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1 Introduction

One among the major contributions by Ove Frank to the statistical analysis
of social networks was the introduction, in Frank and Strauss (1986), of the
class of Markov graphs as a family of distributions for directed and undi-
rected graphs. A random graph is a Markov graph if the number of nodes
is fixed (say, at g) and nonincident edges (i.e., edges between disjoint pairs
of nodes) are independent conditional on the rest of the graph. Frank and
Strauss elaborated on Besag (1974) in their use of the Hammersley-Clifford
theorem to characterize Markov graphs as an exponential family of distri-
butions. The model was extended by Frank (1991) and by Wasserman and
Pattison (1996) to general exponential families of distributions for graphs,
with a focus on directed graphs (digraphs). Wasserman and Pattison (1996)
called this family the p∗ model. In subsequent work (among others, Pattison
and Wasserman, 1999; Robins, Pattison, and Wasserman, 1999) this model
was elaborated, mainly using subgraph counts as sufficient statistics.

The exponential family of distributions for a digraph denoted by y, for
some vector of sufficient statistics u = u(y), is given by the family of proba-
bility functions
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Pθ (Y = y) = exp (θ́u (y)− ψ (θ)) (1)

where Y is the adjacency matrix of a digraph y = (yij)1≤i,j≤g , with yij = 1
(or 0) indicating the presence (or absence) of an arc from i to j. Note that
yii = 0 for all i. The function ψ (θ) is a norming constant.

Replacing an index by a + sign will be used to indicate summation over
this index; e.g., yi+ denotes the out-degree of vertex i.

In principle, (1) can represent any probability distribution for digraphs,
provided that each digraph has a positive probability. The same formula,
restricted to symmetric adjacency matrices y, with yij = yji for all i, j, can
be used for distributions of undirected graphs. Frank and Strauss (1986)
proved that the conditional independence property of the undirected Markov
graph is equivalent to model (1) with a sufficient statistic u(y) containing as
elements the total number of k-stars for k = 1, ..., g − 1 and the number of
triangles (transitive triads)

∑
i<j<k yijyjkyik.

The general theory of exponential families (e.g. Lehmann, 1983) tells us
that u(y) is the canonical sufficient statistic for exponential random graph
models and the maximum likelihood (ML) estimator is the solution of the
moment equation

µ
(
θ̂
)

= u (y) , (2)

where u(y) is the observed value and µ (θ) is defined as the expected value

µ (θ) = Eθ {u (y)} .

However, this does not help us to find the ML estimate, because for almost all
exponential random graph models this expected value is not easily calculated.

Frank and Strauss (1986) discussed methods to estimate the parameters
in a Markov graph model where all k-star parameters are 0 for k > 3. This
leads to a three-parameter exponential family. In the light of the problems as-
sociated with explicit calculations, they proposed a simulation-based method
to approximate the ML estimate of any one of the three parameters θk, given
that the other two are fixed at 0. They also proposed a kind of conditional
logistic regression method to estimate the full vector θ. This method was
elaborated by Strauss and Ikeda (1990), Frank (1991), and Wasserman and
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Pattison (1996). It is a pseudolikelihood method which operates by maxi-
mizing the so-called pseudologlikelihood defined for digraphs by

` (θ) =
∑
i,j

ln (Pθ {Yij = yij|Yhk = yhk for all (h, k) 6= (i, j)}) (3)

Although this method is intuitively appealing and easily implemented, the
properties of the resulting estimator for exponential graph models are un-
known. The pseudolikelihood estimate is not a function of the complete
sufficient statistic u(y).

Dahmström and Dahmström (1993) proposed a simulation-based Markov
chain Monte Carlo (MCMC ) method for estimating a single parameter of a
Markov graph distribution. This method was extended by Corander, Dahm-
ström and Dahmström (1998) to simulation-based MCMC estimation of a
multidimensional parameter, following the approach of Geyer and Thomp-
son (1992) to construct Monte Carlo-based algorithms for approximating the
Maximum Likelihood estimate.

It was noted by Snijders (2002), however, that simulating the exponential
random graph model for a given parameter value, which is a basic step in any
MCMC estimation method, can have (depending on the parameter values)
inherent convergence problems – at least for the commonly used model spec-
ifications such as the Markov graph discussed above. The main reason is the
bimodal or multimodal shape that the distributions of the sufficient statistics
uk(Y ) may have. There are data sets, e.g., where the observed graph density
is 0.5, and the ML estimate corresponds to a digraph distribution with a
bimodal marginal probability distribution of the density. This bimodal dis-
tribution has a probability of almost 0.5 for values very close to 0.0, and a
probability of almost 0.5 for values very close to 1.0. This situation indicates
a lack of fit between model and data, because for a good fit it is desirable
that the main probability mass for the distribution under the ML estimate is
concentrated close to the observed outcome. Snijders (2002) proposed a ML
estimation algorithm using the Robbins Monro (1951) algorithm to solve the
moment equation, but reported that convergence often was insatisfactory.

The statistical problems in estimating exponential random graph mod-
els are related to the fact that just one observation Y of the random graph
is available; obviously, fitting a potentially bimodally shaped distribution
to a single observation is hardly meaningful. A potential way out of these
problems is to try to find specifications of the model that do not lead to
bimodally shaped distributions. One potential solution is to condition on
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suitable statistics such as the total number of edges, which will in certain
cases take away this bimodally shaped distribution. Another potential solu-
tion is based on discussions between the first author, Mark Handcock, Pip
Pattison, and Garry Robbins, in which the idea arose that especially the fit
of the degree distribution by exponential random graph models may be very
poor, and that progress might be obtained by looking for modified model
specifications that improve the fit for the distribution of the degrees.

2 Other specifications of exponential random

graph models

Conditioning on the total number of edges

If the main problem resides in a bimodal shape for the distribution of the
graph density, then an obvious solution is to condition on the total number
of edges. Such conditioning was used already by Corander et al. (1998) and
was discussed also by Snijders (2002). This paper considers only models with
such a conditioning.

Incidental vertex parameters

If one wishes to fit the degree distribution quite precisely, one could include
incidental vertex parameters for the in- and out-degrees. For a digraph model
this leads to models that are extensions of Holland and Leinhardt’s (1981)
p1 model: the vector of sufficient statistics includes all in-degrees and outde-
grees, or, equivalently, the exponent θ́u(y) in the probability (1) includes the
term

n∑
i=1

(αiyi+ + βiyi+) . (4)

This model ingredient was proposed in Wasserman and Pattison’s (1996)
seminal paper on the p∗ distribution, but it was omitted in most more re-
cent publications on this family of distributions, presumably because the
Hammersley-Clifford theorem does not give a special motivation for this term
and because, traditionally, incidental parameters are disliked in theoretical
statistical work.
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An exponential random graph model including this term in the exponent
comes close to a model containing all k-star counts (up to the highest possible
order, g−1) except that the latter model will fit the entire in- and outdegree
distribution, whereas the model including (4) will fit the in- and outdegrees
of each of the parameters separately. Admittedly, a model with so many
parameters seems not very elegant. But it could be a simple way to fit the
degree distribution, and it may have the advantage over a model including
k-star counts for high values of k that the parameter estimates are less highly
correlated.

The model with vertex parameters can be estimated with or without con-
ditioning on the total number of edges (i.e., the degree sum). The estimation
without conditioning turned out to work rather poorly. Therefore we present
results only for models with this conditioning.

Conditioning on all degrees

Another option would be not to include the degrees in the sufficient statistic,
but to regard the degrees as nuisance parameters and condition on them.
This is perfectly in line with the traditional statistical way to deal with
nuisance parameters (Lehmann, 1983).

The in- and out-degrees of the random digraph are complete sufficient
statistics for the incidental vertex parameters. Therefore, when we condition
on the in- and out-degrees, the exponential random graph model still is an
exponential family of distributions. If the parameters of the other sufficient
statistics are 0, this is the so-called U | {Yi+} , {Y+i} distribution (Holland
and Leinhardt, 1975; Wasserman, 1977; Snijders, 1991).

Conditioning on the in- and out-degrees implies that the observed degrees
are fitted exactly, but in a trivial way, while it is possible to estimate the other
parameters in the model (the parameters for reciprocity, for other subgraph
counts, etc.) conditional on these degrees. The perfect fit for the degrees
in itself is an advantage; the fact that this trivial way of fitting precludes a
parametric estimation of the degree distributions, however, will sometimes
be a disadvantage.

The computational advantage is that the outcome space of the exponen-
tial random graph is severely restricted, which may (depending on the values
of the in- and out-degree) lead to a more stable algorithm.

The appendix gives the principles of simulation-based estimation for ran-
dom graph models, discussed more extensively by Snijders (2002). The ap-
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pendix also contains descriptions of the algorithm extensions necessary for
the estimation of incidental vertex parameters and for conditioning on the
in- and out-degrees.

3 Results for various examples

We investigate whether the above-mentioned model specifications are effec-
tive to improve the convergence properties of the simulation-based algorithm
for approximating the ML estimate. The Metropolis-Hastings algorithm
(Snijders, 2002) is used for simulating the random graphs, conditional on
the total number of edges. The estimation methods are applied to a few
well-known data sets: Krackhardt’s managers data (Krackhardt, 1987) and
Freeman’s EIES data (Freeman & Freeman, 1980). All data sets considered
are directed graphs. The estimations were carried out by SIENA version 1.96
(Snijders and Huisman, 2002). The evaluation whether the outcome θ of the
algorithm is a satisfactory solution of the moment equation, is based on esti-
mates for µk(θ̂) = Ebθuk(Y ) and σk(θ̂) = S.D.bθuk(Y ). These are calculated in
‘Phase three’ of the SIENA algorithm. A requirement for good convergence
is that the t-values

tk =
uk(Y )− µk(θ̂)

σk(θ̂)
, (5)

where uk(Y ) is the observed statistic, are less than 0.1 in absolute value for
all k. The results of the algorithm are stochastic and depend on the initial
values. If the algorithm yielded a reasonable but not quite satisfactory result,
it was started again from the value found, to try and improve convergence
by a good starting value.

In all cases, models are considered that contain the effects of number of
ties, number of reciprocated ties, number of transitive triplets, and number
of 3-cycles. Exponential random graph model with these four effects and
without any conditioning, led to converging estimates only in a few cases.
Therefore attention is paid only to conditional models.
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3.1 Krackhardt’s High-tech Managers

First, the estimation methods were applied to two networks collected by
Krackhardt (1987), taken from the data presented in Wasserman & Faust
(1994) as Krackhardt’s High-tech Managers. The ‘advice’ and ‘friendship’
relations in a group of 21 managers are used. For both networks, the model
considered contained the effects of number of ties u1(y) = y++, number of
reciprocated ties u2(y) =

∑
i,j yijyji, number of transitive triplets u3(y) =∑

i,j,k yijyjkyki, and number of 3-cycles u4(y) =
∑

i,j,k yijyjkyki (where sum-
mations extend over all non-equal values of the indices). The first of these
statistics falls out of the model because of the conditoning.

Table 1: Results for Krackhardt’s High-tech Managers friendship relations

Conditional on Conditional on With vertex
number of ties degrees parameters

Parameter estimates (and standard errors)
Reciprocity 1.56 (0.45) 2.70 (0.59) 2.85
Transitivity 0.35 (0.03) 0.20 (0.10) −0.07
3-Cycles −0.56 (0.15) 0.07 (0.24) 0.08

uk (y) µ̂k(θ̂) (and σ̂k(θ̂))

Reciprocity 23 23.10 (3.10) 23.07 (1.69) 22.86 (2.55)
Transitivity 219 220.50 (43.6) 218.26 (11.3) 218.50 (21.6)
3-Cycles 44 44.32 (12.3) 43.85 (4.75) 43.75 (9.35)

For the friendship network, the density is 0.24, with 102 edges, 23 mutual
relations, 219 transitive triples and 44 3-cycles. For the advice network the
density is 0.45, with 190 edges, 45 mutual relations, 988 transitive triples and
188 3-cycles. The number of Metropolis-Hastings steps used for generating
one network (for one step of the Robbins Monro algorithm) was up to 59,958
for the friendship network, 44,503 for the advice network. (These nonrounded
figures follow from how these numbers are determined in SIENA.)
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Table 2: Results for Krackhardt’s High-tech Managers advice relations

Conditional on Conditional on With vertex
number of ties degrees parameters

Parameter estimates (and standard errors)
Reciprocity 0.90 (0.38) 2.05 (0.56) 1.83
Transitivity 0.22 (0.02) 0.03 (0.08) −0.16
3-Cycles −0.34 (0.05) 0.04 (0.12) −0.01

uk (y) µ̂k(θ̂) (and σ̂k(θ̂))

Reciprocity 45 45.05 (4.02) 44.94 (1.82) 44.87 (2.83)
Transitivity 988 987.91 (62.9) 988.18 (12.1) 988.19 (30.1)
3-Cycles 188 187.6 (29.5) 188.0 (8.6) 187.2 (17.6)

Convergence is good for all models presented here. A further discussion
is given in the final section.

3.2 Freeman’s EIES Researchers

Second, the estimation methods were applied to two networks collected by
Freeman & Freeman (1980), known as the EIES data, also taken from Wasser-
man & Faust (1994). Acquaintanceship among a group of researchers is
recorded at two time points, one before, and one seven months after the in-
troduction to the then novel phenomenon of communication by computer.
Acquaintanceship was recorded on a five-point scale, which we dichotomized,
defining the relation as being a friend or close friend. Of the 32 researchers
involved, information is available on the number of citations in the year of
the data collection, and on the primary discipline. These attributes were
dichotomized, defining two equal-sized groups of much and little cited au-
thors (with at least, respectively fewer than 12 citations), and defining a
group of sociologists and a mixed group consisting of researchers educated in
anthropology, psychology, communication, statistics and mathematics.

For both time points, the model considered contained, next to the network
effects also used for Krackhardt’s data, the dyadic covariates of dissimilarity
with respect to either attribute as defined in SIENA (see Snijders & Huisman,
2002). The tables below report results for the similarity variable defined as
minus the dissimilarity variable.
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Table 3: Results for Freeman’s EIES Researchers’ friendship at time 1

Conditional on Conditional on With vertex
number of ties degrees parameters

Parameter estimates (and standard errors)
Reciprocity 2.61 (0.33) 3.45 (0.48) 4.08
Transitivity 0.35 (0.01) 0.33 (0.07) 0.08
3-Cycles −0.59 (0.07) −0.07 (0.19) 0.05
Citations sim. 0.23 (0.12) 0.44 (0.15) 0.44
Discipline sim. 0.33 (0.12) 0.37 (0.15) 0.35

uk (y) µ̂k(θ̂) (and σ̂k(θ̂))

Reciprocity 42 42.11 (4.27) 41.92 (2.21) 42.19 (3.45)
Transitivity 316 322.1 (220) 317.4 (30.7) 312.7 (30.1)
3-Cycles 78 78.6 (49.7) 78.3 (11.3) 76.4 (18.6)
Citations sim. 16.45 15.8 (10.2) 16.8 (7.2) 16.3 (6.5)
Discipline sim. 25.15 24.8 (15.3) 25.3 (6.7) 25.6 (6.1)

For the network at time 1, the density is 0.15, with 152 edges, 42 mutual
relations, 316 transitive triples and 78 3-cycles. The observed similarity
on citations (after centering around the mean of 0.5) is 16.45; of discipline
(mean 0.53) it is 25.15. For the network at time 2 the density is 0.21, with
204 edges, 60 mutual relations, 605 transitive triples and 142 3-cycles. The
observed similarity on citations is now 19.29; of discipline (mean 0.53) it
is 29.88. The number of Metropolis-Hastings steps used for generating one
network was up to 197,306 for the time 1 network, and 156,713 for the time
2 network.
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Table 4: Results for Freeman’s EIES Researchers’ friendship at time 2

Conditional on Conditional on With vertex
number of ties degrees parameters

Parameter estimates (and standard errors)
Reciprocity 2.67 (0.29) 3.74 (0.45) 4.27
Transitivity 0.29 (0.01) 0.29 (0.06) 0.07
3-Cycles −0.54 (0.06) −0.20 (0.15) −0.06
Citations sim. 0.24 (0.12) 0.30 (0.12) 0.40
Discipline sim. 0.29 (0.10) 0.27 (0.14) 0.27

uk (y) µ̂k(θ̂) (and σ̂k(θ̂))

Reciprocity 60 59.79 (4.37) 59.93 (2.27) 60.16 (3.63)
Transitivity 605 588.9 (319) 606.7 (31.6) 599.7 (58.8)
3-Cycles 142 135.9 (40.9) 142.9 (11.9) 141.6 (22.8)
Citations sim. 19.29 19.6 (9.0) 18.8 (7.2) 19.4 (6.7)
Discipline sim. 29.88 30.6 (21.0) 29.8 (6.7) 30.0 (6.5)

Note that the parameter estimates for time 2 are strikingly similar to
those for time 1. The main difference between time 1 and time 2 is appar-
ently the increase in the number of ties. (One would need another model to
investigate this...)

4 Conclusions

The conclusions that can be drawn from the analyses of these four data sets
are limited of course, but they do point into a common direction. Note that
we succeeded in obtaining ML estimates in unconditional models with triad
effects only in exceptional cases.

Conditioning on the total number of edges did lead to satisfactory results.
In terms of the t-ratios (5), convergence was good. The relative standard de-
viations of the two triad counts (transitivity and 3-cycles) in models without
vertex parameter are quite high for the EIES data, however. This does imply
that the fit of this model is rather mediocre for these data.

The estimation algorithm conditioning on the in- and out-degrees per-
formed even better. However, this conditioning also introduces a substantial
difference in the interpretation of the model, as was discussed for condition-
ally uniform models also in Snijders (1991). The degrees define important
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restrictions on the possible range of outcomes for many network statistics,
and apart from the range they also imply restrictions for the variability as
shown by the standard deviations of the subgraph counts in Tables 1−4,
which are considerably smaller for the models conditional on the degrees
than for those conditional only on the total number of edges. E.g., the 3-
cycle effect is significant negative in all examples for the model conditioning
only on the total number of edges, but not for the model conditioning on all
degrees. In other words, the 3-cycle effect can be ‘explained away’ by the
degree distribution. It depends on subject-matter considerations, however,
whether the degrees are considered to be determined by influences extrane-
ous to triadic network effects, which would be required for making such an
‘explanation’ at all meaningful.

The model with vertex parameters and without conditioning on the de-
grees (but with conditioning on the total number of ties) yields, as expected,
estimates that often are closer to the model conditional on the degrees than
to the model without vertex parameters. It is natural that for the subgraph
counts, this model yields larger standard deviations than for the model con-
ditioning on the degrees.

With respect to computing time, the model conditioning on all degrees
was the quickest and had the best convergence properties. The restriction to
this limited subset of the outcome space seems to facilitate the estimation
algorithm.

A general conclusion is that these examples give some trust in MCMC
estimation for exponential random graph models, conditional on the total
number of edges. The EIES data example illustrates, however, that the
variability (in this case: the relative standard deviations of the transitive
triplets and the 3-cycles counts) in the estimated model still can be very
large. Conditioning also on all degrees amounts to a model with a different
interpretation; this model potentially ‘explains away’ part of the network
structure, leads (in these examples) to larger standard errors, and to much
smaller variability in the fitted networks. More research is needed to study
when conditioning on the degrees is meaningful.
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Appendix

A.1. Simulation-based estimation

The ML estimate is the solution of the moment equation (2). It is known
from the general theory of exponential families that µ(θ) = Eθu(Y ) is the
gradient of ψ(θ),

µk(θ) = ∂ψ(θ)/∂θk; (6)

that the covariance matrix

Σ (θ) = (σhk (θ))1≤h,k≤m = cov (u (Y ))

of u(Y ) with elements σhk (θ) is the matrix of derivatives of µ(θ),

σhk (θ) =
∂µk
∂θh

=
∂2ψ(θ)

∂θh∂θk
; (7)

and that the asymptotic covariance matrix of the ML estimator θ̂ is given
by

covθ

(
θ̂
)

= (Σ(θ))−1 . (8)

If µ(θ) and Σ(θ) would be computable, the ML estimate could be found
by the Newton-Raphson algorithm with iteration step

θ̂
(n+1)

= θ̂
(n)
−
(

Σ(θ̂
(n)

)
)−1 (

µ(θ̂
(n)

)− u (y)
)

. (9)

However, none of the functions ψ(θ), µ(θ), or Σ(θ) can be computed in
practice for exponential graph models, unless g is very small or the model is
very simple (e.g., the reciprocity p∗ model).

Snijders (2002) proposed to use the Robbins-Monro algorithm to solve
the moment equation. This algorithm has iteration step

θ̂
(n+1)

= θ̂
(n)
− anD−1

n Z (n) , (10)
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where Z(n) is given by

Z(n) = u(Y (n))− u(y) ; (11)

in this formula, u(y) is the observed value of the sufficient statistic and Y (n)

is a random draw from probability distribution (1) with parameter θ̂
(n)

. The
step sizes an are a sequence of positive numbers converging to 0. Procedures
for the Monte Carlo generation of Y (n), based on Gibbs sampling or the
Metropolis-Hastings algorithm, are discussed in Snijders (2002). A constant
positive diagonal matrix Dn = D0 is used and a sequence an of the order

n−3/4. The estimate of θ is the average of the sequence θ̂
(n)

or the average of
the ‘last part’ of this sequence.

The algorithm proposed in Snijders (2002) consists of three ‘phases’. The
first phase is used to determine the diagonal matrix Dn = D0 to be used in
Phase 2 in the updating steps (10). The diagonal elements are estimates of
the derivatives

dkk = ∂Eθuk(Y ) = ∂θk , (12)

evaluated in the initial value θ of the estimation algorithm. The second
phase iteratively determines provisional estimated values according to the
updating steps (10). In the third phase the parameter value is kept constant
at θ, the presumably found approximate solution of the moment equation
(2). A large number of steps is carried out to check the approximate validity
of this equation and estimate the estimation covariance matrix covθ

(
θ̂
)
.

A.2. Algorithm extension for vertex parameters

Including degrees and vertex parameters in the model leads to a high number
of parameters. This is in itself not a big problem, as the algorithm includes
no matrix inversions or other operations of order higher than O(g). This
section reviews the parts in the algorithm of Snijders (2002) that depend on
the part of the model represented by (4).

Generating random (di)graphs according to the exponential random graph
model can be carried out using MCMC algorithms based on the conditional
probabilities
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ln (Pθ {Yij = yij | Yhk = yhk for all (h, k) 6= (i, j)}) , (13)

or more involved conditional probabilities. The contribution to (13) corre-
sponding to (4) is

αiyi+ + βjy+j . (14)

Phase 1 of the algorithm is for the estimation of the diagonal elements
(12). It follows from (6) and (7) that

dkk = ∂Eθuk(Y )/∂θk = var uk(Y ) . (15)

In this case, the statistics uk(Y ) are, respectively, the out-degrees Yi+ and
the in-degrees Y+j . For the values dkk only very rough approximations are
required. Therefore it is sufficient to have estimates of the variances (15)
under the model where these degrees have binomial distributions. For a
variable S with a binomial distribution with parameters g − 1 and p, the
estimated variance is S(g − 1 − S)/(g − 1). Therefore, for parameters with
index k corresponding to the term αiyi+ in the log-likelihood, dkk can be
defined by

dkk =
yi+ (g − 1− yi+)

g − 1
,

and for parameters corresponding to the term βjy+j , by

dkk =
y+j (g − 1− y+j)

g − 1
.

To keep these formulae positive for all values of the degrees, the degrees
should first be truncated to the interval [1, ..., g − 2].

With these values, the updating steps for the parameters αi are

α̂
(n+1)
i = α̂

(n)
i − an

(g − 1)(Y
(n)
i+ − yi+)

yi+(g − 1− yi+)
, (16)
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where the numerator yi+(g − 1− yi+) must be truncated to a positive value.
The updating steps for βj are analogous.

A.3. Algorithm extension for conditioning on in- and out-degrees

The maximum likelihood estimation conditional on in- and out-degrees can
be carried out by the MCMC method of Snijders (2002), provided that we
have a way of generating exponential random graphs under this condition.
An algorithm for the latter purpose can be constructed using the Metropolis
Hastings algorithm with proposal steps that follow from Rao, Jana, and
Bandyopadhyay (1996).

These authors show that it is possible to go from any digraph to any
other digraph with the same in- and out-degrees by finitely many steps of
the following kind. These steps are presented as changes for the adjacency
matrix.

1. Switching alternating rectangles.

For four distinct vertices i, j, h, k, with yih = yjk = 1, yik = yjh = 0,
switch the values of these four elements (i.e., replace 0 by 1 and vice
versa).

2. Switching alternating triads.

(Rao et al. (1996) use the term compact alternating hexagons rather
than alternating triads.) For three distinct vertices i, j, h with yij =
yjh = yhi = 1, yji = yhj = yih = 0, switch the values of these six
elements.

The proposal distribution is a mixture, in proportions p and 1−p, of switching
a randomly selected alternating rectangle and switching triad. It was noted
by Rao et al. (1996) that the number of possibilities for such switches depends
on the current digraph. These authors proposed a way for dealing with
this number of possibilities that requires to calculate the number of these
possibilities. To circumvent this (somewhat time-consuming and error-prone)
calculation, we propose a different and simpler technique.

For switching a rectangle, four distinct vertices i, j, h, k are selected at
random. If yih = yjk 6= yik = yjh, this is an alternating rectangle. Denote
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by ỹ the digraph that is obtained by switching this rectangle. The switch is
carried out with probability

min
{

1, eθ́(u(ey)−u(y))
}

.

If the condition yih = yjk 6= yik = yjh is not satisfied, then the digraph
remains unchanged at this iteration. The procedure for switching triads is
entirely analogous. We use the proportions p = 1− p = 0.5.

This proposal distribution has a constant probability for each switch of an
alternating rectangle, and likewise for alternating triads. The probability of
keeping the current digraph unchanged is variable, but this probability does
not occur in the formula or convergence proof of the Metropolis Hastings
procedure.
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