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EXPLAINED VARIATION IN DYNAMIC NETWORK MODELS1

Tom A.B. SNIJDERS 2

résumé – Une mesure de la part de variation expliquée par les modèles dynamiques de réseau
On propose une mesure de la part de variation expliquée par un modèle stochastique de la dynamique
des réseaux sociaux complets. Cette mesure est fondée sur l’entropie de la distribution des choix
faits par les acteurs au cours du processus d’évolution du réseau. Elle a pour but d’aider à effectuer
une meilleure interprétation et à sélectionner une spécification appropriée dans l’application des
modèles statistiques s’appliquant aux données longitudinales concernant des relations.

mots clés – Réseau complet, Dynamique, Analyse longitudinale, Variation expliquée, Co-
efficient de Détermination, Entropie.

summary – A measure for explained variation is proposed for stochastic actor-driven models
for data on social networks. The measure is based on the entropy of the distribution of the choices
made by the actors during the network evolution process. This measure can be helpful in the
specification and interpretation of statistical models for longitudinal network data.

keywords – Complete network, Longitudinal study, Dynamics, Explained variation, Coef-
ficient of Determination, Entropy.

1. INTRODUCTION

Social networks are representations of relations in groups of individuals or other
social actors (e.g., [Degenne, Forsé, 1994; Wasserman and Faust, 1993]), and the
longitudinal study of social networks can yield important insights in the context-
dependent rules of individual behavior [Doreian, Stokman, 1997]. The present paper
focuses on entire, or complete, networks, which represent the collection of all ties
(according to some predefined criterion) between all members of a given group. The
complex patterns of dependencies between the corresponding tie variables preclude
the possibility of basing statistical modeling on straighforward independence as-
sumptions, and therefore statististical models for entire networks have to be quite
complex in order to be even slightly realistic.

Statistical models for longitudinal network data, collected at two or more dis-
crete moments in time, were proposed by Snijders and van Duijn [1997] and Snijders
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[2001]. These models are based on the assumption that the network dynamics con-
tinue – unobserved – in between the observation moments, and that this dynamics
is the result of choices made by the individual actors in the network. These choices,
in their turn, are modeled as expressing a combination of purposeful action and
random influences. Methods for parameter estimation in these models have been
developed based on the Method of Moments, implemented by stochastic approxi-
mation [Snijders 2001; Snijders et al., 2004].

For the interpretation of statistical models fitted in this way, it could be helpful
to have available a measure of explained variation, analogous in some way to the
familiar coefficient of determination, or explained variance, usually denoted by R2,
in linear regression analysis. In models more complicated than the linear regression
model, such measures do not have the compelling nature of R2, and for many models
several different measures of explained variation of been proposed – e.g., see Cameron
and Windmeijer [1997], Long [1997, Section 4.3], and Menard [2000]. This paper
proposed such a measure for the stochastic actor-driven model for network evolution.

The paper is structured as follows. The actor-driven model is described in Sec-
tion 2, and the proposed measure for explained variation is discussed in Section 3.
An empirical example is presented in Section 4, and the paper is concluded with a
brief discussion in Section 5.

2. STOCHASTIC ACTOR-DRIVEN MODELS FOR NETWORK DYNAMICS

We consider one binary relation on a set of n actors – who may be a group of
individual humans, or animals, companies, countries, etc. Actors will be arbitrarily
referred to by masculine pronouns. The relation can be represented equivalently by
a digraph or its square adjacency matrix. The time-dependent adjacency matrix
will be denoted X(t) = (Xij(t)), where i and j range from 1 to n, and t represents
time. The variable Xij(t) indicates whether at time t there is a tie from i to j
(value 1) or not (value 0), and the diagonal of the adjacency matrix is defined to
be 0, Xii(t) = 0 for all i. Although in practice there will be a strong dependence
between the two reciprocal tie variables Xij(t) and Xji(t), these are not assumed to
be necessarily equal to each other. In most instances a continuous time record is
impossible to obtain (although there are exceptions, e.g., when ties represent links
between companies of which the start and end moments are officially recorded). It is
assumed here that observations at intermittent moments are available; then we have
a network panel study. The observation moments are denoted tm for m = 1, . . . ,M ,
where the number M of repeated observations is 2 or larger. In this section we
sketch the model that is presented in more detail in Snijders [2001] and Snijders
[2005], and applications of which can be found, e.g., in Van de Bunt et al. [1999]
and van Duijn, Zeggelink, Huisman, Stokman, and Wasseur [2003].

One of the basic assumptions in the model is that the network evolution continues
between the observation moments, which is a natural assumption in the majority
of applications. The network is assumed to change by only one tie at a time, at
random moments, and the model is actor-driven in the sense that for each change
in the network, the perspective is taken of the actor ‘whose tie’ is changing. Such
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changes are called ministeps. It is assumed that actor i controls the set of outgoing
tie variables (Xi1, . . . , Xin), collected in the i’th row of the adjacency matrix. The
change made by the actor can depend on the network structure and on attributes
represented by observed covariates. In the model of Snijders [2001], the moments
when changes in the network are made, are stochastically determined by the rate
function; the particular change made is determined by the objective function and the
gratification function. In this paper, a simplified version of the model is explained
where the rate function does not depend on the actor or the network, and there is
no gratification function.

It is assumed that the moments where the actors may change one of their tie
variables are randomly determined (i.e., the moments of the ministeps), and that for
each actor the expected frequency of ministeps between the consecutive observation
moments tm and tm+1 is λm per unit of time.

Formally, this means that the ministeps occur as a Poisson process with param-
eter λm. We say that the rate function is equal to λ(t) = λm for tm ≤ t < tm+1. The
moments where different actors make ministeps are independent, which implies that
the probability is zero that two or more actors make a change at the same time.

The objective function can be regarded as a representation of the preference
order, or utility, or objectives, of the actors, depending on their position in the
network and on observed covariates. When actor i makes a ministep, this actor
selects the change which gives the greatest increase in the objective function plus
a random term. It is assumed that if there are differences between actors in their
objective functions, these can be identified on the basis of covariates.

When actor i makes a ministep, he either does nothing or he changes how he
is tied to exactly one of the n − 1 other actors. Given that the present network is
denoted by x = X(t), the new network that would result by changing the single
tie variable xij into its opposite 1 − xij is denoted x(i  j) (to be interpreted as
“the digraph obtained from x when i changes the tie variable to j”). A convenient
notation is obtained by formally defining x(i i) = x, corresponding to no change.
The choice is modeled as follows. Denote by U(j) a random variable which indicates
the unexplained, or residual, part of the attraction for i to j. These Uj are assumed to
be random variables distributed symmetrically about 0 and independently generated
for each ministep (this is left implicit in the notation). The actor chooses to change
his tie variable with that other actor j for whom the value of

fi(x(i j)) + U(j)

is highest; where j = i means that no change is made. This can be regarded as
a myopic stochastic optimization rule: myopic because only the situation obtained
immediately after the ministep is considered, stochastic because the unexplained
part is modeled by means of a random variable.

A convenient and traditional choice for the distribution of U(j) is the type 1
extreme value distribution, or Gumbel distribution, with mean 0 and scale parameter
1 [Maddala, 1983]. Under this assumption, the probability that i chooses to change
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xij for any particular j, given that i has a ministep, is given by

pij(x) =
exp (fi(x(i j)))∑n
h=1 exp (fi(x(i h)))

(1)

=
exp (fi(x(i j))− fi(x))∑n
h=1 exp (fi(x(i h))− fi(x))

.

This probability is also used in multinomial logistic regression, cf. Maddala [1983,
p. 60].

The model thus described defines a continuous-time Markov chain on the space
of all digraphs, with intensity matrix defined by

qij(x) = lim
dt↓0

1

dt
P{X(t+ dt) = x(i j) | X(t) = x}

= λ(t) pij(x) (i 6= j) (2)

where pij(x) is given by (1). Expression (2) is the rate at which actor i makes
ministeps, multiplied by the probability that, if he makes a ministep, he changes
the arc variable Xij . This Markov process will in general not be stationary. The
Markov chain is defined to be left-continuous, which means that the changes are
defined to occur immediately after the ministep, i.e.,

lim
t′↑t

X(t′) = X(t) .

The option that, at an occasion to make a change, the actor prefers to leave his
collection of outgoing ties as they are, is a difference with respect to Snijders [2001,
2005]. It is attractive to include this possibility because it expresses the plausible
property that actors who are more satisfied with the current network will have a
smaller probability of making changes.

2.1. specification of the objective function

In the model proposed in Snijders [2001], the objective function is represented as a
weighted sum dependent on a parameter β = (β1, . . . , βL),

fi(β,x) =
L∑
k=1

βk sik(x) . (3)

The functions sik(x) represent meaningful aspects of the network, as seen from
the viewpoint of actor i. Some possible functions sik(x) are the following; further
possibilities and explanations are given in the mentioned references.

1. Out-degree effect, defined by si1(x) = xi+ =
∑

j xij ;

2. reciprocity effect, defined by the number of reciprocated tiessi2(x) = xi(r) =∑
j xij xji ;
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3. transitivity effect, defined by the number of transitive triplets in i’s ties. A
transitive triplet for actor i is an ordered pairs of actors (j, h) to both of
whom i is tied, while also j is tied to h. The transitivity effect is given
bysi3(x) =

∑
j,h xij xih xjh ;

4. number of geodesic distances two effect, or indirect relations effect, defined by
the number of actors to whom i is indirectly tied (through at least one interme-
diary, i.e., at geodesic distance 2),si4(x) = ]{j | xij = 0, maxh(xih xhj) > 0}.

Positive transitivity and negative number-of-distances-two effects are two different
mathematical representations of a tendency toward network closure.

When covariates are available, the functions sik(x) can be dependent on them.
For network data, a distinction should be made between actor-bound covariates vi
and dyadic covariates wij . The main effect for a dyadic covariate wij is defined as
follows.

5. Main effect of W (centered), defined by the sum of the values of wij for all
others to whom i is tied,si5(x) =

∑
j xij (wij − w̄)where w̄ is the mean value

of wij .

For each actor-dependent covariate V the following three effects can be considered:

6. V -related popularity, defined by the sum of the covariate over all actors to
whom i is tied,si6(x) =

∑
j xij vj ;

7. V -related activity, defined by i’s out-degree weighted by his covariate value,si7(x) =
vi xi+ ;

8. V -related similarity, defined inversely by the sum of absolute covariate differ-
ences between i and the others to whom he is tied,

si8(x) =
∑
j

xij

(
1 − | vi − vj |

mv

)
,

where mv is the maximum of the absolute differences | vi − vj |.

The network evolution model is too complicated for explicit calculation of prob-
abilities or expected values, but it can be simulated in a rather straighforward way.
This is exploited in the method for parameter estimation, based on the method of
moments and implemented by stochastic approximation, which was first proposed
in Snijders [1996] and elaborated for the present model in Snijders [2001].

The null hypothesis that a single element of the parameter vector is zero,

H0 : βk = 0 ,

can be tested by the t-statistic

tk =
β̂k

s.e. (β̂k)
(4)

in the standard normal distribution.
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3. AN ENTROPY-BASED MEASURE FOR EXPLAINED VARIATION

For models as complex as the present one, it is possible in principle to propose
various different measures of explained variation. In many models, an attractive
principle for defining such measures is the principle of reduction of predictive un-
certainty. However, the endogenous feedback processes inherent in this network
evolution model imply that the network as such is highly unpredictable, and mainly
the structure of the network is predictable to some extent. E.g., in a situation of
an digraph with originally a very low average degree, it could be predicted that the
digraph produced after some time will have a high degree of reciprocity, but it will
be very hard to predict accurately which dyads will be mutually tied.

For this reason the measure of explained variation will not be based on the
accuracy with which x(tm+1) can be predicted from x(tm). Instead the measure
will be based on the local or instantaneous predictability, more specifically, the
degree of uncertainty in the decisions taken by the actors in their ministeps. This
corresponds well with the actor-driven nature of the model. Each ministep amounts
to a choice among n different possibilities. For discrete probability distributions
with probabilities pj (j = 1, . . . , n), the uncertainty in the outcome is defined by the
well-known entropy measure [Shannon, 1948]

H(p) = −
n∑
j=1

pj
2log pj . (5)

The entropy is minimal and equal to 0 in the case of certainty, where one outcome
j has probability 1 and all others probability 0. It is maximal and equal to 2log(n)
if all outcomes are equiprobable. For a given ministep made by actor i in a current
network x, the degree of certainty in the outcome can be measured by

RH(i,x) = 1 − H(pi(x))
2log(n)

(6)

where pi(x) = (pi1, . . . , pin) is given by (1). This measure is bounded between
0 and 1, and 0 is obtained under the greatest uncertainty – the discrete uniform
distribution –, while 1 is obtained under complete certainty concerning the choice
made by i. The constancy of the rate function implies that at each moment all
actors have the same probability of making ministep. Hence the proposed measure
of explained variation, or reduction of uncertainty, is defined by

RH(t) =
1

n

n∑
i=1

ERH(i,X(t)) . (7)

This is a time-dependent measure since the non-stationarity of the Markov pro-
cess X(t) implies that the degree of uncertainty is not necessarily constant over time.
An aggregate measure RH can be obtained by averaging this over t.

The statistical analysis of data according to this model is based on simulations,
as described in Snijders [2001, 2005]. Denote the random finite set of time moments

of ministeps in the Nth simulated network evolution by TN and for t ∈ TN denote
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by IN(t) the actor making the ministep. The measure (7) can be estimated from
simulations by the average of the simulated values (6) for all ministeps at time points
between t− ε and t+ ε,

R̂H(t) =

∑
N

∑
t′∈TN ,t−ε≤t′<t+εRH(IN(t′),XN(t′))∑
N ]{t′ ∈ TN , t− ε ≤ t′ < t+ ε}

, (8)

where ]A denotes the number of elements in the set A and ε is a small positive
number. Note that, since the Markov process is defined to be left-continuous, the
digraph XN(t′) is the simulated digraph immediately before the ministep at moment
t′. Averaging these values computed over disjoint time intervals of the same length
yields an overall measure of explained variation, denoted R̂H .

In the estimation algorithm described in Snijders [2001], after the estimate has
been obtained, a number of simulations are done for this estimated parameter value
in the so-called Phase 3. From the simulations, the estimate (8) can be computed.
In the SIENA program [Snijders, Huisman, Steglich, Schweinberger, 2004], the de-
fault number of simulations in Phase 3 is 500. To have a reasonable precision for
estimate (8), the number of simulations and the value of ε have to be such that the
denominator of (8) is at least a few hundred.

4. EXAMPLE APPLICATION TO THE EVOLUTION OF A FRIENDSHIP NET-
WORK

As an example, the network of 32 freshmen students is used that was studied and
described more extensively by van de Bunt [1999] and also by van de Bunt, van
Duijn, and Snijders [1999]. The network consists of 32 freshmen students in the
same discipline at a university in The Netherlands, who answered a questionnaire
with sociometric (and other) questions at seven times points during the academic
year, coded t0 to t6 , spaced three to six weeks apart. This data set is distributed
with the SIENA program [Snijders et al., 2004]. The relation studied here is defined
as a ‘friendly relation’, as defined in van de Bunt [1999].

Descriptive statistics are presented in Table 1. The mutuality index is defined
as the fraction of reciprocated ties among all ties.

Time t0 t1 t2 t3 t4 t5 t6

Average degree 0.19 3.78 4.63 5.60 6.95 7.73 6.96
Mutuality index 0.67 0.66 0.67 0.64 0.66 0.74 0.71

Table 1. Basic descriptives.

The average degree, starting at virtually nil, rises rapidly to a value about 7.
The mutuality index is quite high at approximately 0.7.

This example was analysed using SIENA version 2.0 [Snijders et al., 2004]. In
addition to the structural effects, effects of three covariates were considered: gender,
programme, and smoking. Gender and smoking are dummy variables coded 1 for
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female and 2 for male and, respectively, 1 for smoking and 2 for non-smoking.
Programme is a numerical variable coded 2, 3, 4 for the length in years of the
programme followed by the students. Greater similarity on this variable indicates a
greater opportunity for interaction. All covariates are centered by SIENA (i.e., the
mean is subtracted), including the similarity variables internally defined as (1 − (|
vi − vj |)/mv), where mv is the average of all | vi − vj | values.

Models were fitted sequentially, starting with a very limited specification and
then adding effects to obtain eventually a specification that is close to the specifica-
tion reported in Snijders [2005]. Compared to the latter specification, the difference
is that the rate function is constant and in order to obtain a good fit also a non-linear
function of the out-degrees is included in the objective function,

sik(x) =
1

xi+ + 1
.

For the definition of the rate parameters, the numerical values of the total time
length is arbitrarily set equal to 1.0, equally divided between the 6 periods. The
parameter estimates are presented in Table 2.

Effect Estimate Standard error
Rate function
λ0 Rate parameter t0–t1 29.79 8.94
λ1 Rate parameter t1–t2 4.55 0.72
λ2 Rate parameter t2–t3 5.55 0.99
λ3 Rate parameter t3–t4 3.71 0.61
λ4 Rate parameter t4–t5 5.05 0.70
λ5 Rate parameter t5–t6 4.08 0.58
Objective function
β1 Out-degree xi+ −2.22 0.22
β2 Reciprocity 1.90 0.16
β3 Transitive triplets 0.13 0.07
β4 Number of distances 2 −0.49 0.05
β5 Transformed out-degree 1/(xi+ + 1) 1.29 0.50
β6 Gender similarity 0.38 0.15
β7 Gender popularity 0.41 0.11
β8 Gender activity −0.02 0.13
β9 Program similarity 0.64 0.15
β10 Smoking similarity 0.30 0.12

Table 2. Parameter estimates.

The table shows, judging by the t-ratios of parameter estimate divided by stan-
dard error, that there is strong evidence for the reciprocity effect and the network
closure effect expressed by a relatively low number of distances two, and weak evi-
dence that in addition there is a network closure effect expressed by a relatively high
number of transitive triplets. The covariate effects show that male students tend
to attract more choices than females, and that similarity on gender, program, and
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smoking behavior leads to a higher likelihood of a tie; male and female students do
not differ in the propensity to make choices.

Figure 1 exhibits the estimated explained variation (8) as a function of time,
estimated for four models, differing in the sets of effects included in the objective
function: the almost trivial model with only the out-degree and reciprocity effects,
represented by ∗; the model with these two effects together with the five covariate
effects, represented by �; the model with only the five structural effects (out-degree,
reciprocity, transformed out-degrees, transitive triplets, and geodesic distances equal
to 2), represented by 4; and the full model including all effects of Table 2, repre-
sented as •. Time is arbitrarily scaled in such a way that tm = m for all m.

Figure 1. Explained variation for four models (see text).
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We see that the covariates have a very small extra effect on the explained vari-
ation, especially when taken in addition to the five structural effects. The effect of
the three structural effects taken together – transitive triplets, number of geodesic
distances equal to 2, and transformed out-degree – has a much larger contribution
to the explained variation than the covariates. The averages of the four curves are
R̂H = 0.119, 0.137, 0.280, and 0.284. At t = 0, where the average degree is small,
there is much uncertainty in the choices made by the actors, especially in the mod-
els without the network closure effects; but immediately after t = 0 the certainty
increases fast as time progresses. There are noticeable downward jumps in the two
higher curves at the observation moments, which perhaps points to a lack of fit in
the model in the sense that there is a trend in some of the parameter values which
the model does not represent.

Finally, a comparison is made between the statistical significance and the effect
size of variables, indicated respectively by the t-ratio for an added effect, and its
contribution to R̂H . Models were estimated consecutively adding effects one by one.
The average values of the explained variation measures, the increase ∆R̂H in R̂H ,
and the t-values for the added effects, are presented in Table 3.
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Added effect R̂H ∆R̂H t (added)
Reciprocity 0.1190 13.5
Transitive triplets 0.2057 0.0867 2.9
Distances 2 0.2676 0.0619 11.8
Transformed out-degrees 0.2801 0.0125 1.9
Sex similarity 0.2816 0.0015 2.2
Sex popularity 0.2807 –0.0009 3.1
Sex activity 0.2806 –0.0001 0.4
Program similarity 0.2823 0.0017 3.9
Smoking similarity 0.2840 0.0017 2.4

Table 3. Explained variation R̂H and t-values for added effects, for consecutively fitted models.
∆R̂H is the difference between R̂H in the current and the preceding line.

It can be concluded from this table that the t-ratios for added effects are not
at all nearly proportional to ∆R̂H . E.g., adding the transitive triplets has a t ratio
of only 2.9, but increases R̂H from 0.1190 to 0.2057, whereas the t ratio for the
number of distances 2 is 11.8 but this effect only increases R̂H further to 0.2676, a
smaller difference than the preceding one. Adding the covariate effects leaves the
explained variation hovering about 0.28, while some of them are clearly significant.
This underscores that statistical significance and effect size should not be confused.
We also see that sometimes, adding an effect to the model does not lead to a higher
value for R̂H . This may be attributable to sampling error. In addition, it should be
noted that we have no proof that RH will increase when effects are added.

5. DISCUSSION

This paper has proposed a measure for explained variation of actor-driven models
for network dynamics. By utilizing an inverse measure of entropy, it reflects the
degree of certainty of the actors when making changes in their pattern of outgoing
ties. Intuitively this is an appealing measure, although a disadvantage is that it is
strongly model-based and a long story needs to be told to explain how it is obtained
from the data.

Further experience with this measure will have to be collected to obtain better
insights into what may be considered low and high values. The measure is included
in version 2.0 of the SIENA program which is included in the StOCNET system and
can be downloaded from http://stat.gamma.rug.nl/stocnet/, [Snijders et al., 2004].
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DEGENNE A., FORSÉ M, Les Réseaux Sociaux, Paris, Armand Colin, 1994.
DOREIAN P., STOKMAN F.N. (eds), Evolution of Social Networks, Amsterdam, Gor-

don and Breach, 1997.
MADDALA G.S., Limited-dependent and Qualitative Variables in Econometrics, Cam-

bridge, Cambridge University Press, 1983.
MENARD S., “Coefficients of determination for multiple logistic regression analysis”,

The American Statistician 54, p. 17-24.
SNIJDERS T.A.B.,”Stochastic actor-oriented models for network change”, Journal of

Mathematical Sociology, 21, 1996, p. 149-172. [Also published in Doreian and
Stokman, 1997].

SNIJDERS T.A.B., “The Statistical Evaluation of Social Network Dynamics”, Soci-
ological Methodology, M.E. Sobel, M.P. Becker (eds), Boston and London, Basil
Blackwell, 2001, p. 361-395.

SNIJDERS T.A.B., “Models for Longitudinal Network Data”, Models and methods in
social network analysis, Chapter 11 in P. Carrington, J. Scott, S. Wasserman (eds),
New York, Cambridge University Press, [in press].

SNIJDERS T.A.B., HUISMAN J.M., STEGLICH C.E.G., SCHWEINBERGER M.,
Manual for SIENA version 2.0., Groningen, ICS, University of Groningen, 2004.
Obtainable from http://stat.gamma.rug.nl/stocnet/.

SNIJDERS T.A.B., van DUIJN M.A.J., “Simulation for statistical inference in dynamic
network models”, Simulating Social Phenomena, R. Conte, R. Hegselmann, P. Terna
(eds), Berlin, Springer, 1997, p. 493-512.

VAN DE BUNT G.G., Friends by choice. An Actor-Oriented Statistical Network Model
for Friendship Networks Through Time, Amsterdam, Thesis Publishers, 1999.

VAN DE BUNT G.G., VAN DUIJN M.A.J., SNIJDERS T.A.B., “Friendship networks
through time: An actor-oriented statistical network model”, Computational and
Mathematical Organization Theory 5, 1999, p. 167-192.

VAN DUIJN M.A.J., ZEGGELINK E.P.H., HUISMAN J.M., STOKMAN F.N., WAS-
SEIR F.W., “Evolution of Sociology Freshmen into a Friendship Network”, Journal
of Mathematical Sociology 27, 2003, p. 153-191.

WASSERMAN S., FAUST K., Social Network Analysis: Methods and Applications,
New York and Cambridge, Cambridge University Press, 1994.


