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The Degree Variance:
An Index of Graph Heterogeneity*

Tom A. B. Snijders
University of Groningen**

In the analysis of empirically found graphs, the variance of the degrees can
be used as a measure for the heterogeneity of (the points in) the graph.
For several types of graphs, the maximum value of the degree variance is
given, and the mean- and variance of the degree variance under a simple
stochastic null model are computed. These are used to produce normalized
versions of the degree variance, which can be used as heterogeneity indices

of graphs.

Key words: graph heterogeneity, graph centrality, random graphs, degree
variance. i

1. Introduction and notation

This paper is concerned with undirected, directed and bipartite graphs, with-
out multiple lines or loops. The points of the graph are labeled 1, 2, ..., g
for undirected and directed graphs; for bipartite graphs, the points of the
first set are labeled 1, 2, ..., g while those of the second set are labeled
1, 2, ..., h. The incidence matrix is (x;;); its element x; is 1 if there is a line
from point i to point j, and 0 otherwise. Thus x;; = x;; for undirected graphs
and x;; = 0 for undirected and directed graphs. For bipartite graphs (x;;) is
taken to be a g X 4 matrix and x;; refers to the existence of a line from point
i in the first set to pointj in the second set.
The degree of point i is denoted by x;, and can be defined by

X=X

For dirécted graphs, this is the out-degree of point 7; if one wishes to con-
sider in-degrees instead, one needs only to reverse the directions of the lines
(which amounts to transposition of (x;;)). For bipartite graphs, only the
degrees of the points in the first set are studied. The degree sum is

5 =2 x;
i
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The (line) density is d = s/g(g — 1) for undirected and directed graphs, and
d = s/gh for bipartite graphs. In the sequel, when discussing directed graphs,
h will be defined by 7 = g — 1 because there will be several formulas which
turn out to be identical for bipartite and directed graphs when this identifi-
cation is made.

The integer part of a real number y (that is, the largest integer not ex-
ceeding y) is denoted by [y].

2. The degree variance

In the investigation of graphs produced from empirical observations, it is
desirable to have one or more descriptive statistics (or structural parameters)
giving a global impression of the magnitude of the differences between the
points as regards their centrality in the graph, or, briefly said, of the hetero-
geneity of (the points in) the graph. Often, instead of this rather aspecific
concept of heterogeneity, the more specific concept of centralization has
been studied. Freeman (1978) describes centralization as “‘the tendency of
a single point to be more central than all other points in the network”. He
stresses the difference between this concept of centralization and the con-
cept of graph centrality in the sense of “‘all points being close together”,
and gives a review of centralization parameters. Hgivik and Gleditsch (1975),
in a review article about graph parameters, describe centralization as “the
dispersion in the set of vertex centralities”, which is quite in the spirit of the
heterogeneity concept mentioned above; but they go on to mention centrali-
zation parameters which are all operationalizations of Freeman’s description.
This concept of centralization implies the idea of one clearly defined center,
preferably consisting of one point. The pinnacle of centralization, for un-
directed graphs with a fixed number of points, is the star: the graph with
lines between point 1 (say) and every other point, and no other lines. All
centralization parameters mentioned by Freeman (1978) assume their
maximum in the star.

In many empirically found graphs, however, there is a vaguely outlined
center, consisting of more than one point; or there are several centers, or
just a gradual transition from more central to more peripheral points. So it
seems appropriate to have an index of heterogeneity, which keeps account
of the differences in point centrality between all points, and which can be
used in addition to, or instead of, an index of centralization (which keeps
account of the differences in point centrality only between the single most
central point and all other points). In this paper, attention will be restricted
to graphs where the degrees of the points are important characteristics;
graphs representing sociometric choices or interlocking directorates provide
examples of this situation. A possible operationalization of the concept
‘graph heterogeneity’ is then the dispersion of the degrees, as measured by
their variance:
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V= g‘lz(x —x) =g ‘Ex —x?

where x = s/g is the mean degree

Use of the density and the degree variance as descriptive statistics for
graphs is analogous to the use of the mean and the variance as descriptive
statistics for sets of numbers. The degree variance is mentioned by Coleman
(1964:Chap. 14.1) as an intermediate step in the construction of a measure
of hierarchization (in a sociometric context, graph heterogeneity can be
interpreted as hierarchization); Holland and Leinhardt (1979) consider
probability distributions of directed graphs conditionally on the density and
the variances of the in- and out-degrees; but the degree variance seems to
have received little attention as a descriptive statistic for graphs in its own
right.

Of course, many other measures for the dispersion of the. degrees can be
proposed. For example, if ¢(x) is a convex non-decreasing function (for
nonnegative integer x), then

Vo= 2 ¢(x;) —¢(x)
]

will be such a measure; taking ¢(x) = x log x in this expression yields the
entropy-based measure of hierarchization which is proposed, after normali-
zation, by Coleman (1964:Chap. 14.2). Practical reasons for choosing the
variance (coinciding with V, for ¢(x) = x?) are that it is an established and
widely used measure of dispersion, and that its simplicity makes it possible
to derive a number of properties of the degree variance, which would be
harder or impossible to derive for many other measures of graph heteroge-
neity. This will be done in the next Sections; these properties can serve as
conceptual arguments for or against use of the degree variance in certain
empirical contexts. In §6, several normalizations for V will be proposed.
All along, it will be assumed that the degree variance is used complemen-
tarily to the density, and hence several properties of V will be derived
conditionally on the value of the density d (or, equivalently, conditionally
on s or x).

3. Maximum values

The maximum value for V, for the three kinds of graphs considered, and for
fixed g, will be denoted by Vp,.x (g). The maximum value for ¥ when g and
d are fixed will be denoted by V,,,, (g, d). For bipartite graphs it would be
more precise also to indicate in the notation the dependence on % (which
will be a fixed number), but this is avoided in order to get a uniform notation
for directed and bipartite graphs.

It will be seen that for the graphs where the maximum values V,,, (2)
and Viyax (g, d) are assumed, the set of points is clearly divided into a center
consisting of points of high degree, and a periphery consisting of points of
low degree; there is sometimes one intermediate point, needed to obtain the




166  T. A. B. Snijders

given density d. In contrast to the situation for the centralization indices
discussed by Freeman, however, the center consists of more than one point,
except for very low values of g or d; the size of the center of the graph where
Vmax(g) is assumed is roughly proportional to g. This is an important charac-
teristic of the degree variance.

Two graphs are called complementary if one has lines exactly where the
other does not; their incidence matrices (x;;) and (x§;) satisfy x§; = 1 — x;
(for i # j, in the cases of directed and undirected graphs). For two comple-
mentary graphs, the two densities sum to 1 and the degree variances are
equal. This implies that always

Vmax (g: d) = Vmax (g, 1 — d)

3.1. Directed and bipartite graphs

Recall that for directed graphs & is defined by & = g — 1. It will be proved
that the maximum degree variance for given g and d is assumed by the graph
with [gd] points having degree & (these are connected with all other points),
[g(1 — d)] points having degree 0, and (unless gd is an integer) one point
having degree hgd — hlgd].

Consider any other graph with density d; for such a graph there are at
least two points i and j with degrees satisfying 1 < x; < x; < & — 1. In this
graph one line can be removed from i and one added to j; this keeps d
constant.

Using the expression

V=gt Zx} — (hd)’
it is seen that the increase in V' is
g {G+ D2+ — 1) —xF —x}1 =287 (x5 —x; + 1)

This is a positive number, so the graph considered does not have the maximum
possible V. It follows that the graph mentioned at the beginning has the
maximum degree variance; the degree variance of this graph is

Vinax (8, d) =h?g ™" {[gd] + (¢d — [gd])* —gd*}

It can be proved that for bipartite graphs all graphs assuming this maxi-
mum are isomorphic; for directed graphs this is the case only for certain
values of d (for instance, if gd is an integer).

The maximum degree variance for given g, if g is even, is assumed by the
graph for which half of ‘the points have degree 4 and the other half have
degree 0; the maximum value is

Vmax (g) =h? /4 (g even)

and all graphs assuming this maximum are isomorphic. If g is odd, then V' is
maximal if and only if either (g — 1)/2 or (g + 1)/2 of the points have degree
h, while the other points have degree 0; the maximum value is




The degree variance 167

Vmax(g):(l —'g_2)h2/4 (g Odd)

and there are two classes of isomorphism for which this maximum is as-
sumed. These results are easily verified by noting that for any other graph
V' can be increased by adding or removing a suitably chosen line.

It may be remarked that Freeman (1978) ‘proves’ that the centralization
indices mentioned by him are (for the class of undirected graphs) maximal
for the star by demonstrating that adding, removing or switching a line in the
star yields a graph with a smaller value of the centralization index. This does
not prove the desired results, because there are graphs which cannot be ob-
tained by adding, removing or switching just one line in the star. The method
used above, which is in a certain sense the reverse of Freeman’s method, can
be used to give the same results as those obtained by him. '

3.2. Undirected graphs

For undirected graphs, the situation is much more complicated, and more
interesting. In § 3.1, changing a line affected the (out-)degree of only one
point, while for undirected graphs changing a line affects the degrees of two
points simultaneously. The proofs of the results of this Section are rather
lengthy, and the interested reader can find them in Snijders (1981).

We denote by G(J, k) the graph with g points defined by

Xij = 1 1<i,j<] i#j
Xre,i = Xi 141 =1 1<i<k
Xy = 0 all other (i, j)

where 1 < I<gand 0<k</—-1if1<I<g-1,whilek=0ifI=g
For this graph, the points 1, 2, ..., I can be conceived as the center, and the
points / + 2,1+ 3, ..., g can be conceived as the periphery of the graph; the
point 7 + 1 occupies an intermediate position, and can for certain values of
k be considered as a member of the center or of the periphery. The comple-
ment of G(/, k) is denoted by G°(I, k). For G°(I, k), the points 1,2, ..., [ are
peripheral and the points 7 + 2, 7 + 3, ..., g are central points. In the case
k = 0, these graphs are particularly simple. Using the notation of Harary
(1969), one has G(Z, 0) = K; U K,—; and G°(I, 0) = K, + K,
The density of G(I, k) is

{17 — 1)+ 2k} [gg — 1)
and the density of G°(/, k) is

1 - {7 - 1)+2k}/gg—1)
The degree variance of G(/, k) and G°(/, k) is

VUL k)=g " {IT— 1) + kI +k — 1)} — g 2 I — 1) + 2k}?
Let /4 and 7§, respectively, be the largest integers with
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Lia—D<glg—Dd=s
U -D<glg—DA-d)=gg—1)—s
and let

ka={8(g — Dd — 1a(la — D)}/2
kg ={glg — (1 —d) - 153 — D}/2

Then Gy, kq) and G¢(J$, k$) both have density d, and one of these has the
maximum degree variance for density d:

Vinax (8, d) = max{V g, ka), VU3, k3)}

The maximum degree variance for all undirected graphs with g points is as-
sumed by G(I*, 0) and G°(I *, 0) where

I*=[(3g +2)/4]
and this maximum is

Vmax () = I*(I* — 1)? (g = I*)/g?
It may be noted that as g tends to infinity we have / *[g > 3/4, and hence
g% Vimax (8) > 27/256

4, Null models

When interpreting the value of ¥ found for a certain graph, one may ask the
question “couldn’t this value of ¥ have been obtained by mere chance?”.
Or, put in more respectable terms, “would this value be likely under a simple
stochastic null model?”. In order to answer this question, the mean and
variance of V will be computed under some null models. As the degree
variance will be used as a descriptive statistic complementary to the density
of the graph, all these null models will be conditional on the density (or,
equivalently, on the degree sum s).

Firstly, the null model is considered where the total number of lines
(s/2 for undirected graphs, s for directed and bipartite graphs) is distributed
at random among all the possible pairs of points (g(g — 1)/2 for undirected
graphs, gh for directed and bipartite graphs): every admissible incidence
matrix with exactly s entries equal to 1 is equally probable. The computa-
tions of the mean and variance of V under this null model, denoted by
E{Vis}and var{V|s} are elementary but time-consuming. Only the results
will be given; the computations can be found in Snijders (1981). For un-
directed graphs, we get

s(g*—g—%)

E{V|s}=
V)= =g+ D
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25(s —2)(g* —g—5)(@g* —g —s5—2)
g@E+1)Y (@E+2)g*—g—49

var{V|s} =

and for directed and bipartite graphs

s(gh —s)(g—1)

EVs = =1

25(s — Di(h — 1) (g — 1) (gh — 5) (gh — s —1)
g (gh —1)* (gh —2) (gh - 3)

In the language of Holland and Leinhardt (1975, 1979), this could be
called the Uls distribution: the uniform distribution, conditioned on s.
(Holland and Leinhardt use the notations C and X,, for s in their 1975
and 1979 papers, respectively, and therefore speak about the U|C or UX,.,
distribution.) For directed graphs, it can also be relevant to condition on
the numbers 7 of mutual dyads (pairs of points (i, /) withi<jandx;=x;;=1),
a of asymmetric dyads (pairs (i, j) with i < j and Xij # x;;) and n of null
dyads (pairs (i, j) with i < j and Xx;; = xj; = 0). The distribution where the
g(g — 1)/2 = m + a + n dyads are randomly divided into three subsets of
sizes m (mutual dyads), ¢ (asymmetric dyads) and » (null dyads), respec-
tively, and where the directions in the asymmetric dyads are randomly
chosen, is called the Ulman distribution. Note that s = 2m + a. For directed
graphs with the Ujman distribution, the mean and variance of ¥ can be
found from the theorems in Holland and Leinhardt (1975). In Snijders
(1981) another approach is followed. The result is

var{Vis} =

Cm+a)2n+a)+ga

E{Vim, a, n} =
gig+1)

numerator
g2 +1)(g+2)(*—-g—-4

var{Vim, a, n} =

with
numerator = 2{4m(m — 1) + 4am + a(a — 1)} {4n(n — 1) + 4an +
tal@a — D} + 8(g + Da{dmn — a(a — 1)} +
+2(g+1)(3g> —4g — aa — 1)

If m =5/2 and a = 0, the Ulman distribution for directed graphs coincides
with the Uls distribution for undirected graphs, and the formulas for mean
and variance of V are identical. For directed graphs, the formulas for mean
and variance of the in-degrees are identical to those given here for V (the
variance of the out-degrees).
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5. The degree variance as an estimator

In the preceding Sections the degree variance was treated as a purely de-
scriptive statistic. The stochastic null models of § 4 were not proposed as
acceptable models for ‘real life situations’, but rather as a standard of empti-
ness with which the value found for ¥ can be rated. In some situations, how-
ever, it will be sensible to regard the observed graph as the outcome of a
random graph generated by some stochastic mechanism: for example, if the
graph is produced by a sampling mechanism of some sort. In that case V'
(or rather g~ ?V, as will be seen below) can be regarded as an estimator for
a parameter of this stochastic mechanism. In order to investigate which
parameter is being estimated, the expected value of V' will be derived.

It will be assumed that the probability distribution of the random graph
is invariant under permutations of the points. Random variables are desig-
nated by capital letters; for example, X;; is a random variable with outcome
X;;, the indicator of a line from i to j. We define

py =P{X;=1}

pu =P{X; =X, =1}

p, =P{X;; =X, =1}
for distinct indices i, j, s and ¢. Because of the permutation invariance,
these probabilities do not depend on i, j, s and ¢ If the lines (i.e., the Xj;)
are independent, then

Pu =p2=pi
The parameter p;; — p, can be interpreted as a measure of the stochastic
dependence of two lines at a common point, as compared to lines at dif-
ferent points. If p;; — p, > 0 then the lines will tend to cluster at a few
points with high degrees, whereas for p;; — p, < O the lines will tend to be
evenly divided among the points.

Let us first consider the case of undirected graphs. Using the properties
that x;; = x% = x;; and x;; = 0, the following formulas are obtained. In all

summations in this Section, the indices mentioned are understood not to
assume identical values.

EX% =E{XX}?=E{ZXy+2 X;X;;}=(@— Dpi+(@@—1)(g—2)pu
j j is
EX*=g ?E{2X;Y=¢EQ22 X;;+4 2 XX+ 2 XXt}
i ij i.s it
=(1—-g ") {2p: +4@ —-2)pu +(g—2) (g —3)p.}
It follows that
Eg?V=Elg X} —gX?)

= (g Dg*{(g —2) (§ —3) Pr—p2) + (@& — 2) (1 — pu)}
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For large g, this is approximately equal to the dependence measure Pu—Da.
It can be concluded that p;; — p, is approximately the parameter being
estimated by g 2 V.

Instead of this approach where an interpretation is sought for the degree
variance, one can also start from the other side and wish to have an unbiased
estimator for the dependence measure p,; — p,. Such an estimator is

e -DE-21" 2 XyX;, — {2 - D@E—2) -3} T XyX,

i,j,s i,j,5,t
which is equal to
E-DE-2D@E@-3)N " {Eeg+DHV+X2} - {(g-2)(g—3)'X

Under the null model of § 4, we have p,; — p, = 0. This is reflected in
the property that £{Vis} is of the order of magnitude of g, which implies
that under this null model g~2V converges to 0 in probability as g tends to
infinity.

It may be noted that Eg~?V is necessarily nonnegative (as V is nonnega-
tive), whereas p;; — p, can be negative. From the expression for Eg=2V
one obtains the following lower bound for Pu—D2:

Pu—=p2=—@i—plg—3)>—(g—3)"!

If g is large, negative values of p;, — p, must be very close to 0; and for an
infinite random graph with a probability distribution which is invariant
under finite permutations, negative dependence is altogether impossible.
(This is similar to the property of .exchangeable (i.e. permutation invariant)
infinite sequences of random variables, that negative dependence is impos-
sible; see, e.g., the remark of Kingman (1978: 187).)

For directed and bipartite graphs the formula for EX 2, and hence that for
EV, contains other probabilities besides P1, pu and p,. The precise expres-
sions for £V will not be given here; it suffices to mention that in these cases,
too, En~ 2V is, for large g and A, approximately equal to Pu—Pa.

6. Normalization

Several approaches to the normalization of the degree variance will be
mentioned, all depending on g and s or (m, a, n). One approach is a normali-
zation with respect to the null models of § 4. This leads to

7 - V — E{V]s}
V/ var {V|s}

and for directed graphs also to
~ V—E{VIm,a, n}
v var {Vim, a, n}
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as an alternative possibility. The measure 7 will be used especially to
examine whether the value found for V points to a considerable departure
from the null model. This may be done formally by testing the null model
as a null hypothesis, using the property that under this model V" has approxi-
mately (for large g) a standard normal distribution (see Holland and Leinhardt
1970, 1979); or it may be done in a loose way, to the effect that if V' does
not differ much from 0, say |V | < 2, then one refrains from giving a sub-
stantial interpretation of the heterogeneity in the graph.

Another approach is a normalization with respect to the maximum
values of § 3. This leads to the index of graph heterogeneity

J* = V/[Vinax (8, d)

In order to obtain an index which is proportional to the absolute instead of
the squared differences between the degrees, it is preferable to use

J= T

The indices J? and J assume values from 0 to 1. For fixed d, the lower
value O can be attained only if (¢ — 1)d is an integer; otherwise, the mini-
mum possible value is very small but positive.

The three elements mentioned (null model, maximum value, square root)
can be combined into the index of graph heterogeneity

= vV =N E{Vis}
V Viax @ d) — / E{Vls}

with s = g(g — 1)d. This index has the advantage over J that it is 0 if the
value found for V is exactly compatible with the null model in the sense that
V = E{V|s}. H assumes negative values if 7 is smaller than would be expected
under the null model. Since

gligl}o E{Vis =g(g — 1)d}/Viax(g, d) =0

H and J will be close to each other if g is large.

_ Of these three standardized versions of the degree variance, the values of
V' for graphs with different numbers of points g are not comparable owing
to the effect of g on the variance of V under the null model. The values of
J and of H for graphs with different values of g and d will be comparable,
however.

7. An example from Social Networks

As an example, the heterogeneity indices of § 6 will be applied to the graph
presented in Fig. 1 and Table 1. The points represent the articles in the first
volume of Social Networks; two points are connected by a line if there is at
least one publication which is contained in the lists of references of both
articles. These lines can be interpreted as pointing towards a relation be-
tween the articles connected, concerning the substantial contents or the
methods used. For this undirected graph we have
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Table 1.
i X; Author(s) and title
1 9 Ithiel de Sola Pool and Manfred Kochen
Contacts and influence
2 8 Meindert Fennema and Huibert Schijf
Analysing interlocking directorates: Theory and methods
3 8 Brian L. Foster
Formal network studies and the anthropological perspective
4 6 Ronald S. Burt
A structural theory of interlocking corporate directorates
5 6 Alvin W. Wolfe
The rise of network thinking in anthropology
6 5 Linton C. Freeman
Centrality in social networks: Conceptual clarification
7 5 Stephen D. Berkowitz et al.
. The determination of enterprise groupings through combined
ownership and directorship ties
8 4 Stephen B. Seidman and Brian L. Foster
A note on the potential for genuine cross-fertilization between
anthropology and mathematics
9 3 Gary Coombs
Opportunities, information networks and the migration-distance
relationship
10 3 Forrest R. Pitts
The medieval river trade network of Russia revisited
11 3 Gerrit Jan Zijlstra
Networks in public policy: Nuclear energy in the Netherlands
12 2 Ove Frank
Sampling and estimation in large social networks
13 2 Peter D. Killworth and H. Russell Bernard
The reverse small-world experiment
14 2 Robert J. Mokken and Frans N. Stokman
Corporate—governmental networks in the Netherlands
15 2 Lee Douglas Sailer
Structural equivalence: Meaning and definition, computation
and application
16 1 Ronald S. Burt
Stratification and prestige among elite experts in methodological
and mathematical sociology circa 1975
17 1 Davor Jedlicka
Opportunities, information networks and international migra-
tion streams
18 0 Maureen T. Hallinan

The process of friendship formation
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g =18 s =70 d=0.23
V =6.65 Vmax (g, d)=21.77
V =4.60 J=0.55 H=0.3l1

The value of V clearly indicates that the null model Uls is not adequate
in the light of these data. For a more refined analysis, much more would be
needed; e.g., one could take account of the differences in length between the
lists of references of the articles considered.

The formulas which are presented in this paper and used in Section 6 for
the various normalized heterogeneity indices have been programmed by Roel
Popping and are part of the GRADAP computer package for analysis of
graphs.
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