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Assumptions
All inferential statistical methods are based on
assumptions — but are they ever true?

The saying
‘All models are wrong; some models are useful’

is attributed to the statistician George Box.

http://en.wikiquote.org/wiki/Talk:George E. P. Box

Whether this makes sense depends on what you define
as the ‘truth’ of a model.

A model is an image of reality, like a picture;
it is not equal to reality.

Only in mathematical derivations and simulation studies
can we be sure of the model generating the observations.
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Model assumptions such as linearity of regressions,
normal distributions, independence, all are made
to obtain simplified representations of reality
that are mathematically tractable.

Some assumptions are serious restrictions
of the validity of statistical inferences;
others are made for convenience,
and restrict inference only in rare cases.

Deviations from assumptions are serious
if they affect the performance of statistical procedures.
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For parameter estimation and testing,
primary issues are:

1 type-I error rates of tests

2 coverage rates of confidence intervals
— which is practically the same

3 reliability of standard errors
— which also is practically the same,
as standard errors are often used
to make confidence intervals
(if the estimator if approximate normally distributed).
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Thus, the major question is not, whether assumptions are
satisfied; but (in the first place) whether
tests for the parameters of interest
have approximately correct type-I error rates.

For (generalized) linear models, the main parameters of interest
are mostly (not necessarily) the regression coefficients β.

The proof of the pudding is in the approximate normality
(or t distribution)
of the standardized variables (β̂k − βk )/s.e. (β̂k ) .

The quality of the normal approximation is serious mainly for
tail probabilities like 0.001, 0.01, 0.10, 0.90, 0.99, 0.999.
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Example: t-test

Consider two samples Xi , i = 1, . . .nX and Yi , i = 1, . . .nY

and denote n = nX + nY , λ = nx/n.
It is assumed that these are independent i.i.d. samples
from distributions with finite variances.

The two-sample t-test statistic is

t =
X − Y

s.e.
(

X − Y
)

where for the classical t-test the standard error is
the pooled standard error, assuming equal variances,
but the default in R is the standard error for unequal variances
combined with the Welch/Satterthwaite approximation for d.f.
(See keyword var.equal for t.test.)
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The Law of Large Numbers implies

L
(√

n
(
X − Y − (µX − µY )

))
→ N

(
0,
σ2

X
λ

+
σ2

Y
1− λ

)
.

The delta method implies that for large nX and nY ,
√

n × s.e. may be replaced by its probability limit.
This value is always asymptotically correct
for the unequal-variances standard error,
but for the pooled standard error only if σ2

X = σ2
Y .
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Therefore, t has an asymptotic standard normal distribution
under µX = µY , except when using the pooled standard error
if the variances are different.

This is the mathematical reasoning showing that the t-test
with the pooled s.e. is robust against deviations from normality;
the t-test with the unequal-variances s.e. is also
robust against unequal variances.
This comes at the price of a small loss of power
for the case that actually the variances are equal.

Simulations can be used to show the same,
but with more questionable generality.
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The assumption of normal distributions of the populations
is made only to be able to derive the t-test as an
optimal test with an exact t distribution (if σ2

X = σ2
Y );

for the practical validity of the t-test, one may say that the
choice between the two variants depends on whether the null
hypothesis is restricted or unrestricted,

H(r)
0 : µX = µY , σ

2
X = σ2

Y or H(u)
0 µX = µY ;

the t-test is robust against non-normality;
this test is in doubt only when there can be serious outliers
(long-tailed distributions – note the finite variance assumption);
or when sample sizes are small
and distributions are far from normal.
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. . . exercise . . .

Make a simulation study of the robustness of the t-test
under various assumptions, and find

1 specifications with far from normal distributions
where the t-test performs well;

2 specifications where the t-test performs poorly.

(Hint: for a more complicated simulation study,
see LM Robustness.r.)
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Alternatives to the t-test

If the t-test is in doubt
(outliers or (small samples & serious non-normality)),
which two-sample tests can be used instead?

1 Nonparametric test: Wilcoxon-Mann-Whitney
wilcox.test

2 Permutation test: e.g., package coin

The null hypothesis for these tests is that
the two distributions are equal (not just their means),
but this distribution may have any shape.
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Assumptions of Linear Models
The assumptions of the linear model:

1 Y = Xβ + E ; X is fixed or conditioned upon.
2 The Ei are independent.
3 The Ei have normal distributions with expected values 0.
4 The Ei have constant variance.

How important are these?

1 Linear model: crucial,⇒ model specification.
Minor deviations from linearity are tolerable.

2 Independent residuals: crucial;
violations⇒ e.g., time series, multilevel models.

3 Normally distributed residuals: not important as such;
outliers can be risky,⇒ regression diagnostics;

4 Deviations from constant variances (homoskedasticity) can
be serious; however, this issue is often ignored.
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‘Robust’ standard errors
Standard errors for regression coefficients that are
robust for non-constant variances were developed
by Huber and White.

These are implemented by the function hccm in car

(hccm for heteroscedasticity-corrected covariance matrix).
Also see Anova and linearHypothesis.

Depending on the type of suspected heteroskedasticity,
transformations and weighted LS may be alternatives.

See Fox (2002), Section 6.3.

The use of this ‘robust’ standard error in cases different from a well-specified
linear model with heteroscedasticity is critically discussed in
D.A. Freedman (2006), ‘On the so-called “Huber Sandwich estimator” and
“robust standard errors”’. The American Statistician, 60, 299–302.

14 / 20



‘Robust’ standard errors
Standard errors for regression coefficients that are
robust for non-constant variances were developed
by Huber and White.

These are implemented by the function hccm in car

(hccm for heteroscedasticity-corrected covariance matrix).
Also see Anova and linearHypothesis.

Depending on the type of suspected heteroskedasticity,
transformations and weighted LS may be alternatives.

See Fox (2002), Section 6.3.

The use of this ‘robust’ standard error in cases different from a well-specified
linear model with heteroscedasticity is critically discussed in
D.A. Freedman (2006), ‘On the so-called “Huber Sandwich estimator” and
“robust standard errors”’. The American Statistician, 60, 299–302.

14 / 20



Robust estimators of location
The usual estimators of location and scale are
the mean and the standard deviation.

These are highly sensitive to outliers:
one observation can change the mean to anything,
and change the s.d. to arbitrarily high values.

The median is a location estimator that is much less sensitive.
Under normality, the mean is more efficient;
under long-tailed distributions, the median can be more efficient
(cf. Venables & Ripley, p. 121).

Another robust location estimator is the α–trimmed mean,
where the fraction α lowest, and highest, sample elements are
discarded.

(The median may be regarded as the 50% trimmed mean.)
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Robust estimators of scale
One way to obtain a more robust scale estimator is to work not
with squared deviations:
e.g., the mean absolute deviation from the mean

1
n

n∑
i=1

| Xi − X |

or from the median

1
n

n∑
i=1

| Xi −medianj(Xj) | .

More usual robust estimators of scale are based on quantiles;
the interquartile range

IQR = X(3n/4) − X(n/4)

and the mean absolute deviation

MAD = mediani | Xi −medianj(Xj) | .
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Even if there are less than n/4 outliers,
the MAD will not be strongly affected.
We say that the MAD has a breakdown point of 25%.

For normal distributions, with n→∞,

MAD → 0.6745σ, IQR → 1.349σ .

Therefore often the values

1.4826 MAD =
1

0.6745
MAD and 0.741 IQR =

1
1.349

IQR

are used.

17 / 20



Even if there are less than n/4 outliers,
the MAD will not be strongly affected.
We say that the MAD has a breakdown point of 25%.

For normal distributions, with n→∞,

MAD → 0.6745σ, IQR → 1.349σ .

Therefore often the values

1.4826 MAD =
1

0.6745
MAD and 0.741 IQR =

1
1.349

IQR

are used.

17 / 20



These robust estimators of location and scale illustrate
two basic issues concerning robustness and sensitivity:

1 higher powers of deviations are more sensitive;

2 quantiles that are not in the tails are less sensitive.
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Robust regression
Estimators for linear models (and glm) have been developed
that aim to limit the influence of outliers.

These are called robust regression methods.

An important type of robust regression methods are
M-estimators, minimizing∑

i

ρ(Yi − Xiβ)

as a function of β, for a suitable function ρ.

ρ(e) = e2 yields the LS estimator; robust estimators are
obtained if for large e, ρ(e) increases less than quadratically.

See Venables Ripley, Section 5.5.
R functions huber, rlm, lqs.
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Concluding points
It is good to use methods that are not very sensitive
to model assumptions that might be false.

However, we also wish to work with models
in which we can have some confidence.
This gives greater scientific and practical insight,
and potentially higher statistical efficiency
(robustness is often bought at the cost of efficiency loss!).

Graphical explorations and diagnostic methods
can help to improve the models being fitted.

Sometimes, robust estimates may be presented as such;
in many cases, however, they are an intermediate step to
diagnose sensitivity of the results to deviations from the model
and thereby to diagnose the fit of the model.
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