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Abstract

Data from repeated measures experiments are usually analyzed with conventional ANOVA. Three well-known

problems with ANOVA are the sphericity assumption, the design effect (sampling hierarchy), and the requirement for

complete designs and data sets. This tutorial explains and demonstrates multi-level modeling (MLM) as an alternative

analysis tool for repeated measures data. MLM allows us to estimate variance and covariance components explicitly.

MLM does not require sphericity, it takes the sampling hierarchy into account, and it is capable of analyzing

incomplete data. A fictitious data set is analyzed with MLM and ANOVA, and analysis results are compared.

Moreover, existing data from a repeated measures design are re-analyzed with MLM, to demonstrate its advantages.

Monte Carlo simulations suggest that MLM yields higher power than ANOVA, in particular under realistic circum-

stances. Although technically complex, MLM is recommended as a useful tool for analyzing repeated measures data

from speech research.
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1. Introduction

Like other behavioral disciplines, the study of
speech communication progresses mainly by means

of statistical inference. Using strict tools and pro-

cedures, researchers generalize from a sample of

observed cases to broader contexts. Statistics as a

discipline aims to facilitate and improve this infer-

ence, and to ensure validity of the resulting insights.
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Meanwhile, however, new insights are also achieved

within the field of statistics itself, although these

insights do not always percolate into actual re-
search practice (Max and Onghena, 1999). Statis-

tical insight and actual research practice thus are at

risk to diverge, to the detriment of the latter. In

particular, multi-level modeling (hence MLM) has

emerged in the past decades as a highly flexible and

useful tool for statistical analysis and inference

(Searle et al., 1992; Bryk and Raudenbush, 1992;

Goldstein, 1995; Hox, 1995; Kreft and De Leeuw,
1998; Snijders and Bosker, 1999; McCulloch and

Searle, 2001; Raudenbush and Bryk, 2002; Maxwell

and Delaney, 2004, Chapter 15). This new tool is
ed.
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also known as the hierarchical linear model, vari-

ance component model, or mixed-effects model.

MLM has already found wide deployment in dis-

ciplines such as sociology (e.g. Carvajal et al., 2001),
education (e.g. Broekkamp et al., 2002), biology

(e.g. Agrawal et al., 2001; Hall and Bailey, 2001),

and medicine (e.g. Beacon and Thompson, 1996;

Merlo et al., 2001; Lochner et al., 2001). Its many

advantages have also made MLM increasingly

popular in behavioral research (e.g. Van der Lee-

den, 1998; Reise and Duan, 2001; Raudenbush and

Bryk, 2002), but so far MLM has made few inroads
into speech research.

The purpose of this tutorial is to explain the

basics of multi-level modeling, to compare MLM

against its more conventional counterpart for

hypothesis testing, ANOVA, and to demonstrate

the use of MLM in actual research in our field.

Some readers might hesitate to learn about, let

alone adopt statistical innovations such asMLM. It
will be argued below that the advantages of MLM

for inference and insight outweigh these difficulties.

The outline of this tutorial is as follows. First,

three well-known problems with ANOVA are re-

viewed, using a fictitious data set. Multi-level

modeling promises to solve all three problems:

sphericity, hierarchical sampling, and missing data.

The subsequent section explains the basics of multi-
level modeling, using the same fictitious data set.

Analysis results from MLM and from RM-

ANOVA, based on the same data set, are then

compared and discussed. One notable advantage of

MLM is its higher power in hypothesis testing.

MLM is then demonstrated in an example analysis

of real data from a recently published study. MLM

and ANOVA are also compared in a more general
fashion, using Monte Carlo simulations. Finally, we

discuss the advantages and drawbacks of using

multi-level models for research in speech commu-

nication.
1 These data were generated by adding a random effect

(sampled from a normal distribution) to the fixed treatment

effect. The data set is available online at the electronic appendix

to this tutorial, at URL http://www.let.uu.nl/~Hugo.Quene/

personal/multilevel.
2. Three problems with ANOVA

2.1. Sphericity

This tutorial focuses on repeated-measurement
designs, with two nested random factors: subjects
(or participants), and trials (or occasions) within

subjects, respectively. Hence, data are obtained

from a multi-level sampling scheme, in which

subjects have been sampled first, and trials have
been sampled within subjects. These two levels of

sampling are usually called level-1 (lower) and

level-2 (higher). The factor of interest, like

‘‘treatment’’ or ‘‘condition’’, constitutes a fixed

factor, so random and fixed effects are mixed in

one experimental design.

To illustrate this design, we could think of a

fictitious study of lip displacement during speak-
ing, with N ¼ 108 observations. There are J ¼ 12

subjects in this study. Each subject participates in

three trials or observations or replications in each

of the three treatment conditions, yielding n ¼ 9

observations for each subject. This design can be

regarded as a two-level sample: first subjects are

sampled from the population of suitable subjects,

and then trials or observations are sampled from
the possible observations within these sampled

subjects. Stated otherwise, the observations are

not all independent because observations are

clustered within subjects; such observations within

the same subject tend to be correlated. The ficti-

tious measurements 1 for this study are given in

Table 1, which shows the displacement data for 12

speakers (rows) under three treatment conditions
(columns), with three trials or observations in each

design cell.

The conventional analysis of these data would

resort to repeated measures ANOVA (hence RM-

ANOVA). The conventional univariate RM-

ANOVA F test uses the Treatment by Subject

interaction (with 2 · 11 df) as error term for the

Treatment effect. This yields a significant main
effect of Treatment: F ð2; 22Þ ¼ 3:58, p ¼ 0:045.
Hence we might conclude that treatments differ

significantly in this study.

However, this would be an incorrect analysis

for the present data set. A complication in all re-

peated measures designs is that observations

http://www.let.uu.nl/~Hugo.Quene/personal/multilevel
http://www.let.uu.nl/~Hugo.Quene/personal/multilevel


Table 1

Fictitious data from a study of lip displacement, broken down by treatment conditions, by subjects (rows) and by trials (columns)

Treatment A Treatment B Treatment C

Y j1 2 3 4 5 6 7 8 9

1 1.71 )0.55 )0.75 0.54 1.07 0.01 1.32 2.94 2.41 0.97

2 )0.10 )0.68 1.07 0.48 1.72 1.73 2.43 1.23 1.82 1.08

3 )0.16 )0.75 )0.42 )2.40 )1.13 )4.74 1.67 0.86 1.65 )0.60
4 2.83 0.95 1.49 1.82 2.81 2.33 3.25 1.94 0.87 2.03

5 )1.15 )1.22 )0.88 1.48 0.75 )1.20 )1.32 0.58 1.28 )0.19
6 0.71 )0.68 1.58 )0.65 )0.32 1.55 1.72 3.52 2.52 1.10

7 )3.99 )2.69 )2.55 1.32 1.15 2.11 )3.61 )3.48 )2.32 )1.56
8 )3.25 )2.04 )4.50 )2.78 )1.77 )3.28 )3.03 )2.94 )2.13 )2.86
9 1.05 0.70 )0.13 0.58 )0.07 )1.52 0.77 2.62 1.53 0.61

10 0.19 )1.16 0.66 )2.54 )2.32 )3.07 2.42 2.57 1.80 )0.16
11 0.90 3.40 2.02 1.88 1.91 )0.03 4.77 5.76 3.73 2.70

12 1.02 0.78 0.12 )1.58 )1.20 )2.51 1.76 )0.18 )0.73 )0.28

Y )0.18 )0.22 1.11

Measurements are given in arbitrary units.

2 The variance of a difference score between treatments A and

B is defined as varðA� BÞ ¼ varðAÞ þ varðBÞ � 2 covðA;BÞ.
Hence, the sphericity assumption implicitly refers to the

covariances between pairs of treatments.
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within each subject are correlated, precisely be-
cause they are made within the same subject. There

is of course variance between multiple trials or

occasions for the same treatment, but there is also

covariance between occasions under different

treatments. One can think of this covariance as an

unstandardized amount of correlation between the

scores in two treatments. The variance–covariance

matrix in (1) lists the variances (on the diagonal)
and the covariances (off the diagonal) between

treatments A, B, and C.

r2
AA covAB covAC

covBA r2
BB covBC

covCA covCB r2
CC

2
4

3
5 ð1Þ

If all variances on the diagonal have the

same value, then there is homogeneity of vari-

ance, which is a necessary condition to perform

RM-ANOVA. In addition to this property, con-

ventional RM-ANOVA also requires that all co-
variances off the diagonal have the same value; this

property is called compound symmetry. Compound

symmetry is a sufficient condition to perform

univariate RM-ANOVA (Winer, 1971, p. 596). If

the stringent assumption of compound symmetry

is violated, then the weaker assumption of sphe-

ricity must still hold, as a necessary condition to

perform univariate RM-ANOVA (Maxwell and
Delaney, 2004, Chapter 11). Sphericity is found
when all difference scores between pairs of treat-

ments have the same variance. 2 In other words,

the within-subject correlation of scores is properly

accounted for in RM-ANOVA, but only if the

assumption holds that these correlations (covari-

ances) are equal among all treatments conditions.

After factoring out the subjects’ individual differ-

ences, residual scores must have homogeneous
variances among all cells of the subject by treat-

ment interaction. This assumption, however, is

often violated (O’Brien and Kaiser, 1985; Max and

Onghena, 1999).

For the present data set, there is indeed no

sphericity (Mauchly’s W ¼ 0:317, p ¼ 0:003), and
hence a univariate RM-ANOVA is not appropri-

ate. If the sphericity assumption is violated, then
there are several possibilities. The first is to reduce

the degrees of freedom in the univariate F test,

which results in more conservative testing than

with uncorrected degrees of freedom as above. In

this example, we use the Huynh–Feldt correction

factor � ¼ 0:625. The resulting univariate RM-

ANOVA F test with corrected degrees of free-

dom does not yield a significant main effect of



3 In the present example, disaggregated ANOVA would yield

F ð2; 105Þ ¼ 5:15, p ¼ 0:007 for the treatment effect.
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Treatment: F ð1:25; 13:75Þ ¼ 3:58, p ¼ 0:073. The

previous value of F ð2; 22Þ ¼ 3:58 with uncorrected

degrees of freedom was positively biased towards

finding significant effects, due to the violation of
the sphericity assumption (O’Brien and Kaiser,

1985, and references given there).

The second possibility is to use a multivariate

approach to RM-ANOVA (O’Brien and Kaiser,

1985; Max and Onghena, 1999; Maxwell and

Delaney, 2004); this approach does not depend on

the sphericity assumption. In our example, the

multivariate RM-ANOVA F test yields a signifi-
cant main effect of Treatment: F ð2; 10Þ ¼ 10:4,
p ¼ 0:004. This shows that the multivariate F test

has a greater power than the univariate F test, if

the sphericity assumption is violated. The Monte

Carlo simulations below further address this

power issue.

Max and Onghena (1999) also mention MLM

as a third option if the sphericity assumption is
violated. In solving the sphericity problem, MLM

has the important advantage that it allows the

modeling of the variance–covariance matrix (1)

directly from the observed data. No assumptions

are necessary about constant variances (homoge-

neity of variance, or homoschedasticity) nor about

constant covariances (compound symmetry) nor

about constant variances of difference scores
(sphericity). This means that MLM can be used

safely, even if there is no homogeneity of variance,

or if there is no sphericity, or if there is no com-

pound symmetry (Goldstein, 1995; Beacon and

Thompson, 1996). Moreover, the three ANOVA

assumptions mentioned above impose hard limits

on the insights that can be extracted from a data

set. Rather than assuming that variances are equal
and that covariances are equal, it would be more

advantageous to inspect estimates of these quan-

tities, under various treatment conditions. MLM

allows researchers to do this, as will be shown

below with real data. The variances and covari-

ances under different treatments often tell their

own tale about the research question at hand. In

spite of these advantages, however, Max and On-
ghena (1999) mention MLM only briefly, and

without further explanation. The present tutorial

provides more explanation, background and

examples of multi-level modeling.
2.2. Design effect

In a multi-level sampling procedure, such as in

most repeated measures experiments, the esti-
mated standard error is usually larger than in a

single-level sampling procedure with the same

number of elements (Kish, 1967; Cochran, 1977).

Due to correlation (covariance) of observations

within higher-level units, the effective number of

observations is lower than the total number of

observations.

In the example above, the observations within a
subject are correlated. This within-subject corre-

lation is generally known as intra-class correlation;

it is also related to the non-centrality parameter k.
In this example, the between-subjects variance is

2.056; the residual within-subject variance is 2.408.

The intra-class correlation qI is then computed as

2.056/(2.056+ 2.408)¼ 0.461 (Haggard, 1958;

Winer, 1971; Snijders and Bosker, 1999, p. 20).
This moderate intra-class correlation coefficient

indicates that observations are indeed clustered or

correlated within subjects.

The effective number of observations, therefore,

is less than the nominal N ¼ 108. For this two-

stage sampling design, the so-called design effect is

defined as 1þ ðn� 1ÞqI � 4:7 (Kish, 1967; Coch-

ran, 1977; Snijders and Bosker, 1999). The effective
sample size in this study is not N ¼ 108, but N
divided by the design effect, or 108=4:7 � 23.

Hence, the effective standard error of the mean

(defined as s=
ffiffiffiffi
N

p
) is not 2:076=

ffiffiffiffiffiffiffiffi
108

p
¼ 0:200, but

2:076=
ffiffiffiffiffi
23

p
¼ 0:433, more than twice as large.

Data sets with a multi-level structure can of

course be analyzed as if they were drawn from a

single-level sample at the lower level, disregarding
the higher-level sampling structure. This so-called

disaggregation is sometimes found in speech re-

search using repeated measures 3 (Snijders and

Bosker, 1999; Max and Onghena, 1999). Such

disaggregation of higher-level units into a single-

level model leads to underestimation of the stan-

dard error of the mean, as explained above. In our

example the unbiased estimate for the standard
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error of the mean is 0.433; the disaggregated esti-

mate is 0.200, which is far too low. Most statistical

analyses use (quantities derived from) this esti-

mated standard error of the mean. Hence, disag-
gregation results in an underestimation of the

Type I error: H0 would be rejected too easily while

in fact H0 may be true (Snijders and Bosker, 1999).

Speech researchers generally take the intra-class

correlation into account, however, and do not

disaggregate their data. RM-ANOVA is widely

used in speech research; this technique allows

researchers to separate random between-subject
variance from random within-subject variance.

Only the latter is then used to test within-subject

factors. This decreases chance capitalization,

which would be a serious risk if data were disag-

gregated.

Although RM-ANOVA is very useful for such

a two-level sampling procedure, it cannot be ex-

tended to higher-order sampling procedures. To
illustrate this point, we could further imagine that

our fictitious lip displacement study is conducted

in 15 languages, which are randomly selected from

the thousands of languages of the world. As be-

fore, 12 speakers participate for each language. (A

plausible aim of this research project could be to

investigate whether the treatment effect occurs

universally across languages.) RM-ANOVA can-
not be used to analyze data from such a three-level

sampling procedure involving languages, speakers

within languages, and trials within speakers within

languages. Because of the lack of suitable statisti-

cal techniques, researchers have been forced until

now to avoid such quantitative investigations.
2.3. Missing data

A third considerable problem in RM-ANOVA

is that missing data are not allowed. Disentangling

the between-subject and between-treatment vari-
ances requires a full data matrix. The first conse-

quence of this requirement is that if a subject

misses one observation (perhaps for good rea-

sons), then all data from that subject have to be

discarded. This threatens the power of the experi-

mental design. A common strategy is to replace

missing observations with a subject’s mean, but
this strategy results in underestimation of the error

variance.

Second, the ban on missing observations ham-

pers the analysis of incomplete designs, such as
Latin-squares. Many experiments require counter-

balancing of subjects across treatments, to

neutralize strategic effects or learning effects. RM-

ANOVA of such designs is notoriously complex,

and usually requires an auxiliary factor such as

List or Group in the analysis (cf. Raaijmakers

et al., 1999). The variances attributed to this aux-

iliary factor and its interactions should in fact be
regarded as between-subject variance. Multi-level

modeling provides an attractive alternative analy-

sis, because it allows statistical evaluation of

incomplete data, without any additional compli-

cation (Snijders and Bosker, 1999, p. 170).
3. Multi-level modeling

Multi-level modeling promises to solve all three

problems with conventional RM-ANOVA dis-

cussed above. It is robust against violations of

homoschedasticity and sphericity. It is suitable for

analyzing data from multi-level sampling schemes.

It is also robust against missing data. But how

does it work? This section explains the basics of
multi-level modeling. Several comprehensive text-

books are available for further study, including

Goldstein (1995), Bryk and Raudenbush (1992),

Hox (1995), Kreft and De Leeuw (1998), Snijders

and Bosker (1999) and Raudenbush and Bryk

(2002).

3.1. Constructing a model

Suppose that Yij is a response variable, for trial i
within subject j. This response can be regarded as

a deviation from the mean Bj of the jth subject, i.e.

Yij ¼ Bj þ eij ð2Þ

It is assumed that the residuals eij are normally

distributed, with mean zero and variance r2
eij
. We

can also regard the mean response Bj for subject j
as a deviation from the grand mean c00, i.e.

Bj ¼ c00 þ u0j ð3Þ
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Just like residuals eij at the lowest level (of trials),

the residuals u0j at the higher level (of subjects) are
assumed to be normally distributed, with an ex-

pected value of zero and with variance r2
u0j
.

Higher-level residuals u0j are also assumed to be

uncorrelated with lower-level residuals eij, i.e.

ru0j;eij ¼ 0. Substitution of Eq. (3) in (2) yields the

basic multi-level model:

Yij ¼ c00 þ ðu0j þ eijÞ ð4Þ

where i ranges over 1; . . . ; Ij level-1 units (e.g. trials

or occasions), and j ranges over 1; . . . ; J level-2
units (e.g. subjects).

This model consists of two parts, viz. the fixed

part and the random part (in this paper, random

terms in models are in parentheses). The fixed part

here only models the ‘‘effect’’ of the grand mean

that underlies all observations. In the random

part, the total variance of Y is decomposed to two

levels, viz. variance between subjects r2
u0j
, and be-

tween occasions within subject r2
eij
. Because there

are no explanatory variables, (4) is also called the

‘‘empty’’ model (Snijders and Bosker, 1999, p. 46).

The corresponding variance–covariance matrix is

given in (5).

r2
u0j

þ r2
eij

0 0

0 r2
u0j

þ r2
eij

0

0 0 r2
u0j

þ r2
eij

2
64

3
75 ð5Þ

Variances on the diagonal of this matrix are con-

strained to be the same for all treatments, and all

variances off the diagonal are set to zero (yielding

compound symmetry). This matrix can therefore

be reduced to:

r2
u0j

h
þ r2

eij

i
ð6Þ

The empty model (4) can easily be extended by
including explanatory variables. We begin by

including a single explanatory variable in the fixed

part. In the fictitious study of lip displacement, we

may extend the model in (4) by including the

Treatment factor as an explanatory variable. This

can be done by replacing the pooled mean c00 in

(4) by three coefficients cA00, cB00 and cC00, for the
three treatment conditions. The selection of these
conditions is done by means of three binary
dummy variables, here named TrA, TrB, and TrC

(e.g. Pedhazur and Schmelkin Pedhazur, 1991).

The dummy variable TrA has values unity

(1¼ ‘‘on’’) for observations in treatment condi-
tion A and zero (0¼ ‘‘off’’) for the other condi-

tions; the other two dummy variables are

constructed in analogous fashion. The resulting

model in (7) below is also called the cell means

model (Searle, 1987).

Yij ¼ cA00TrAþ cB00TrBþ cC00TrCþ ðu0j þ eijÞ
ð7Þ

This model includes the treatment effects only in

its fixed part. Since we have only adjusted the fixed

part of the model, the variance–covariance matri-
ces for the random components u0j and eij are the

same as specified in (5) above. The variance be-

tween subjects and within subjects is constrained

to be the same for all three treatment conditions.

This implies that the main effects of treatments are

equal among all subjects and among all trials

within subjects.

Since these assumptions may be invalid, the
model could be further improved to allow for non-

constant variances among the treatments, both

between subjects and between trials within sub-

jects, as in (8) below.

Yij ¼ cA00TrAþ cB00TrBþ cC00TrC

þ ðuA0jTrAþ uB0jTrBþ uC0jTrC

þ eAijTrAþ eBijTrBþ eCijTrCÞ
¼ TrA½cA00 þ ðuA0j þ eAijÞ	
þ TrB½cB00 þ ðuB0j þ eBijÞ	
þ TrC½cC00 þ ðuC0j þ eCijÞ	 ð8Þ

Just like the grand mean c00 has been replaced in

the cell means model (7) by three treatment means,

so the general variances both between subjects and

within subjects are replaced here by three treat-

ment variances, at each level of the sampling

hierarchy. The variance–covariance matrix for the
random variance at level-2 (between subjects)

according to model (8) is given in (9). Variances on

the diagonal do not need to be the same for each

treatment.



H. Quen�e, H. van den Bergh / Speech Communication 43 (2004) 103–121 109
r2
uA0j

0 0

0 r2
uB0j

0

0 0 r2
uC0j

2
64

3
75 ð9Þ

This model no longer assumes homoschedasticity,
but it still assumes compound symmetry or sphe-

ricity. As mentioned above, MLM does not

require the sphericity assumption for valid infer-

ences. Rather than constrain the covariances,

MLM allows us to specify the full variance–

covariance matrix (1) in the model. Due to the

particular design of this study, however, we can

only do so here for the variance component u0j
between subjects (level-2). There is no covariance

between trials within subjects (level-1) in this

example design, because trials were not co-varied

with treatment conditions here. This yields the

following fully specified multi-level model (10)

with its corresponding variance–covariance matrix

given in Eq. (11):

Yij ¼ cA00TrAþ cB00TrBþ cC00TrC

þ ðuA0jTrAþ uB0jTrBþ uC0jTrC

þ eAijTrAþ eBijTrBþ eCijTrCÞ
¼ TrA½cA00 þ ðuA0j þ eAijÞ	
þ TrB½cB00 þ ðuB0j þ eBijÞ	
þ TrC½cC00 þ ðuC0j þ eCijÞ	 ð10Þ

r2
uAA0j

covðuB0j; uA0jÞ covðuC0j; uA0jÞ
covðuA0j; uB0jÞ r2

uBB0j
covðuC0j; uB0jÞ

covðuA0j; uC0jÞ covðuB0j; uC0jÞ r2
uCC0j

2
64

3
75

ð11Þ

This most extensive model captures all relevant
structure of the data set, both in its fixed and in its

random part. Estimated coefficients for this and

preceding models are presented and discussed be-

low.
3.2. Estimating coefficients and testing hypotheses

The coefficients in multi-level models are cal-

culated by means of a variety of computational

estimation procedures, such as Iterated General-

ized Least Squares (or IGLS, Goldstein, 1995),
Fisher scoring (Longford, 1993) and Expectation-
Maximization (or EM, Bryk and Raudenbush,

1992; Raudenbush and Bryk, 2002). All these

estimation procedures are based on advanced

matrix algebra.
Although multi-level models require fewer

assumptions than classical ANOVA models, and

less stringent ones, a few key assumptions are still

necessary for the estimation procedures used in

MLM. First, the random components (such as u0j
and eij in the models above) should have a normal

distribution, with zero mean. In contrast to RM-

ANOVA, no assumptions are made about the
variances of these components. Hence MLM can

be regarded as a generalization of ANOVA,

without the problematic constraints discussed

above. MLM does not require homoschedasticity,

nor compound symmetry, nor sphericity. Second,

the dependent variable should follow a normal

distribution. Special techniques are available in

case the dependent variable is not normally dis-
tributed, as with binary or discrete variables

(Goldstein, 1991), but we will not discuss those

complications here (see e.g. Snijders and Bosker,

1999, Chapter 14). These two assumptions are

more realistic than the more stringent assumptions

required by RM-ANOVA models. The procedures

differ somewhat in their assumptions during esti-

mation. IGLS and Fisher scoring assume that the
residuals at all levels are randomly distributed; this

assumption is required to calculate the variance–

covariance matrices at each level. The EM proce-

dure draws heavily on the joint distribution of

both the observed response variables and the un-

known residuals. Under the above two key

assumptions (randomly distributed residuals, and

normally distributed responses), however, all esti-
mation procedures yield the same estimates for the

coefficients in the multi-level model (Goldstein

et al., 1994; Snijders and Bosker, 1999, Section

4.6). All estimation methods use iterative proce-

dures. Each iteration consists of two steps. Fixed

parameters are estimated first; then the random

parameters are estimated in a second step. In the

next iteration, the fixed parameters are estimated
again, using the previously estimated variance–

covariance matrices; then the random parameters

are estimated again, using the previously estimated

fixed parameters. These iterative estimation



4 Analyses were done with the MLwiN program (Rasbash

et al., 2000). An annotated log of these example analyses is

available at the electronic appendix to this tutorial, at URL

http://www.let.uu.nl/~Hugo.Quene/personal/multilevel.
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methods converge rapidly to the maximum likeli-

hood estimates.

Several textbooks on MLM contain useful

expositions of the computational procedures for
estimating model coefficients (Goldstein, 1995;

Bryk and Raudenbush, 1992; Hox, 1995; Kreft

and De Leeuw, 1998; Snijders and Bosker, 1999;

Raudenbush and Bryk, 2002). Pinheiro and Bates

(2000, Chapter 2) and Raudenbush and Bryk

(2002, Chapters 3 and 14), provide a helpful

introduction and overview of the various estima-

tion procedures. In the remainder of this tutorial,
we will abstract from the computational details of

the estimation procedures.

The resulting estimates can be used for

hypothesis testing, e.g. to evaluate H0 claiming

that a particular estimated parameter equals zero.

This type of hypothesis testing is based on the

Wald criterion that an estimate is significant at

a ¼ 0:05, if it exceeds 1.96 times its associated
standard error (e.g. Hox, 1995). In other words,

if the ratio of an estimated parameter and

its standard error exceeds 1.96, then the H0

regarding that parameter is rejected. The para-

meter then differs significantly from zero, and

should be included in an adequate model of the

data set.

Contrasts between coefficients are tested in a

similar fashion. For example, the main effect of the

treatment factor can be evaluated in the form of

pairwise comparisons between treatment condi-

tions. Just as in ANOVA comparisons, each con-

trast corresponds with an estimated amount of

variance (with its associated standard error of that

estimate). The variance quantity itself follows a v2

distribution (Winer, 1971, p. 849). Hence, a con-

trast is evaluated using v2 with df ¼ 1 as test sta-

tistic (for details see Raudenbush and Bryk, 2002;

Goldstein, 1995, p. 33). If multiple pairwise com-

parisons are required (for more than two treat-

ment conditions), as in our example study, then

there are multiple contrasts to evaluate. The sig-

nificance level for each separate contrast should

then be adjusted, e.g. using Bonferroni adjustment

of a divided by the number of comparisons (here

a ¼ 0:05=3 ¼ 0:016) to ensure the overall signifi-

cance level across all pairwise comparisons (Kirk,

1995).
3.3. Results of the example model

The estimated parameters 4 from the models

(4), (7) and (10) are given in Table 2 below.
Model (4) is the ‘‘empty’’ model, with the grand

mean (0.237) as its only explanatory variable. Note

that the estimated standard error of the mean

(0.440) approximates the effective standard error

corrected for the design effect (calculated above as

0.433). This estimate is indeed considerably larger

than the single-level estimate (0.200). As we already

saw above, both random variance components
differ from zero (based on Wald testing: estimate

divided by standard error exceeds 1.96). This shows

that a multi-level model is indeed necessary. Lip

displacement varies both between and within sub-

jects, and these two sources of random variance

should be taken into account. The estimate for the

variance among trials (level-1) within subjects is

more accurate (with smaller standard error of
estimate), because this estimate is based on a large

number of trials within subjects. The estimate for

the variance among subjects (level-2), however, is

based on only 12 subjects’ means.

The empty model (4) is equivalent with a single-

level one-way ANOVA with subjects (or generally,

level-2 units) as the main effect. For the present

data set, this yields F ð11; 96Þ ¼ 8:69, p < 0:001.
The within-subject variance s2w ¼ 2:408 is an

unbiased estimate of the population within-subject

variance. An unbiased estimate of the population

between-subject variance can be calculated as

ðs2w=nÞ 
 ðF � 1Þ ¼ 2:058 with n ¼ 9 replications

within each subject (Snijders and Bosker, 1999, p.

22). The estimated coefficients in Table 2 for the

empty model are indeed very close to these unbi-
ased variance estimates.

In model (7), the mean score is estimated for

each treatment condition separately. Obviously,

the first question is whether the differences between

treatments are significant. As explained in the

previous section, such hypotheses are tested by

evaluating the variance attributed to the relevant

http://www.let.uu.nl/~Hugo.Quene/personal/multilevel


Table 2

Estimated parameters (with standard error of estimate in parentheses) of multi-level modeling of fictitious data from Table 1

Model (4) Model (7) Model (10)

Fixed

c00 0.237 (0.440)

cA00 )0.180 (0.481) )0.180 (0.474)

cB00 )0.219 (0.481) )0.219 (0.518)

cC00 1.110 (0.481) 1.110 (0.638)

Random

r2
u0j

2.056 (0.944) 2.099 (0.944)

r2
eij

2.408 (0.348) 2.020 (0.292)

r2
uA0j

2.411 (1.097)

r2
uB0j

2.903 (1.312)

r2
uC0j

4.617 (1.986)

covðuA0j; uB0jÞ 0.926 (0.887)

covðuA0j; uC0jÞ 3.300 (1.408)

covðuB0j; uC0jÞ 0.826 (1.164)

r2
eAij

0.851 (0.246)

r2
eBij

0.964 (0.278)

r2
eCij

0.819 (0.236)

Deviance 426.3 407.5 355.8
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contrast(s), with Bonferroni adjustment for the
number of comparisons. Not surprisingly, given

the treatment means in Table 1, the pairwise

comparison between treatments A and B is not

significant (A–B: v2 ¼ 0:01). The other two pair-

wise comparisons however are highly significant

(A–C: v2 ¼ 14:8; B–C: v2 ¼ 15:8; both p < 0:001).
Treatment C yields significantly higher scores than

the other treatments.
The cell means model (7) corresponds with a

univariate RM-ANOVA with Treatment as a

factor. When the data were analyzed with RM-

ANOVA with correction for violation of sphericity

(see above), the main effect of Treatment was not

significant. For these example data, MLM turns

out to be more powerful, as it yields significant

contrasts for the Treatment factor. The inverse fit
or deviance (defined as �2 log likelihood, Snijders

and Bosker, 1999, Section 6.2) of each model is

given in the bottom part of Table 2. The consid-

erable reduction in deviance indicates that model

(7) is indeed an improvement 5 over the empty
5 The reduction in deviance between subsequent models can

be evaluated using v2, but only if the two models compared

have the same fixed parts, and differ only in their random parts

(Snijders and Bosker, 1999; Pinheiro and Bates, 2000). Here we

will only compare deviances informally.
model (4). This is what one would expect, because
the within-subject variance can now partly be

attributed to the fixed effect of Treatment.

The third model reviewed here does not make

any assumptions about variances or covariances in

the model. All these quantities are estimated, see

Table 2. Hence, these quantities become properties

to be modeled and understood, rather than a priori

postulated (Goldstein et al., 1994). For example,
we see that the variance between subjects is larger

in treatment C than in the other two treatments––

although the pairwise comparisons among be-

tween-subject variance components do not show

significant contrasts (A–B: v2 ¼ 0:09, n.s.; A–C:
v2 ¼ 3:11, p ¼ 0:078; B–C: v2 ¼ 0:54, n.s.). Nev-

ertheless, it would be inappropriate to assume

homoschedasticity here. Subjects appear to be
more different under treatment C than under other

treatments.

The covariances also show interesting properties

of the data set. There is high covariance at level-2

between treatments A andC: covðuA0j; uC0jÞ ¼ 3:300
(with standard error of estimate 1.408). This

covariance can be regarded as unstandardized

correlation between subjects’ means under treat-
ments A and C. The standardized correlation

coefficient, r ¼ ð3:300Þ2=ð2:411
 4:617Þ ¼ 0:98, is
extremely high. Subjects’ means in treatments A



112 H. Quen�e, H. van den Bergh / Speech Communication 43 (2004) 103–121
and C are obviously highly correlated. Thus, we see

that there is neither homoschedasticity nor sphe-

ricity nor compound symmetry in this data set. If

these data had been obtained in a real experiment,
then such differences in variances and covariances

would have called for an explanation, either in

theoretical terms or as a strategic effect induced by

the experiment. For example, we know that con-

ditions with higher average scores tend to have

larger variances as well (Max and Onghena, 1999);

this might explain the higher between-subject var-

iance under treatment C.
In general, changing the random (co)variance

components (as in model (7)) also yields changes in

the estimated fixed effects or treatment means; this

particular case is an exception in that the estimated

treatment means do not change. However, the

additional random components do affect the

standard errors of these estimated treatment

means, which in turn affects the test statistic used
for evaluating the pairwise comparisons of the

three treatments. For example, the test statistic for

the pairwise comparison between treatment con-

ditions B and C in the fixed part was v2 ¼ 15:8 in

the previous cell means model (7) (with df ¼ 1,

p < 0:001). In the present full model (10), however,

the test statistic for this comparison has decreased

considerably to v2 ¼ 3:28 (with df ¼ 1, p ¼ 0:070).
The difference between treatments B and C has

disappeared, in terms of its significance, after we

have taken into account the absence of homo-

schedasticity, and the presence of intercorrelations

within subjects among their treatment means.

As argued above, this conservative behavior of

MLM is entirely appropriate. In model (10), dif-

ferences in level-2 variances cannot contribute to
the comparison of conditions. In the predecessor

model, as in the ANOVA model, this absence of

homoschedasticity inflates the fixed contrasts and

effects of interest. H0 is then incorrectly rejected,

although the true unbiased difference between

conditions B and C is in fact not significant.
4. Multi-level modeling of existing data

As a further demonstration, let us apply the
multi-level modeling technique outlined above to
real data, to show what could be gained by using

such modeling in actual research. To this end, we

have re-analyzed data from a recent prosody

study with 9 esophageal, 10 tracheoesophageal
and 10 laryngeal control speakers (Van Rossum

et al., 2002, Experiment 2). The 29 speakers read

10 sentences. Each speaker read each sentence

twice, with two different preceding sentences that

induced a contrastive accent either on a critical

word early in the sentence, or on a different word

later in the sentence. Hence, the critical word in

each sentence was produced both with and with-
out contrastive accent. For our present purposes,

the acoustic duration of this critical word (ex-

pressed in ms units) constitutes the dependent

variable.

The main hypothesis in this re-analysis is that

esophageal and tracheoesophageal speakers, who

cannot use F0 to signal accent, make larger

durational contrasts to signal accent than lar-
yngeal control speakers do. The absence of F0
movements, which are the most important cues to

signal accent (Sluijter, 1995), is compensated for

by enhanced durational cues. Van Rossum et al.

(2002) reject this hypothesis, however, on the

basis of a qualitative analysis of the acoustic

measurements, after the acoustic measurements

are reduced to nominal factors (‘‘speaker uses
duration cue’’––‘‘speaker does not use duration

cue’’).

In a conventional Repeated Measures ANOVA,

the above hypothesis could have been tested by

means of an interaction effect between speaker

group (between speakers) and accent condition

(within speakers). This interaction among the 3 · 2
cells of this design is indeed significant in a re-
peated measures ANOVA, F ð2; 26Þ ¼ 7:19,
p ¼ 0:003, supporting the main hypothesis (both

main effects were also highly significant: speaker

group, F ð1; 26Þ ¼ 16:36, p < 0:001; accent,

F ð1; 26Þ ¼ 101:35, p < 0:001).
As explained above, however, such an

ANOVA would have been based on several

questionable assumptions. In particular, the re-
search hypothesis predicts that the assumption of

compound symmetry is violated, because it states

that speaker groups differ in their ability to use

duration to signal accent. It is entirely likely that
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speaker groups differ not only in their average

word durations in the accent conditions, but also

in their variances in word durations in the accent

conditions. Hence, compound symmetry is likely
to be absent, and sphericity is threatened a priori.

Fig. 1 summarizes the speakers’ average word

durations for accented and unaccented words.

This illustrates that durations among the two

accent conditions are highly correlated for tra-

cheoesophageal and for laryngeal control speak-

ers, but not for esophageal speakers. The

assumption of compound symmetry (equal co-
variances) among speaker groups is therefore not

warranted, nor is the assumption of homosche-

dasticity.
4.1. Re-analysis of discrete factors

For expository reasons we start our re-analysis

with the cell means model, taking the multi-level

sampling hierarchy into account. This is done by

estimating six coefficients (cEU00, cEA00, etc.) for the

six main cells of this design. The appropriate

selection is done by means of six binary dummy
variables, here named EU (Esophageal Unac-

cented), EA (Esophageal Accented), TU and TA

(Tracheoesophageal) and NU and NA (Normal

control speakers), similar to model (7) above. This

yields the cell means model in (12):
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Fig. 1. Speakers’ average word durations in ms, broken down

by speaker group and accent condition. Data are from the study

reported by Van Rossum et al. (2002).
Dij ¼ EUijcEU00 þ EAijcEA00 þ TUijcTU00

þ TAijcTA00 þNUijcNU00 þNAijcNA00

þ ðu0j þ eijÞ ð12Þ
Coefficients for this cell means model (12) will not

be estimated here, however, because the model is
not appropriate, for two reasons. First, variances

between speakers (r2
u0j
) and within speakers (r2

eij
)

are assumed to be equal for the six main cells

(homoschedasticity at both levels). Second, the

correlations between the two accent conditions are

assumed to be equal for the three speaker groups

(compound symmetry at level-2). As explained

above, both properties of the data set should be
investigated in their own right, rather than pos-

tulated a priori. Model (13) achieves this, by

including separate random estimates for each

sampling level for each main cell. In addition,

between-speaker covariance terms are included

at level-2 (speakers) only 6 as shown in the

corresponding variance–covariance matrix in

(14).
Dij ¼ EUij½cEU00 þ ðuEU0j þ eEUijÞ	

þ EAij½cEA00 þ ðuEA0j þ eEAijÞ	

þ TUij½cTU00 þ ðuTU0j þ eTUijÞ	

þ TAij½cTA00 þ ðuTA0j þ eTAijÞ	

þNUij½cNU00 þ ðuNU0j þ eNUijÞ	

þNAij½cNA00 þ ðuNA0j þ eNAijÞ	 ð13Þ
Although this model might look somewhat intim-
idating, its interpretation is rather straightforward.

The six fixed parameters cEU00 to cNA00 corre-

spond to the respective cell means. The ran-

dom components u0j and eij are also estimated
6 Again, covariances are only specified between accent

conditions at level-2 (subjects). The grouping factor is outer

to the speaker factor (or, speakers are nested within groups),

and hence there is no covariance between groups at the speaker

level.



r2
uEU0j

covðuEU0j; uEA0jÞ r2
uEA0j

0 0 r2
uTU0j

0 0 covðuTU0j; uTA0jÞ r2
uTA0j

0 0 0 0 r2
uNU0j

0 0 0 0 covðuNU0j; uNA0jÞ r2
uNA0j

2
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ð14Þ
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separately for each of the six main cells of the

design. Finally, the covariance (correlation) be-

tween subjects’ means in accented and unaccented

conditions is also taken into account, as shown in

(14). The resulting estimated coefficients are listed

in Table 3.
Table 3

Estimated parameters (with standard error of estimate in parentheses)

Model (13) Mo

N ¼ 580 N ¼
Fixed

cEU00 527 (43) 5

cEA00 631 (38) 6

cTU00 427 (19) 4

cTA00 563 (26) 5

cNU00 346 (10) 3

cNA00 399 (14) 4

cEU10 )
cEA10 )
cTU10 )
cTA10 )
cNU10 )
cNA10 )

Random

r2
uEU0j

13,984 (7968) 14,3

r2
uEA0j

10,254 (6190) 11,8

covðuEU0j; uEA0jÞ 14,237 (6861) 15,2

r2
uTU0j

2193 (1562) 25

r2
uTA0j

4474 (3024) 57

covðuTU0j; uTA0jÞ 2354 (1698) 21

r2
uNU0j

183 (487) 3

r2
uNA0j

1128 (928) 25

covðuNU0j; uNA0jÞ 1269 (614) 18

r2
eEAij

28,927 (4545) 29,0

r2
eEUij

28,434 (4468) 28,1

r2
eTAij

12,748 (1900) 12,4

r2
eTUij

22,479 (3351) 21,6

r2
eNAij

8742 (1301) 87

r2
eNUij

9260 (1380) 84
As in the RM-ANOVA above, the interaction
between accent and speaker group yields a signif-

icant effect (v2ð2Þ ¼ 20:5, p < 0:001). The absolute
accent contrast is considerably smaller for the

laryngeal control speakers (53 ms) than for the

esophageal (104 ms) and tracheoesophageal
of multi-level modeling of data from Van Rossum et al. (2002)

del (15) Model (15)

580 N ¼ 445

26 (45) 531 (35)

31 (40) 626 (36)

14 (21) 429 (25)

74 (29) 591 (29)

44 (11) 333 (11)

28 (21) 428 (23)

0.18 (3.99) )0.10 (3.93)

4.16 (3.81) )3.13 (4.51)

4.92 (3.30) )3.57 (3.49)

7.32 (4.39) )7.65 (5.03)

3.66 (1.35) )4.31 (1.70)

7.29 (2.33) )7.08 (2.94)

10 (8128) 6034 (4439)

54 (6928) 7680 (5459)

71 (7346) 9235 (4638)

55 (1710) 3726 (2344)

70 (3561) 4909 (3685)

49 (1864) 3044 (2276)

53 (559) 166 (540)

00 (1491) 2725 (1704)

51 (864) 1663 (845)

87 (4571) 23,618 (4518)

21 (4419) 29,841 (5419)

60 (1857) 11,402 (1955)

27 (3224) 24,155 (4236)

17 (1295) 8055 (1356)

66 (1262) 8598 (1443)
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speakers (136 ms). This result supports the main

hypothesis in this study. Note that this interaction

was not found in the original qualitative analysis

(Van Rossum et al., 2002), presumably due to the
lower power of that analysis.
4.2. Adding a continuous predictor

Moreover, MLM is similar to Generalized

Linear Modeling (GLM), in that it allows us to

combine discrete factors such as speaker group,
and continuous predictors such as peak intensity,

into a single analysis. (In fact, GLM can be re-

garded as a specific constrained variant of multi-

level modeling.) Different compensation strategies

in the three speaker groups can be further

investigated therefore, by including other acoustic

measurements as predictors of word duration.

For example, if speakers compensate between
using duration cues and using intensity cues to

signal accent, then this would yield a negative

correlation between a word’s peak intensity in dB

(predictor) and its duration in ms (dependent).

To investigate this type of linear effects

between acoustic measurements, peak intensity

was centralized to its grand mean, and then in-

cluded in the model. This final model is given in
(15).
Dij ¼ EUij½cEU00 þ cEU10Intij þ ðuEU0j þ eEUijÞ	

þ EAij½cEA00 þ cEA10Intij þ ðuEA0j þ eEAijÞ	

þ TUij½cTU00 þ cTU10Intij þ ðuTU0j þ eTUijÞ	

þ TAij½cTA00 þ cTA10Intij þ ðuTA0j þ eTAijÞ	

þNUij½cNU00 þ cNU10Intij þ ðuNU0j þ eNUijÞ	

þNAij½cNA00 þ cNA10Intij þ ðuNA0j þ eNAijÞ	

ð15Þ
The resulting estimated parameters are also given

in Table 3. In this model, the interaction of accent

and speaker group does not reach significance

(v2ð2Þ ¼ 5:64, p ¼ 0:060). The absence of interac-

tion is probably due to the inclusion of peak

intensity, which constitutes a stronger predictor
for the word duration data (see below). Accent
contrasts for the three speaker groups are of sim-

ilar magnitude, and all are significant (esophageal

v2 ¼ 37:79, p < 0:001; tracheoesophageal v2 ¼
29:62, p < 0:001; laryngeal control v2 ¼ 38:24,
p < 0:001). This absence of interaction falsifies the

main hypothesis in this study, although it is in

accordance with the original qualitative analysis

(Van Rossum et al., 2002).

The present model also includes regression

coefficients for the effects of peak intensity in each

cell. The estimated coefficients are given in Table 3.

These coefficients show interesting effects which
have remained invisible in the RM-ANOVA re-

ported above, and in the qualitative analysis in the

original paper. For the laryngeal control speakers,

the coefficients are negative and significant

(cNU10 ¼ �3:7; cNA10 ¼ �7:3). This means that the

word duration is shorter as the peak intensity of

the word is higher, and vice versa. Laryngeal

speakers signal accent by lengthening the accented
word, or by increasing its intensity, but these two

effects do not happen simultaneously.

For the alaryngeal speakers, however, the

regression coefficients are not significant. There is

no clear relation between duration and intensity

for these speakers. Hence alaryngeal speakers

deviate in their production of prosodic cues for

accent, in that they fail to compensate between
duration and intensity, as normal laryngeal

speakers do. This is indeed an important conclu-

sion about the phonetic behavior of alaryngeal

speakers––and it has required MLM to come to

this conclusion. This finding is relevant for further

work in clinical research, and it should be applied

in speech therapy aimed at improving prosody in

alaryngeal speech.
Coming back to the main hypothesis, these

results show that the predicted group-by-accent

interaction is only observed if intensity is not in-

cluded in the model (13), and that this interaction

disappears if intensity is included (15). In the

latter model, however, a similar group-by-com-

pensation interaction is observed. Taken together,

these results suggest that the latter group-

by-compensation interaction describes the rele-

vant pattern in these observed word duration data

at least as well as the former group-by-accent

interaction. It depends on the actual research
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questions whether model (13) or (15) would pro-

vide better answers, e.g., whether the predicted

group-by-accent interaction is concluded to be

present or absent. But conducting and comparing
both analyses, which is only possible in MLM,

obviously provides the most complete and accu-

rate insight.

4.3. Robustness against missing data

Finally, we take this opportunity to demon-

strate an important advantage of multi-level

modeling: its robustness against missing data. The

number of observations in each cell of the design
matrix does not need to be approximately equal

(Goldstein and McDonald, 1988). In general, the

standard error of an estimated coefficient increases

as the number of observations on which it is based

decreases. Both estimated means and estimated

variances follow this trend. In the data set from the

study by Van Rossum et al. (2002), however, all

cells contain the same number of observations.
This valuable robustness of MLM is demonstrated

here by randomly discarding about 1/4 of the total

data set, keeping N ¼ 445 out of 580 observations.

Model (15) was tested again on this reduced data

set; the results are also given in Table 3. All these

latter estimates vary only slightly from the esti-

mates for the full data set. Again, no group-by-

accent interaction is observed (v2ð2Þ ¼ 4:15,
p ¼ 0:126), and accent contrasts are similar to

those reported above (esophageal v2 ¼ 20:40,
p < 0:001; tracheoesophageal v2 ¼ 29:97, p <
0:001; laryngeal control v2 ¼ 27:93, p < 0:001).
Note that this robustness is only observed if data

are missing in a random fashion. If observations

were predominantly missing for certain partici-

pants and/or under certain treatments, then the
full and reduced data sets would not have yielded

similar estimates. In short, estimating coefficients

in MLM is quite robust against randomly dis-

carding a considerable part of the data set.
7 Simulations were also run for other effect sizes, yielding

similar power profiles. Simulations are reported here only for a

single representative effect size, for the sake of clarity.
5. Monte Carlo simulations

In two examples presented above, analyses with
MLM yielded a significant main effect or interac-
tion that was not reported by RM-ANOVA. This

greater power in detecting effects is due to the

more accurate modeling of the variance–covari-

ance matrix, or matrices, at each level of the
sampling hierarchy. This reduces the standard er-

rors of the estimated variance components, which

in turn leads to more sensitive testing of fixed ef-

fects and contrasts. Hence, it seems that MLM has

more power to reject H0 as compared to RM-

ANOVA.

In order to verify this difference in power, the

probabilities of rejecting H0 in MLM and in RM-
ANOVA were compared by means of Monte

Carlo simulation. To this end, many fictitious data

sets were generated, with a known effect size. Each

set consists of data from a fictitious within-subjects

experiment, using 24 items or occasions, under

three treatment conditions A and B and C. One

could imagine that these data are from a phonetic

study in which an articulatory parameter is mea-
sured in 24 repeated occasions of the subject

speaking the same phrase; the data might also

conceivably come from a psycholinguistic study in

which a perceptual measure is obtained for 24

word items in each condition (using the same items

in each condition). From a sampling perspective, it

is irrelevant whether the random within-subject

variation is caused by multiple occasions or by
multiple items, although a larger amount of with-

in-subject variation is expected in the latter case.

However, the appropriate variance–covariance

matrix at level-1 depends on the actual design, as

illustrated in model (10).

In all simulations reported here, the three

treatment conditions were f�0:2; 0;þ0:2g, with

total variance s2 ¼ 1 and N ¼ 24 participants,
yielding an effect size 7 of f ¼ 0:16 (between

‘small’ and ‘medium’, Cohen, 1988). Two crucial

properties were varied in the generated data sets:

(i) the intra-class correlation, qI ¼ f0:2; 0:4;
0:6; 0:8g, and (ii) whether or not the data were

spherical, i.e. in agreement with the sphericity
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assumption. 8 Initially, variances were homoge-

neous (equal) in the three treatment conditions, at

each level. For each combination of properties,

100 data sets were generated.
All these data sets were then analyzed with

MLM (using the MLn program, Rasbash et al.,

2000), with multivariate RM-ANOVA, and with

univariate RM-ANOVA using the Huynh–Feldt

correction (using procedures GLM and MANOVA by

subjects, respectively, in SPSS version 11.5). For

each data set, the resulting v2 (from MLM) and F
test statistic (from RM-ANOVA) were compared
with their appropriate critical values, at a ¼ 0:05.
Of interest for our purposes is the probability of

finding a test statistic exceeding its critical value,

i.e. the probability of rejecting H0. This is identical

to the statistical power of the test, since a main

effect of treatment is known to be present in the

simulated data sets. The power observed in these

simulations is summarized in Fig. 2.
These power profiles confirm several tendencies

mentioned above. Most importantly, MLM has

higher power than either univariate or multivariate

RM-ANOVA in reporting a significant main ef-

fect. Presumably, this is due to its more accurate

modeling of the variance–covariance matrix. If the

matrix exhibits homogeneous variance as well as

sphericity (left panel), then there is no difference in
power between MLM and RM-ANOVA.

Second, violating the sphericity assumption

(right panel) greatly reduces the power of any

statistical test. The smallest reduction in power is

observed for MLM, yielding a larger relative

advantage of MLM in statistical power for data

violating the sphericity assumption. Again, this is

due to the more accurate modeling of the vari-
ance–covariance matrix in MLM.

Third, both MLM and RM-ANOVA take the

intra-class correlation into account. If the intra-

class correlation is large, then most of the variance
8 Spherical data were generated by specifying a correlation of

0.8 for all pairs of treatments. Aspherical data were generated

by specifying a correlation of 0.8 for one pair, and 0.2 for the

two other pairs of treatments. Data sets were simulated using

the MLn program (Rasbash et al., 2000); more details are

available online at the electronic appendix to this tutorial, at

URL http://www.let.uu.nl/~Hugo.Quene/personal/multilevel.
is found between subjects, and hence less variance

can be ascribed to the within-subject main (fixed)

effect. All analyses capture this trend correctly, as
a lower probability of rejecting H0.

Finally, among the RM-ANOVA methods, the

univariate approach has higher power if the

sphericity assumption holds (left panel), whereas

otherwise the multivariate approach has the higher

power (right panel), as previously reported (e.g.

O’Brien and Kaiser, 1985; Max and Onghena,

1999).
In the simulations so far, variances were equal

in the two treatment conditions. In practice,

however, variances tend to differ among treatment

conditions. For example, variances tend to in-

crease with higher mean scores (e.g. Max and

Onghena, 1999). Such violations of homogeneity

of variance were also investigated here, by intro-

ducing an additional statistical property in the
Monte Carlo simulations. New data sets were

generated and analyzed, in which the variance

ratios for the treatment conditions A, B, and C
were specified as 1:2:3, both at level-1 and level-2.

Otherwise the Monte Carlo simulations were

identical to those described above. Results are

summarized in Fig. 3.

The power values observed in these latter sim-
ulations with (heteroschedastic) data sets having

http://www.let.uu.nl/~Hugo.Quene/personal/multilevel
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heterogeneous variances are similar to the former

for (homoschedastic) data sets having homoge-

neous variances. The most interesting pattern is
observed for heteroschedastic data sets that also

violate the sphericity assumption (Fig. 3, right

panel). Note that this panel corresponds best to

real-life situations: between-subject and within-

subject variances are unequal among treatment

conditions, and pairwise differences among con-

ditions have unequal variances. Under these most

common circumstances, then, MLM yields the
highest power––and even more so if there is a

stronger intra-class correlation. Remarkably, the

absolute power of MLM is even higher here than

for homoschedastic data sets (Fig. 2, right).

Apparently the non-homogeneous variance allows

for more accurate estimates of the random vari-

ance components at both levels, resulting in more

sensitive hypothesis testing. Hence, these simula-
tions suggest that MLM has higher power to reject

H0 as compared to RM-ANOVA, and that this

power advantage is particularly large under real-

istic circumstances.

Low power yields inconsistent results. If a main

effect is indeed present in the population, then

some studies with low power will find that there is

such an effect, whereas others fail to confirm this
finding. This inconsistent pattern may in turn

trigger follow-up research aimed at identifying

which unknown factors modulate the main effect

of interest. In fact, however, the inconsistent re-
sults may be due to low power, and not to any

modulating factors. Hence the effort expended

in the follow-up research may well be inappropri-

ate.

In summary, the Monte Carlo simulations

confirm our suspicion that the statistical power is

insufficient in many studies (at least those based on

RM-ANOVA or similar techniques), given that
effect sizes are often quite small. This yields an

inconsistent pattern of results, as outlined above.

The use of MLM is advocated here, as a general

remedy to increase the power in hypothesis testing.

If RM-ANOVA is used, however, then researchers

should perform and report a post hoc power

analysis (Cohen, 1988, 1992) before embarking on

any follow-up research.
6. Discussion and conclusion

The two analyses and the simulations in this

tutorial have attempted to demonstrate several

important advantages of MLM in comparison

with other analysis tools. First, MLM has higher

power in finding effects and contrasts in the data.

Second, there is no need for disputable assump-

tions, notably those of homoschedasticity (homo-
geneity of variance), and of sphericity. Variance

and covariance components are estimated from

the data, rather than postulated a priori. These

variance estimates may in turn become quantities

to be modeled and understood.

One might wonder, of course, whether investi-

gators would be interested at all in random vari-

ability between subjects or between trials within
subjects. After all, most studies are designed to

investigate fixed effects, not random variability.

Multi-level modeling might be dismissed as a

sophisticated novelty, which is only useful in cer-

tain specific circumstances. However, the variances

and covariances often tell their own tale about the

research questions of interest. To illustrate this

point, let us look again at the random coefficients
in Table 3. For normal speakers, the within-
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speaker variances are far larger than the between-

speaker variances. Within speakers, there is a lot

of variability in the word durations they produce

(presumably due to factors such as stress, accent,
etc.), but on average speakers are quite similar:

there is little variability among normal speakers’

average word durations. For alaryngeal speakers,

the situation is reversed. There is little variability

within speakers (presumably due to each person’s

limited physiological capability to vary speaking

rate and vowel durations), but speakers vary

considerably in their average word durations
(presumably due to individual differences in their

‘‘fixed’’ speaking rate). These interesting differ-

ences in variance ratios are immediately rele-

vant for the research question, and for clinical

practice.

The third advantage of MLM is that it takes

into account the random variances at multiple

levels, which are caused by nested random factors

in a repeated measures design, and it does so

simultaneously in a single full analysis. This

property alone makes MLM a valuable research

tool. This hierarchical modeling in turn leads to

better estimates for error variances. In turn, this

leads to increased power in testing the main

hypotheses of interest.

Fourth, the allowance for unbalanced data
across cells makes MLM very suitable for ana-

lyzing incomplete experimental designs, such as

Latin-squares. Many experiments require count-

erbalancing of subjects across treatment condi-

tions, to neutralize strategic effects or learning

effects. Data from incomplete designs can be ana-

lyzed without any difficulty or special provisions

for missing cells.
Multi-level analysis requires less stringent

assumptions than conventional analysis tech-

niques, in particular for repeated measures designs

with more than one random factor. The technique

can be regarded as a general form of classical

ANOVA, also subsuming Generalisability Theory

(Cronbach et al., 1972) and GLM. But because it

requires less stringent assumptions than these
analyses, it enables researchers to model their

empirical data in a more insightful way. In turn,

this improves scientific inference from a limited set

of observations.
Of course, each statistical analysis has its

advantages and disadvantages. The former were

emphasized in the preceding sections. One draw-

back of multi-level analysis, relative to other
techniques, is its computational complexity and

opacity. While a simple ANOVA for a small data

set can be manually computed, and verified, this is

quite cumbersome for multi-level modeling.

Computer software is essential to perform the

analysis. Such software for MLM has become

widely available in recent years, either as stand-

alone programs, such as HLM (Bryk et al., 2001;
Raudenbush and Bryk, 2002) and MLwiN (Ras-

bash et al., 2000), or as components in statistical

packages, such as lme and nlme in S-Plus

(Pinheiro and Bates, 2000) and Proc Mixed in

SAS (Singer, 1998). There are considerable differ-

ences among these programs, especially in their

technical details (constraints on multi-level mod-

els, default settings, estimation options, etc.). A
detailed review of these programs would be out-

side the scope of this tutorial. The interested

reader is referred to Kreft and De Leeuw (1998),

Snijders and Bosker (1999) for a discussion and

appraisal of the available software for multi-level

analysis. As an illustration of how to use one such

program, a detailed and annotated logfile is

available at the electronic appendix to this tutorial,
at URL http://www.let.uu.nl/~Hugo.Quene/per-

sonal/multilevel. The logfile illustrates the multi-

level analyses presented above of a fictitious study

into lip displacement, using the MLwiN program.

A second drawback is that researchers in our

field still seem to be unfamiliar with this technique.

A well-known conventional technique, and

sophisticated modifications thereof, may therefore
seem more attractive than adopting a new one. But

that unfamiliarity should not last longer than

necessary. Other fields of study have already

profited greatly from applying MLM to their re-

search questions, as indicated above. The new

multi-level perspective provides increased insight

in empirical results, and in the cognitive behavior

underlying those results (e.g. Van den Bergh and
Rijlaarsdam, 1996, and our analysis above). In

conclusion, adopting multi-level modeling is likely

to be beneficial for research in speech communi-

cation.

http://www.let.uu.nl/~Hugo.Quene/personal/multilevel
http://www.let.uu.nl/~Hugo.Quene/personal/multilevel
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