as the analogues in the case of directed
relations of what was called cumulative advantage by Price (1976) and preferen-
tial attachment by Barabási and Albert (1999) in their models for dynamics of
non-directed networks: a self-reinforcing process of degree differentiation.

These degree-related effects can represent hierarchy between nodes in the net-
work, but in a different way than the triadic effects of transitivity and 3-cycles.
The degree-related effects represent global hierarchy while the triadic effects re-
present local hierarchy. In a perfect hierarchy, ties go from the bottom to the
top, so that the bottom nodes have high outdegrees and low indegrees and the top
nodes have low outdegrees and high indegrees. This will be reflected by positive
indegree popularity and negative outdegree popularity, and by positive outdegree
activity and negative indegree activity. Therefore, to differentiate between local
and global hierarchical processes, it can be interesting to estimate models with
triadic and degree-related effects, and assess which of these have the better fit by
testing the triadic parameters while controlling for the degree-related parameters,
and vice versa.

Other degree-related effects are assortativity-related: actors might have pref-
erences for other actors based on their own and the other’s degrees (Morris and
Kretzschmar 1995; Newman 2002). In settings where degrees reflect status of
the actors, such preferences may be argued theoretically based on status-specific
preferences, constraints, or matching processes. This gives four possibilities, de-
pending on in- and outdegree of the focal actor and the potential friend.

Together, this list offers eight degree-related effects. The outdegree-related
popularity and indegree-related activity effects are nearly collinear, and it was al-
ready mentioned that theory, not empirical fit, will have to decide which one is
a more meaningful representation. Some of the other effects also may be con-
founded, but this depends on the data set. The four effects described as degree-
related popularity and activity are more basic than the assortativity effects (cf. the
relation between main effects and interactions in linear regression). Because of
this, when testing any assortativity effects, one usually should control for three of
the degree-related popularity and activity effects.

Covariates: exogenous effects
For an actor variable V , there are three basic effects: the ego effect, measuring
whether actors with higher V values tend to nominate more friends and hence
have a higher outdegree (which also can be called covariate-related activity ef-
fect or sender effect); the alter effect, measuring whether actors with higher V
values will tend to be nominated by more others and hence have higher indegrees
(covariate-related popularity effect, receiver effect); and the similarity effect, mea-
suring whether ties tend to occur more often between actors with similar values on
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V (homophily effect). Tendencies to homophily constitute a fundamental charac-
teristic of many social relations, see McPherson, Smith-Lovin, and Cook (2001).
When the ego and alter effects are included, instead of the similarity effect one
could use the ego-alter interaction effect, which expresses that actors with higher
V values have a greater preference for other actors who likewise have higher V
values.

For categorical actor variables, the same V effect measures the tendency to
have ties between actors with exactly the same value of V .

For a dyadic covariate, i.e., a variable defined for pairs of actors, there is one
basic effect, expressing the extent to which a tie between two actors is more likely
when the dyadic covariate is larger.

Interactions
Like in other statistical models, interactions can be important to express theo-
retically interesting hypotheses. The diversity of functions that could be used as
effects makes it difficult to give general expressions for interactions. The ego-alter
interaction effect for an actor covariate, mentioned above, is one example.

Another example is given by de Federico (2004) as an interaction of a covari-
ate with reciprocity. In her analysis of a friendship network between exchange stu-
dents, she found a negative interaction between reciprocity and having the same
nationality. Having the same nationality has a positive main effect, reflecting that
it is easier to become friends with those coming from the same country. The nega-
tive interaction effect was unexpected, but can be explained by regarding recipro-
cation as a response to an initially unreciprocated tie, the latter being a unilateral
invitation to friendship. Since contacts between those with the same national-
ity are easier than between individuals from different nationalities, extending a
unilateral invitation to friendship is more remarkable (and perhaps more costly)
between individuals of different nationalities than between those of the same na-
tionality. Therefore it will be noticed and appreciated, and hence reciprocated,
with a higher probability. Thus, the rarity of cross-national friendships leads to a
stronger tendency to reciprocation in cross-national than same-nationality friend-
ships.

As a further class of examples, note that in the actor-based framework it may
be natural to hypothesize that the strength of certain effects depends on attributes
of the focal actor. For example, girls might have a greater tendency toward transi-
tive closure than boys. This can be modeled by the interaction of the ego effect of
the attribute and the transitive triplets, or transitive ties effect.

Other interactions (and still other effects) are discussed in Snijders et al. (2008).
As the selection presented here already illustrates, the portfolio of possible effects
in this modeling approach is very extensive, naturally reflecting the multitude of
possibilities by which networks can evolve over time. Therefore, the selection
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of meaningful effects for the analysis of any given data set is vital. This will be
discussed now.

3. Issues arising in statistical modeling

When employing these models, important practical issues are the question how to
specify the model – boiling down mainly to the choice of the terms in the objective
function – and how to interpret the results. This is treated in the current section.

3.1. Data requirements

To apply this model, the assumptions should be plausible in an approximate sense,
and the data should contain enough information. Although rules of thumb always
must be taken with many grains of salt, we first give some numbers to indicate the
sizes of data sets which might be well treated by this model. These rules of thumb
are based on practical experience.

The amount of information depends on the number of actors, the number of
observation moments (‘panel waves’), and the total number of changes between
consecutive observations. The number of observation moments should be at least
2, and is usually much less than 10. There are no objections in principle against
analyzing a larger number of time points, but then one should check the assump-
tion that the parameters in the objective function are constant over time, or that
the trends in these parameters are well represented by their interactions with time
variables (see point 10 below).

If one has more than two observation points, then in practice one may wish to
start by analyzing the transitions between each consecutive pair of observations
(provided these provide enough information for good estimation – see below). For
each parameter one then can present the trend in estimated parameter values, and
depending on this one can make an analysis of a larger stretch of observations if
the parameters appear approximately constant, or do the same while including for
some of the parameters an interaction with a time variable.

The number of actors will usually be larger than 20 – but if the data contain
many waves, a smaller number of actors could be acceptable. The number of ac-
tors will usually not be more than a few hundred, because the implicit assumption
that each actor is a potential network partner for any other actor might be implau-
sible for networks with so many actors that not all actors are aware of each others’
existence.

The total number of changes between consecutive observations should be large
enough, because these changes provide the information for estimating the param-
eters. A total of 40 changes (cumulated over all successive panel waves) is on
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the low side. More changes will give more information and, thereby, allow more
complicated models to be fitted. Between any pair of consecutive waves, the num-
ber of changes should not be too high, because this would call into question the
assumption that the waves are consecutive observations of a gradually changing
network; or, if they were, the consecutive observations would be too far apart.

This implies that, when designing the study, the researcher has to have a rea-
sonable estimate of how much change to expect. For instance, if one is inter-
ested in the development of the friendship network of a group of initially mutual
strangers (e.g., university freshmen), it may be good to plan the observation mo-
ments to be separated by only a few weeks, and to enlarge the period between
observations after a couple of months. On the other hand, if one studies inter-firm
network dynamics, given the time delays involved for firms in the planning and
executing of their ties to other firms, it may be enough to collect data once every
year, or even less frequently.

To express quantitatively whether the data collection points are not too far
apart, one may use the Jaccard (1900) index (also see Batagelj and Bren, 1995),
applied to tie variables. This measures the amount of change between two waves
by

N11

N11 +N01 +N10

, (2)

where N11 is the number of ties present at both waves, N01 is the number of ties
newly created, and N10 is the number of ties terminated. Experience has shown
that Jaccard values between consecutive waves should preferably be higher than
.3, and – unless the first wave has a much lower density than the second – values
less than .2 would lead to doubts about the assumption that the change process is
gradual, compared to the observation frequency. If the network is in a period of
growth and the second network has many more ties than the first, one may look
instead at the proportion, among the ties present at a given observation, of ties
that have remained in existence at the next observation (N11/(N10 + N11) in the
preceding notation). Proportions higher than .6 are preferable, between .3 and .6
would be low but may still be acceptable. If the data collection was such that
values of ties (ranging from weak to strong) were collected, then these numbers
may be used as rough rules of thumb and give some guidance for the decision
where to dichotomize the tie values – although, of course, substantive concerns
related to the interpretation of the results have primacy for such decisions.

The methods require in principle that network data are complete. However, it
is allowed that some of the actors enter the network after the start, or leave before
the end of the panel waves (Huisman and Snijders, 2003), and a limited amount
of missing data can be accommodated (Huisman and Steglich, 2008). Another
option to represent that some actors are not yet, or no more, present in the net-
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work, is to specify that certain ties cannot exist (‘structural zeros’) or that some
ties are prescribed (‘structural ones’), see Snijders et al. (2008). The use of struc-
tural zeros allows, e.g., to combine several small networks into one structure (with
structural zeros forbidding ties between different networks), allowing to analyze
multiple independent networks that on themselves would not yield enough in-
formation for estimating parameters, under the extra assumption that all network
follow dynamics with the same parameter values in the objective function.

3.2. Testing and model selection

It turns out (supported by computer simulations) that the distributions of the esti-
mates of the parameters βk in the objective function (1), representing the impor-
tance of the various terms mentioned in Section 2.3, are approximately normally
distributed. Therefore these parameters can be tested by referring the t-ratio, de-
fined as parameter estimate divided by standard error, to a standard normal distri-
bution.

For actor-based models for network dynamics, information-theoretic model
selection criteria have not yet generally been developed, although Koskinen (2004)
presents some first steps for such an approach. Currently the best possibility is
to use ad hoc stepwise procedures, combining forward steps (where effects are
added to the model) with backward steps (where effects are deleted). The steps
can be based on significance test for the various effects that may be included in the
model. Guidelines for such procedures are the following. We prefer not to give
a recipe, but rather a list of considerations that a researcher might have in mind
when constructing a strategy for model selection.

1. Like in all statistical models, exclusion of one effect may mask the existence
of another effect, so that pure forward selection may lead to overlooking
some effects, and it is advisable to start with a model including all effects
that are expected to be strong.

2. Fitting complicated models may be time-consuming and lead to instability
of the algorithm, and a resulting failure to obtain good estimates. Therefore,
forward selection is technically easier than backward selection, which is
unfortunately at variance with the preceding remark.

3. The estimation algorithm (Snijders, 2001) is iterative, and the initial value
can determine whether or not the algorithm converges. For relatively simple
models, a simple standard initial value usually works fine. For complicated
models, however, the algorithm may converge more easily if started from
an initial value obtained as the estimate for a somewhat simpler model. Es-
timates obtained from a more complicated model by simply omitting the
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deleted effects sometimes do not provide good starting values. Therefore,
forward selection steps often work better from the algorithmic point of view
than backward steps. This implies that, to improve the performance of the
algorithm, it is advisable to retain copies of the parameter values obtained
from good model fits, for use as possible initial values later on.

4. Network statistics can be highly correlated just because of their definition.
This also implies that parameter estimates can be rather strongly correlated,
and high parameter correlations do not necessarily imply that some of the
effects should be dropped. For example, the parameter for the outdegree
effect often is highly correlated with various other structural parameters.
This correlation tells us that there is a trade-off between these parameters
and will lead to increased standard errors of the parameter for the outdegree
effect, but it is not a reason for dropping this effect from the model.

5. Parameters can be tested by a so-called score-type test without estimating
them, as explained in Schweinberger (2008). Since estimating many pa-
rameters can make the algorithm instable, and in forward selection steps it
may be necessary to have tests available for several effects to choose the
most important one to include, the score-type tests can be very helpful in
model selection. In this procedure, a model (null hypothesis) including sig-
nificant and/or theoretically relevant parameters is tested against a model
(alternative hypothesis) extended by one or several parameters one is also
interested in. Under the null hypothesis, those parameters are zero. The
procedure yields a test statistic with a chi-squared null distribution, along
with standard normal test statistics for each separate parameter. The param-
eters for which a significant test result was found, then may be added to the
model for a next estimation round.

6. It is important to let the model selection be guided by theory, subject-matter
knowledge, and common sense. Often, however, theory and prior know-
ledge are stronger with respect to effects of covariates – e.g., homophily
effects – than with respect to structure. Since a satisfactory fit is important
for obtaining generalizable results, the structural side of model selection
will of necessity often be more of an inductive nature than the selection of
covariate effects. The newness of this method implies that we still need
to accumulate more experience as to what is a ‘satisfactory’ fit, and how
complicated models should be in practice.

7. Among the structural effects, the outdegree and reciprocity effect should be
included by default. In almost all longitudinal social network data sets, there
also is an important tendency toward transitivity (Davis 1970). This should

18



be modeled by one, or several, of the transitivity-related effects described
above.

8. Often, there are some covariate effects which are predicted by theory; these
may be control effects or effects occurring in hypotheses. It is good prac-
tice to include control effects from the start. Non-significant control effects
might be dropped provisionally and then tested again as a check in the pre-
sumed final model; but one might also retain control effects independent of
their statistical significance. We do not think there are unequivocal rules
whether or not to include from the start the effects representing the main
hypotheses in a given study.

9. The degree-based effects (popularity, activity, assortativity) can be impor-
tant structural alternatives for actor covariate effects, and can be important
network-level alternatives for the triad-level effects. It is advisable, at some
moment during the model selection process, to check these effects; note that
the square-root specification usually works best.

10. If the data have three or more waves and the model does not include time-
changing variables, then the assumption is made that the time dynamics is
homogeneous, which will lead to smooth trajectories of the main statistics
from wave to wave. It is good as a first general check to consider how aver-
age degree develops over the waves, and if this development does not follow
a rather smooth curve (allowing for random disturbances), to include time-
varying variables that can represent this development. Another possibility
is to analyze consecutive pairs of waves first, which will show the extent of
inhomogeneity in the process (cf. the example in Snijders, 2005).

11. The model assumes that the ‘rules for network change’ are the same for
all actors, except for differences implied by covariates or network position.
This leaves only moderate room for outlying actors, such as are indicated
by relatively very large outdegrees or indegrees. Very high or very low
outdegrees or indegrees should be ‘explainable’ from the model specifica-
tion; if they are only explainable from earlier observations (‘path depen-
dence’), they will have a tendency to regress toward the mean. The model
specification may be able to explain outliers by covariates identifying ex-
ceptional actors, but also by degree-related endogenous effects such as the
self-reinforcing Matthew effect mentioned above. It is good as a first gen-
eral check to inspect the indegrees and outdegrees for outliers. If there are
strong outliers then it is advisable to seek for actor covariates which can help
to explain the outlying values, or to investigate the possibility that degree-
related effects, explainable or at least interpretable from a theoretical point
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of view, may be able to represent these outlying degrees. If these cannot
be found, then one solution is to use dummy variables for the actors con-
cerned, to represent their outlying behavior. Such an ad hoc model adapta-
tion, which may improve the fit dramatically, is better than the alternative of
working with a model with a large unmodeled heterogeneity. In case there
is a theoretical argument to expect certain outliers, these can be pointed out
by including a dummy variable, but of a different kind. In contrast to the
former type of outliers, the latter one is expected, so should be captured in
advance by a covariate. If one is not capable to make a difference between
the two types, one has to rely on the ad hoc model adaptation.

3.3. Example: friendship dynamics

By way of example, we analyze the evolution of a friendship network in a Dutch
school class. The data were collected between September 2003 and June 2004 as
part of a study reported in Knecht (2008). The 26 students were followed over
their first year at secondary school during which friendship networks as well as
other data were assessed at four time points at intervals of three months. There
were 17 girls and 9 boys in the class, aged 11-13 at the beginning of the school
year. Network data were assessed by asking students to indicate up to twelve
classmates which they considered good friends. The average number of nomi-
nated classmates ranged between 3.6 and 5.7 over the four waves, showing a mod-
erate increase over time. Jaccard coefficients for similarity of ties between waves
are between .4 and .5, which is somewhat low (reflecting fairly high turnover) but
not too low.

Some data were missing due to absence of pupils at the moment of data col-
lection. This was treated by ad-hoc model-based imputation using the procedure
explained in Huisman and Steglich (2008). One pupil left the classroom. Such
changes in network composition can also be treated by the methods of Huisman
and Snijders (2003), but this simple case was treated here by using structural ze-
ros: starting with the first observation moment where this pupil was not a member
of the classroom any more, all incoming and outgoing tie variables of this pupil
were fixed to zero and not allowed to change in the simulations.

Considering point 1 above, effects known to play a role in friendship dynam-
ics, such as basic structural effects and effects of basic covariates, are included in
the baseline model. From earlier research, it is known that friendship formation
tends to be reciprocal, shows tendencies towards network closure, and in this age
group is strongly segregated according to the sexes. The model includes, for each
of these tendencies, effects corresponding to these expectations. Structural effects
included are reciprocity; transitive triplets and transitive ties, measuring transitive
closure that is compatible with an informal local hierarchy in the friendship net-
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work; and the three-cycles effect measuring anti-hierarchical closure. Homophily
based on the sexes is included as the same sex effect. All variables are centered.
For example, the dummy variable for sex (boys = 1, girls = 0) has mean 0.346 (9
boys and 17 girls), which leads to the centered values vi = –0.346 for girls and vi

= 0.654 for boys.
As exogenous control variables, we include sender and receiver effects of sex,

and a dyadic covariate indicating friendship in primary school reflecting relation-
ship history. In addition, several degree-related endogenous effects are included
as control effects: in- and outdegree-related popularity, and outdegree-related ac-
tivity, explained above. Estimates for this model are given in Table 1 as Model 0.
All calculations were done using Siena version 3.2 (Snijders et al., 2008).

The parameters reported for the rate function in periods 1-3 are defined in the
simulation model as the expected frequencies, between successive waves, with
which actors get the opportunity to change a network tie. For these parameters no
p-values are given in the tables, as testing that they are zero is meaningless (if these
would be zero there would be no change at all). These estimated rate parameters
will be higher than the observed numbers of changes per actor, however, because
in the model an actor may get the opportunity to change a tie but choose not to
make any change, and because actors may add a tie during the simulations, and
withdraw the same tie before the next observation moment.

Table 1 about here
This analysis confirms, for this data set, several of the known properties of

friendship networks: there is a high degree of reciprocity, as seen in the signif-
icant reciprocity parameter; there is segregation according to the sexes, as seen
in the significant same sex parameter; there is an almost equally strong effect of
having been friends at primary school already, and there is evidence for transitive
closure, as seen in the significant effects of transitive triplets and transitive ties.
A direct comparison of the size of parameter estimates is possible, given that they
occur in the same linear combination in the objective function, but it should be
kept in mind that these are unstandardized coefficients. Other significant effects
are the negative 3-cycles parameter, which indicates that the tendencies toward
closure are not completely egalitarian (as one might have thought based on the
reciprocity parameter), but do show some evidence for local hierarchization in
the network. This also is suggested by the marginally significant negative effect
of the outdegree-related popularity which indicates that active pupils, i.e., those
who nominate particularly many friends, are less likely to be chosen as friends –
this could be a status effect negatively associated with nomination activity. Also
significant is the sender effect of sex (sex (M) ego), which in our coding of the
variable means that the boys tend to be more active in the classroom friendship
network than the girls.
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Rate parameters, finally, suggest that the amount of friendship change seems
to peak in the second period (perhaps due to a higher friendship turnover after
the Christmas break) and slow down towards the end of the school year. These
differences are small, however. The same descriptive conclusion can be drawn
also by inspecting the observed amounts of change, without needing to refer to a
statistical model.

In a subsequent model (Model 1 in Table 1), more parsimony is obtained by
eliminating the non-significant effects in a backward selection procedure. The sex
alter effect was retained in spite of its non-significance, because the three sex-
related effects belong together as a representation of sex-related friendship pref-
erences. One by one, the least significant of the insignificant effects were dropped
from the model. While doing so, score-type tests were made for the earlier omit-
ted parameters (now constrained to zero) to check whether the parameter does not
become significant upon dropping other effects from the model. This is possi-
ble in models with correlated effects like ours, but it did not occur for our data
set. Estimates of Model 1 give the same qualitative results as those of Model 0.
The parameters dropped due to insignificance were the outdegree-related activity
effect (suggesting that the value for ego of an individual friendship does not de-
pend on how many other friends the friend currently has) and the indegree-related
popularity effect (suggesting that receiving many friendship nominations is not a
self-reinforcing process).

3.4. Parameter interpretation

For the general understanding of the numerical values of the parameters, it may be
kept in mind that the parameters βk in the objective function are unstandardized
coefficients of the statistics of which the mathematical formulae are given in the
appendix.

The parameters in the objective function can be interpreted in two ways. In
the first place, by interpreting this function as the “attractiveness” of the network
for a given actor. For getting a feeling of what are small and large values, it may
be noted (see the interpretation in terms of myopic optimization in Snijders, 2001)
that the objective functions are used to compare how attractive various different
tie changes are, and for this purpose random disturbances are added to the values
of the objective function with standard deviations equal2 to 1.28.

The objective function is a weighted sum of effects sik(x); their mathematical
definitions are given in the appendix. In most cases the contribution of a single tie
variable xij is just a simple component of this formula.

For example, consider the actor variable sex, denoted as V , and originally

2More exactly, the value is
√
π2/6, the standard deviation of the Gumbel distribution.
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with values 1 for girls and 2 for boys. All variables are centered. The global
mean of this variable is 1.346 (9 boys and 17 girls), which leads to the centered
values vi = −0.346 for girls and vi = 0.654 for boys. For this variable the model
includes the ‘ego’ effect, the ‘alter’ effect, and the ‘same’ effect. Let us denote the
parameters by βe, βa, and βs. Then, using the formulae in the appendix, the joint
contribution of these V -related effects to the objective function is

βe

∑
j

xij vi + βa

∑
j

xij vj + βs

∑
j

xij I{vi = vj}

where I{vi = vj} = 1 if vi = vj , and 0 otherwise. This means that the contribu-
tion of the single tie xij to the objective function, considering only the sex-related
effects, is given by

βe vi + βa vj + βs I{vi = vj} = 0.35 vi + 0.10vj + 0.49 I{vi = vj}

Substituting the values -0.346 for females and 0.654 for males yields the following
table.

alter
ego F M

F 0.33 –0.06
M 0.19 0.78

This table shows that girls as well as boys prefer friendships with same-sex
alters, but for boys the difference is more pronounced than for girls.

A second interpretation is that when actor i has the opportunity to make a
change in her outgoing ties (where no change also is an option), and xa and xb are
two possible results of this change, then fi(xb, β)− fi(xa, β) is the log odds ratio
for choosing between these two alternatives – so that the ratio of the probability
of xb and xa as next states is

exp
(
fi(xb, β)− fi(xa, β)

)
=

exp
(
fi(xb, β)

)
exp

(
fi(xa, β)

) .
Note that, when the current state is x, the possibilities for xa and xb are x itself (no
change), or x with one extra outgoing tie from i, or x with one less outgoing tie
from i. Explanations about log odds ratios can be found in texts about logistic re-
gression and loglinear models, e.g., Agresti (2002). A further elaborated example
of this is given below in Section 4.2.
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4. More complicated models

This section treats two generalizations of the model sketched above.

4.1. Differential rates of change: the rate function

Depending on actor attributes or on positional characteristics such as indegree or
outdegree, actors might change their ties at differential frequencies. This can be
the case, e.g., in networks between organizations with clear differences in degrees,
where the outdegrees reflect the importance to the organizations of the network
under study, and the resources they devote to positioning themselves in it. The
average frequency at which actors get the opportunity to change their outgoing
ties then is called the rate function, depending on attributes and network position
of the actors.

Model 2 in Table 1 gives an example of such an analysis. It extends Model 1 by
adding an effect of sex on the rate function. The estimated negative effect indicates
that in the data set under study, boys change their network ties less frequently than
girls, but the difference is not significant (p = 0.13).

To interpret the parameter values, one should know that a so-called exponen-
tial link function is used (Snijders, 2001; Snijders et al., 2008), which means that
the variables have an effect on the rate function after an exponential transforma-
tion, with a multiplicative effect. For example, the parameter estimate of –0.42 for
the effect of sex on the rate function implies that the estimated rate function is the
base rate multiplied by exp(−0.42 vi). Recall that the values of the variable ‘sex’
are, centered, vi = −0.346 for females and vi = 0.654 for males. Thus, for period
1, for girls the expected number of opportunities for change is 9.69×exp(−0.42×
(−0.346)) = 11.2, and for boys it is 9.69 × exp(−0.42 × (0.654)) = 7.4. The
difference seems rather large but is not significant in view of the small sample
size.

4.2. Differences between creating and terminating ties: the endowment function

In the treatment given above, terminating a tie is just the opposite of creating
one. This is not always a good representation of reality. It is conceivable, for
example, that the loss when terminating a reciprocal tie is greater than the gain
in creating one; or that transitive closure works especially for the creation of new
ties, but hardly guards against termination of existing ties. This can be modeled by
having two components of the objective function: the evaluation function, which
considers only the network that will be the case as a result of the change to be
made; and the endowment function, which is a component that operates only for
the termination of ties and not for their creation. Everything discussed above about

24



the objective function concerned the evaluation function – in other words, in those
discussions and the example, the endowment function was nil. The endowment
function gives contributions to the objective function that do not play a role when
creating ties, but that are lost when dissolving ties.

Model 3 in Table 1 gives the results of an analysis that includes, in addi-
tion to the effects of Model 1, also an endowment effect related to reciprocity.
It was estimated as significant and positive, while the corresponding evaluation
function effect of reciprocity dropped in size and significance. To interpret this
result, jointly consider the reciprocity evaluation effect with parameter 0.71 and
the reciprocity endowment effect with parameter 1.42. The contribution of a tie
being reciprocated then is 0.71 for the creation of the tie and 0.71 + 1.42 = 2.13
against the termination of the tie. Thus, reciprocity here is more important against
terminating friendships – that is, for maintaining friendships – than for creating
friendships.

To elaborate this example, consider how the friendship choices of a girl to-
wards other girls depend on reciprocity. Suppose that actor i can change one of
her ties, while there are two girls j1 and j2, both of them choosing i as a friend,
and two others j3 and j4 not choosing i. In addition, suppose that currently i
chooses j1 and j3 as friends, but not the other two. Assume finally (artificially, for
the sake of explanation) that these four girls do not choose each other and further
also are isolated from i’s network so that other structural effects besides recipro-
city do not matter. Since the actor variable ‘sex’ has centered value vi = −0.346
for girls, the parameter estimates for Model 3 give as the total contribution of the
three sex-related effects for girl-girl ties 0.41 vi + 0.16 vj + 0.56 I{vi = vj} =
(0.41 + 0.16)× (−0.346) + 0.56 = 0.36. With the outdegree effect of –1.59, this
yields −1.59 + 0.36 = −1.23 as the basic contribution of a tie to the evaluation
function.

Option A: drop tie? Option B: add tie?

Option C: drop tie? Option D: add tie?

ego

i

j1 j2

j3 j4

Figure 2. Four options for actor i.

When girl i can change a tie variable, using this value of –1.23 for the combined
effect of outdegree and the three sex-related effects for a girl-girl tie, five of the
options for i are the following:
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(A): drop reciprocated friendship tie to j1 : –(–1.23) – 2.13 = – 0.90;
(B): reciprocate friendship tie from j2 : –1.23 + 0.71 = –0.52;
(C): drop non-reciprocated friendship tie to j3 : –(–1.23) = 1.23;
(D): initiate friendship tie to j4 : –1.23;
(E): do nothing: 0.0.
Since these are contributions to logarithms of probabilities, the proportionality
factors between the probabilities of these events must be calculated as the expo-
nential transformations of these values, which are, respectively, e−0.90 = 0.41,
0.59, 3.42, 0.29, and 1.

These are the relative probabilities of changes toward any given other girl.
One should note, however, that there may be different numbers of the four cases
(A-D) for a given girl, and the probability of severing any reciprocated tie, or of
creating any non-reciprocated tie, depends also on these numbers for the ‘ego’ girl
under consideration. Since the friendship network is sparse, with average degrees
between 3.6 and 5.7, the cases of type (D) will be most numerous. Consider, for
instance, a girl with 3 mutual girlfriends (A), who has 2 non-reciprocated friend-
ships to girls (C), 1 other girl who mentions her as a friend without reciprocation
(B), and 10 girls without a friendship either way (D). Suppose that in addition
she has no friendships with any of the 9 boys, and denote the option of estab-
lishing a friendship to a boy by (F). Retain the unrealistic simplifying assumption
that all her network members are mutually unrelated, also after adding one hypo-
thetical new friend, so that transitivity does not influence probabilities of change.
The baseline value of a tie from a girl to a boy is −1.59 + 0.41 × (−0.346) +
0.16 × 0.654 = −1.63, with exponential transform 0.20. Taking into account
the fact that the number of opportunities for options (A) to (F) are 3, 1, 2, 10,
1, and 9, the six proportionality factors have to be divided by the denominator
(3×0.41) + (1×0.59) + (2×3.42) + (10×0.29) + (1×1) + (9×0.20) = 14.36.
Thus, for this girl, the probabilities are:
(A): of dropping any of the three reciprocated friendship ties: (3× 0.41)/14.36 =
0.09;
(B): of reciprocating the incoming friendship tie: (1× 0.59)/14.36 = 0.04;
(C): of dropping one of the non-reciprocated friendship ties: (2× 3.42)/14.36 =
0.48;
(D): of initiating some new friendship tie to a girl: (10× 0.29)/14.36 = 0.20;
(E): of doing nothing: 0.07;
(F): and of extending a new friendship tie to a boy: (9× 0.20)/14.36 = 0.13.
Thus, in line with theories about reciprocation such as balance theory, the prob-
ability is slightly larger than 0.5 that the proportion of reciprocity in friendships
will be increased. There are many random influences, however, that would de-
crease reciprocity – but most of these are proposals of new ties which could be
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seen by the other party as an invitation toward future reciprocation.

5. Dynamics of networks and behavior

Social networks are so important also because they are relevant for behavior and
other actor-level outcomes: related actors may influence one another (e.g., Fried-
kin, 1998), and ties will be selected in part based on the similarity between ego and
potential relational partners (homophily, see McPherson, Smith-Lovin, and Cook,
2001). This means that not only is the network changing as a function of itself and
of the actor variables, but likewise the actor variables are changing as a function
of themselves and of the network. We use the term behavior as shorthand for en-
dogenously changing actor variables, although these could also refer to attitudes,
performance, etc.; there could be one or more of such variables. It is assumed here
that the behavior variables are ordinal discrete variables, with values 1, 2, etc., up
to some maximum value, for instance, several levels of delinquency, several levels
of smoking, etc. The dependence of the network dynamics on the total network-
behavior configuration will be also called the social selection process, while the
dependence of the behavior dynamics on the total network-behavior configura-
tion will be called the social influence process. Both social influence and social
selection can lead to similarity between tied actors, which is often observed. A
fundamental question then is whether this similarity is caused mainly by influence
or mainly by selection, as discussed by Ennett and Bauman (1994) for smoking
behavior and Haynie (2001) for delinquent behavior.

This combination of selection and influence can be modeled by an extension
of the actor-based model to a structure where the dependent variables consist not
only of the tie variables but also of the actors’ behavior variables, as specified in
Snijders, Steglich and Schweinberger (2007) and Steglich, Snijders and Pearson
(2009). Of course there usually will be, in addition, also exogenous actor and/or
dyadic variables in the role of independent variables.

The assumptions for the actor-based model for the dynamics of networks and
behavior are extensions of the assumptions for network dynamics. The extended
formulations are as follows, given without the background explanations which
were given above and which apply also for this case.

1. As above, the underlying time parameter is continuous.

2. The changing system consisting of network and behavior is the outcome of
a Markov process. Thus, the probabilities of change of the network as well
as those of the behavioral variables depend, at each moment, on the current
combination of network structure and behavior variables for all actors.
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3. At a given moment either one probabilistically selected actor may change a
tie, or one actor may change his/her behavior by going one unit up or down
(recall that the behavior variables are assumed to be integer-valued). This
excludes coordination between changes in the network and in the behavior.

The fact that changes in behavior are assumed to be by one unit in a single
time point imply that a ‘natural’ application of the model requires that the
total number of ordinal scale values is not too large; in practice applications
mostly have had two to five, and sometimes up to ten, scale values.

4. The actors control their outgoing ties as well as their own behavior. This
is meant not in the sense of conscious control, but in the sense that the
explanation of the actor’s outgoing ties and behavior is based in the actor
and the structural and other limitations provided by the actor and his/her
social context.

5. The moments were actors get the opportunity for a tie change or a behavior
change are modeled as distinct processes, so these are governed by a priori
unrelated parameters.

6. There are distinct processes also for tie changes and behavior changes, con-
ditional on the possibility to make the respective type of change, so these
are governed by a priori unrelated parameters.

The changes in behavior depend on an objective function similar to the objective
function for network changes. However, this function will be different because
it needs to represent primarily the actor’s behavior rather than his/her network
position, and because choices of behavior changes may be framed differently from
choices of tie changes, depending on different goals and restrictions.

The model assumptions imply that the dependent behavior variable will change
endogenously during the simulations, representing the endogenous social influ-
ence process. Since the network and the behavior variables both influence the
dynamics of the network ties and of the actors’ behavior, the sequence of changes
in the network and in the behavior, reacting on each other, generates a mutual
dependence between the network dynamics and the behavior dynamics.

5.1. The objective function for behavior

We only consider models where increasing the behavior variable has just the op-
posite effect of decreasing it, and the objective function for behavior is the same
as the evaluation function (a separate endowment function is not considered). The
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objective, or evaluation, function can be represented, analogously to (1), as

fZ
i (β, x, z) =

∑
k

βZ
k s

Z
ki(x, z) , (3)

where sZ
ki(x, z) are functions depending on the behavior of the focal actor i, but

also on the behavior of his network partners, his network position, etc. The
strength of the effects of these functions on behavior choices are represented by
the parameters βZ

k . The superscript Z is used to distinguish the effects and param-
eters for behavior change from those for network change (which could be given
the superscript X). The main possible terms of the evaluation function are as
follows.

Basic shape effects
We first discuss basic tendencies determining behavior change that are indepen-
dent of actor attributes and network position. A baseline definition for the eval-
uation function will be a curve, depending on the actor’s own behavior zi, that
can be loosely interpreted as the relative preference for the specific value zi of the
behavior. The term ‘prefer’ should be taken with much reservation, as a shorthand
‘as-if’ term – we could just as well see this, e.g., as a matter of constraints. When
the behavior variable is dichotomous, then a linear function suffices, as each func-
tion of two values can be represented by a linear function; but for three or more
possible values a unimodal ‘preference’ function will often be reasonable, so that
a specification will be required that allows the function to be curvilinear. Thus,
in Figure 3, a simple evaluation function is drawn for a behavior variable with
range 1–4, which is maximal at the value z = 2, indicating that when actors have
a possibility for change they will be drawn toward the value z = 2: if their current
value for Z is higher than 2 then the probability is higher that they will decrease
their value, if the current value is lower than 2 then the probability is higher that
they will increase their value of Z. To represent this mathematically, a quadratic
function can be used. The linear and quadratic coefficients in this function are
called the linear shape effect and the quadratic shape effect. Note that the latter is
superfluous for a dichotomous behavior variable.
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Figure 3. Basic shape of the evaluation function for behavior;
in this case, with the maximum at z = 2.

The quadratic shape effect can also be called the effect of Z on itself, and
is a kind of feedback effect. When this parameter is negative there is negative
feedback, or a self-correcting mechanism: when the value of the actor’s behav-
ior increases, the further push toward higher values of the behavior will become
smaller and when it decreases, the further push toward lower values of the behav-
ior will become smaller. Conversely, when the coefficient of the quadratic term
is positive, the feedback will be positive, so that changes in the behavior are self-
reinforcing. This can be an indication of addictive behavior. Negative values, or
values not significantly different from 0, are more often seen than positive values.

When the coefficient for the shape effect is denoted βZ
1 and the coefficient for

the quadratic shape effect is βZ
2 , then the total contribution of these two effects

is βZ
1 zi + βZ

2 z
2
i . With a negative coefficient βZ

2 , this is a unimodal preference
function. The maximum then is attained for zi = −2 βZ

1 /β
Z
2 , or more precisely,

the integer value within the prescribed range that is closest to this number. (Of
course additional effects will lead to a different picture; but if the additional effects
are linear as a function of zi in the permitted range – which can be checked from
the formulae in the appendix, and which is not the case for all similarity effects
as defined below! –, this will change the location of the maximum but not the
unimodal shape of the function.)

Influence and position-dependent effects
The tendencies expressed in the shape parameters affect every actor in the same
way, irrespective of his/her characteristics or network position. To capture social
network effects, additional terms in the behavior evaluation function are needed,
differentiating between actors on the basis of their network position and the be-
havior of the others to whom they are tied.

The actor-based model can represent social influence, i.e., influence from al-
ters’ behavior on ego’s behavior, in various ways, because there are several dif-
ferent ways to measure and aggregate the influences from different alters. Three
different representations are as follows.
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1. The average similarity effect, expressing the preference of actors to be sim-
ilar in behavior to their alters, in such a way that the total influence of the
alters is the same regardless of the number of alters (i.e., ego’s outdegree).

2. The total similarity effect, expressing the preference of actors to be similar
in behavior to their alters, in such a way that the total influence of the alters
is proportional to the number of alters.

3. The average alter effect, expressing that actors whose alters have a higher
average value of the behavior, also have themselves a stronger tendency
toward high values on the behavior.

The choice between these three will be made on theoretical grounds and/or on the
basis of statistical significance.

In addition to this type of social influence, network position itself could also
have an effect on the dynamics of the behavior. Indeed, the actor’s outdegree or
indegree may be terms in the objective function; in the case of positive param-
eters, this expresses that those who are more active (higher outdegree) or more
popular (higher indegree) have a stronger tendency to display higher values of the
behavior.

Effects of other actor variables
For each actor-dependent covariate as well as for each of the other dependent
behavior variables (if any), a main effect on the behavior can be included, repre-
senting the influence of this actor variable on changes in the behavior. In addition,
it is possible that such a variable will moderate the influence effect, leading to an
interaction between the variable and the influence effect.

5.2. Specification of models for dynamics of networks and behavior

There is a natural advantage of the network part of the model over the behavior
part in terms of the amount of information available on the two dimensions. For n
actors, there are nmeasurements of the behavior variable, while there are as many
as n(n− 1) measurements of network tie variables. In statistical terms, there will
be less power to detect determinants of behavioral evolution than there is to detect
determinants of network evolution. Therefore, backward model selection is not
a good route to follow for specifying a model of network-behavior co-evolution:
weak and unsystematic effects on behavioral change, when estimated, subtract
from the ability to identify the stronger and more systematically occurring ones.
Instead of starting with an extensive model, it is better to start with a small one,
and proceed by way of forward model selection to arrive at a good model.
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Since it is more difficult to estimate a model of network-behavior co-evolution
than to estimate a model of only network evolution, it makes sense first to estimate
a good model for the dynamics of only the network according to the approach of
the preceding section, and to use this as a baseline for the network part of the
co-evolution model.

It has become clear above that there are several specifications of the social
selection part, such as Z-similarity and Z - ego × alter; like for any actor vari-
able, also for behavior variable Z the ego and alter effects may be relevant. The
similarity effect in the network dynamics part is directly interpretable, whereas
the Z - ego × alter interaction effect needs also the ego and alter effects to be
well interpretable. For the social influence part likewise there are several possible
specifications, such as average similarity, total similarity, and average alter.

A difficulty is that we often have no clear theoretical clue as to which of these
three specifications is better in a particular case; the alternative specifications are
defined by effects that may be highly mutually correlated and therefore are not
readily estimated jointly in the same model; and the power of detecting selection
and influence will depend on the specification chosen. If we do have prior infor-
mation as to the best specification, then it is preferable to work with this spec-
ification. If we do not have such information, and we wish to avoid the chance
capitalization inherent in using the ‘most significant’ effect without taking into ac-
count that it was chosen exactly because it was the most significant, then we could
proceed along something like the following lines. An example of this approach is
given in the next subsection. This procedure uses score-type tests (Schweinber-
ger, 2008) for several parameters simultaneously, which are chi-squared tests with
number of degrees of freedom equal to the number of tested effects, and which
have the advantage that parameters can be tested without estimating them.

1. Specify and estimate a baseline model ‘BM’ for network-behavior co-evolution
in which the network and behavior dynamics are independent; that is, the
model for network dynamics contains no effects dependent on the behavior
variable, and vice versa.

2. Choose a number of candidate social selection effects ‘SEL’ and a number
of candidate social influence effects ‘INF’ on theoretical grounds, without
considering the data.

3. Test the effects in the sets SEL and INF by score-type tests in the baseline
model BM. This gives the statistical evidence about the existence of influ-
ence and selection, not controlling each effect for the other.

4. Select the effects that are individually most significant in either set, and
denote these effects by SEL1 and INF1.
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(In this formulation, the effects are selected based on their significance when
hypothesized to be added to the baseline model. Another possibility is to
select the effects based on the following two models.)

5. To test influence effects while controlling for selection, estimate the model
BM + SEL1 (i.e., the baseline model extended with the most significant
selection effect) and within this model test all of the effects INF jointly by
a score-type test.

6. To test selection effects while controlling for influence, estimate the model
BM + INF1 and test all of the effects SEL jointly by a score-type test.

7. Finally, to estimate a model with influence and selection, estimate the model
BM + SEL1 + INF1.

8. It often will be sensible to conduct some further checks to guard against
the danger of overlooking important effects. This can be done again with
score-type tests. Candidate effects to be checked include the indegree and
outdegree effects on the behavior variable.

5.3. Example: dynamics of friendship and delinquency

Substantively, what we address is again the dynamics of the friendship network in
the school class of 11-13 year old pupils investigated above, now co-evolving with
their delinquency (Knecht, 2008). This variable is defined as a rounded average
over four types of minor delinquency (stealing, vandalism, graffiti, and fighting),
measured in each of the four waves of data collection. The five-point scale ranged
from ‘never’ to ‘more than 10 times’, and the distribution is highly skewed, most
students reporting no delinquency. In a range of 1–5, the mode was 1 at all four
waves, the average rose over time from 1.4 to 2.0, and the value 5 was never
observed.

The question addressed is, whether the data provide evidence for network in-
fluence processes playing a role in the spread of delinquency through the group
defined by the classroom. Analyses were carried out by Siena version 3.17 (Snij-
ders et al. 2008). Reported results all were taken from runs in which all ‘t-ratios
for convergence’ (see the Siena manual) were less than 0.1 in absolute value, in-
dicating good convergence of the algorithm.

For the model selection we follow the steps laid out in the preceding section.
The baseline model is the model which for the friendship dynamics is model 3
in Table 1, and for the delinquency dynamics includes the linear and quadratic
shape effects and the effect of sex (as a control variable). The effects potentially
modelling social selection based on delinquency (the set SEL in the preceding
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section) are delinquency ego, delinquency alter, delinquency similarity, and delin-
quency ego × alter. Delinquency ego and delinquency alter are included here as
control variables for delinquency ego × delinquency alter. The effects potentially
modelling social influence with respect to delinquency (the set INF) are average
similarity, total similarity, and average delinquency alter. Score tests for the se-
lection and influence effects tested with the baseline model as the null hypothesis
yielded the following p-values. For both parts of the model, first the results of the
overall score test (of SEL and INFL, respectively) are given, and then the results
for the separate degrees of freedom of which this test is composed.

Effect p
Friendship dynamics
overall test for social selection (4 d.f.) < 0.001
delinquency ego < 0.001
delinquency alter 0.32
delinquency similarity < 0.001
delinquency ego × delinquency alter 0.02
Delinquency dynamics
overall test for social influence (3 d.f.) 0.04
average similarity 0.03
total similarity 0.12
average delinquency alter 0.48

The overall tests show evidence for social selection (p < .001) as well as for
social influence (p < .05), when these are not being controlled for each other.
The separate tests suggest that strongest effects are delinquency similarity for the
network dynamics and average similarity for the behavior dynamics. These are
the effects denoted above as SEL1 and INF1, respectively.

To test selection while controlling for influence, the baseline model was ex-
tended with influence operationalized as average similarity, and the four selection
effects (delinquency ego, delinquency alter, delinquency similarity, and delin-
quency ego × delinquency alter) were jointly tested by a score-type test. The
test result was highly significant, p < 0.001.

To test influence while controlling for selection, the baseline model was ex-
tended with selection operationalized as delinquency similarity, and the three in-
fluence effects (average similarity, total similarity, and average delinquency alter)
were jointly tested by a score-type test. This led to p = 0.04. Thus, for this
classroom there is clear evidence (p < 0.001) for delinquency-based friendship
selection, and evidence (p = 0.04) for influence from pupils on the delinquent
behavior of their friends.
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To estimate a model incorporating selection and influence, the baseline model
was extended with delinquency similarity for the network dynamics and average
similarity for the behavior dynamics. This model is estimated and presented in
Table 2. The delinquency ego and delinquency alter effects were also tested for
inclusion in the network dynamics model, and the indegree and outdegree effects
were tested for inclusion in the behavior dynamics model, but none of these were
significant.

Table 2 about here

It can be concluded for this data set that there is evidence for delinquency-
based friendship selection, expressed most clearly by the delinquency similarity
measure; and for influence from pupils on the delinquent behavior of their friends,
expressed best by the average similarity measure. The delinquent behavior does
not seem to be influenced by sex. The model for network dynamics yields es-
timates that are quite similar to those for the model without the simultaneous
delinquency dynamics, except that the reciprocity effect has shifted more strongly
towards the endowment effect.

6. Cross-sectional and longitudinal modeling

For a further understanding of this actor-based model, it may be helpful to reflect
about equilibrium and out-of-equilibrium social systems. Equilibrium is under-
stood here not as a fixed state but as dynamic equilibrium, where changes con-
tinue but may be regarded as stochastic fluctuations without a systematic trend.
This can be combined with discussing the relation between cross-sectional and
longitudinal statistical modeling of social networks.

For cross-sectional modeling the exponential random graph model (‘ERGM’),
or p∗ model, is similar to the model of this paper in its statistical approach to
network structure (cf. Wasserman and Pattison 1996, Robins et al., 2007, and
the references cited there). A telling characteristic of the ERGM is that the only
feasible way to obtain random draws from such a probability distribution is to
simulate a process longitudinally until it may be assumed to have reached dynamic
equilibrium, and then take samples from the process (Snijders, 2002). Thus, the
ERGM can be best understood as a model of a process in equilibrium. If we would
have longitudinal data from a process in dynamic equilibrium, then modeling them
by the approach of this paper would give roughly the same results as modeling its
cross-sections by an ERGM. It would not be exactly the same because the ERGM
is not actor-based; a tie-based version of our longitudinal model (Snijders, 2006)
is possible, which does correspond exactly to the ERGM. On the contrary, if we
would have cross-sectional data which may be assumed to have been observed
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far from an equilibrium situation, then it is difficult to see what would be the
precise meaning of results of an ERGM analysis, based as this is on an implicit
equilibrium assumption.

If one has observed a longitudinal network data set of which the consecutive
cross-sections have similar descriptive properties – no discernible trends or impor-
tant fluctuations in average degree, in proportion of reciprocated ties, in proportion
of transitive closure among all two-paths, etc. –, then it would be a mistake to infer
that the development is not subject to structural network tendencies just because
the descriptive network indices are stationary. For example, if the network shows
a persisting high extent of transitive closure, in a process which is dynamic in the
sense that quite some ties are dissolved while other new ties appear, then it must be
concluded that the dynamics of the network contains an aspect which sustains the
observed extent of transitive closure against the random influences which, without
this aspect, would make the transitive closure tend to attenuate and eventually to
disappear.

The longitudinal actor-based model is more general than the ERGM in that it
does not require that the observed process be in equilibrium. Given a sequence
of consecutively observed networks, if one were to make an analysis of the first
one by an ERGM and of the further development by an actor-based model, then
in theory it is possible to obtain opposite results for these two analyses, and this
would point toward a non-equilibrium situation. For example, it would be possible
that the first observed network shows no transitive closure at all, but the dynamics
does show a transitivity effect; then over time the extent of transitive closure would
increase, perhaps to reach some dynamic equilibrium later on. Conversely, it is
possible that there is a strong transitivity effect at the first observation but no
transitivity in the longitudinal model, which means that the observed extent of
transitive closure in repeated cross-sectional analyses would eventually peter out
to nil.

The advantage of longitudinal over cross-sectional modeling is that the pa-
rameter estimates provide a model for the rules governing the dynamic change
in the network, which often are better reflections of social rules and regularities
than what can be derived from a single cross-sectional observation. This also is
an argument for not modeling the first observation but using it only as an initial
condition for the network dynamics (as mentioned at the end of Section 2.1). In
many situations the first observation cannot be regarded as coming from a process
in equilibrium, and then it is unclear what the first observation by itself can tell us
about social rules and regularities.
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7. Discussion

This paper has given a tutorial introduction in the use of actor-based models for
analyzing the dynamics of directed networks – expressed by the usual format of
a directed graph – and of the joint interdependent dynamics of networks and be-
havior – where ‘behavior’ is an actor variable which may refer to behavior, atti-
tudes, performance, etc., measured as an ordinal discrete variable. The purpose of
these models is to be used to test hypotheses concerning network dynamics and
represent the strength of various tendencies driving the dynamics by estimated
parameters. To be useful in this way for statistical inference, the models must
be able to give a good representation of the dependencies between network ties,
and between network positions and behavior of the actors. The models also have
to contain parameters that can express theoretical considerations about tendencies
driving network change. Further, the models must be flexible enough to represent
several different explanations of change – which may be competing but also po-
tentially complementary – and test these against each other, or controlling for each
other. These goals are accomplished by the stochastic actor-driven model in which
the central object of modeling is the objective function (1), (3), analogous to the
linear predictor in generalized linear modeling (e.g. Long, 1997).

These models can be estimated by software called Siena (‘Simulation Inves-
tigation for Empirical Network Analysis’), of which the manual is Snijders et
al. (2008). Program and documentation can be downloaded free from the Siena
web-page, http://www.stats.ox.ac.uk/siena/. Some examples of applications of this
model are Van de Bunt, Van Duijn, and Snijders (1999) and Burk, Steglich, and
Snijders (2007). Further applications of these models are presented in some of the
papers in this special issue.

These models are relatively new, and more complicated than many other sta-
tistical models to which social scientists are used. Applications are starting to be
published, but more experience is needed to get a better understanding of their
applicability and the interpretation of the results. Especially important will be the
further development of ways to assess the goodness of fit of these models and to
diagnose what in the data-model combination may be mainly responsible for a
possible lack of fit. Another issue is the assessment of the robustness of results
with respect to misspecified models, and the development of other models for
network dynamics which may serve as potential alternatives for cases where the
models presented here do not fit to a satisfactory degree. A case in point would be
the development of models permitting a more elaborate temporal dependence than
Markovian dependence. All this should lead to better knowledge about how to fit
longitudinal models to network data, and hence to more reliable results. In this
tutorial we have tried to represent the current knowledge about the specification
of longitudinal network models in a concise but more or less complete way, but
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we hope that this knowledge will expand rapidly.
Various extensions of the model are the topic of recent and current research.

Models for the dynamics of non-directed networks, e.g., alliance networks, have
been developed and were applied in Checkley and Steglich (2007) and van de
Bunt and Groenewegen (2007). Extensions to valued ties are in preparation. Other
estimation procedures have been proposed: Bayesian inference by Koskinen and
Snijders (2007) and Schweinberger (2007), Maximum Likelihood estimation by
Snijders, Koskinen and Schweinberger (2009). All these developments will be
tracked at the Siena website mentioned above.

Appendix

This appendix contains some formulae to support the understanding of the verbal
descriptions in the paper.

Objective function

When actor i has the opportunity to make a change, he/she can choose between
some set C of possible new states of the network. Normally this will be set consist-
ing of the current network and all other networks where one outgoing tie variable
of i is changed. The probability of going to some new state x in this set is given
by

exp
(
fi(β, x)

)∑
x′∈C exp

(
fi(β, x′)

) . (4)

In words: the probability that an actor makes a specific change is proportional to
the exponential transformation of the objective function of the new network, that
would be obtained as the consequence of making this change. Similarly, when
actor i can make a change in the behavior variable z and the current value is z0,
then the possible new states are z0 − 1, z0, and z0 + 1 (unless the first or last of
these three falls outside the range of the behavior variable). Denoting this allowed
set also by C, the probability of going to some new state z in this set is given by

exp
(
fZ

i (βZ , x, z)
)∑

z′∈C exp
(
fZ

i (β, x, z′)
) . (5)

These are the same formulae as used in multinomial logistic regression.
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Effects

Some formulae for effects sik(x) are as follows. Replacing an index by a + sign
denotes summation over this index. Exogenous actor covariates are denoted by vi

and dyadic covariates by wij .

reciprocity
∑

j

xij xji (6)

transitive triplets
∑
j,h

xih xij xjh (7)

transitive ties
∑

h

xih max
j

(xij xjh) (8)

three-cycles
∑
j,h

xij xjh xhi (9)

balance
1

n− 2

n∑
j=1

xij

n∑
h=1
h6=i,j

(b0− | xih − xjh |) , (10)

where b0 is the mean of | xih − xjh |;

indegree popularity (sqrt)
∑

j

xij
√
x+j (11)

outdegree popularity (sqrt)
∑

j

xij
√
xj+ (12)

indegree activity (sqrt)
√
x+i xi+ (13)

outdegree activity (sqrt) x1.5
i+ (14)

out-outdegree assortativity (sqrt)
∑

j

xij
√
xi+ xj+ (15)

(other assortativity effects similar)

V - ego
∑

j

xij vi (16)

V - alter
∑

j

xij vj (17)

V - similarity
∑

j

xij (simij − sim) , (18)
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where simij =
(
1− |vi − vj|/∆

)
, with ∆ = maxij |vi − vj| ;

same V
∑

j

xij I{vi = vj} , (19)

where I{vi = vj} = 1 if vi = vj , and 0 otherwise;

V - ego × alter
∑

j

xij vi vj (20)

dyadic covariate W
∑

j

xij wij (21)

dyadic cov. W × reciprocity
∑

j

xij xjiwij (22)

actor cov. V × transitive triplets vi

∑
j,h

xij xjh xih . (23)

Some formulae for behavior effects sZ
ik(x, z) are the following.

linear shape zi (24)
quadratic shape z2

i (25)
outdegree zi xi+ (26)
indegree zi x+i (27)

average similarity x−1
i+

∑
j

xij(sim
z
ij − simz) , (28)

where simz
ij =

(
1− |zi − zj|/∆Z

)
with ∆Z = maxij |zi − zj|

total similarity
∑

j

xij(sim
z
ij − simz) (29)

average alter zi

(∑
j

xij zj

)
/
(∑

j

xij

)
(30)

main effect covariate V zi vi . (31)
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Table 2: Estimates of model for co-evolution of friendship and delinquency, with
standard errors and two-sided p-values.

effect estimate s.e. p
network objective function

outdegree −1.91 0.41 < 0.001
reciprocity (evaluation) 0.25 0.44 0.57
reciprocity (endowment) 2.10 0.81 0.010
transitive triplets 0.22 0.03 < 0.001
transitive ties 0.67 0.23 0.004
3-cycles −0.27 0.11 0.014
outdegree based popularity (sqrt) –0.52 0.25 0.034
sex (M) ego 0.48 0.16 0.002
sex (M) alter 0.19 0.16 0.23
same sex 0.61 0.15 < 0.001
primary school 0.46 0.18 0.010
delinquency similarity 3.22 1.66 0.053

network rate function
network rate period 1 9.94 2.12
network rate period 2 10.86 2.00
network rate period 3 9.39 1.49

delinquency linear 0.00 0.27 1.00
delinquency quadratic 0.12 0.16 0.48
sex (M) −0.19 0.42 0.66
average similarity 6.08 3.06 0.047

behavior rate function
delinquency rate period 1 1.50 0.70
delinquency rate period 2 3.50 2.48
delinquency rate period 3 2.64 1.39

The p-values are based on approximate normal distributions of the t-ratios
(estimate divided by standard error).


