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1. General Introduction

Multilevel and, in particular, two-level designs are used frequently in educational and social
research. Hierarchical linear models incorporating both random and fixed effects provide a
useful statistical paradigm for situations where nesting is an obvious and direct consequence of
multistage sampling as well as situations with nested sources of random variability.
Introductory texts are Bryk & Raudenbush (1992), Goldstein (1995), Hox (2002), and Snijders
& Bosker (1999).

When a researcher is designing a multistage sampling scheme to assess, for instance, the effects
of schools on the achievement of students, or, to give another example, to test the hypothesis
that citizens in impoverished neighbourhoods are more often victims of crime than other
citizens, important decisions must be made with respect to the sample sizes at the various
levels. For the two-level design in the first example the question might be phrased like: should
one investigate many schools with few students per school or few schools with many students
per school? Or, for the second example: should we sample many neighbourhoods with only few
citizens per neighbourhood or many citizens per neighbourhood and only few neighbourhoods?
In both cases we assume, of course, that there are budgetary constraints for the research to be
conducted.

To phrase this question somewhat differently: how should researchers choose sample sizes at
the macro- and micro-level in order to ensure a desired level of power given a relevant
(hypothesized) effect size and a chosen significance level α?

A general introduction to power analysis can be found in the standard work by Cohen (1988),
or, for a quick introduction, Cohen's power primer (Cohen, 1992). The basic idea is that we
would like to find support for a research hypothesis (H1 ) stating that a certain effect exists, and
for that reason we test a hypothesis about the absence of this effect (H0 ) using a sample from
the population we are interested in. The significance level α represents the risk of mistakenly
rejecting H0 . This mistake is known as a Type I error. Vice versa, β is the risk of
disappointingly not rejecting H0 , in the case that the effect does exist in the population. This
mistake is known as a Type II error. The statistical power of a significance test is the
probability of rejecting H0 , given the effect size in the population, the significance level α, and
the sample size N. Power is therefore given by 1-β. As a rule of thumb, Cohen suggests that
power is moderate when it is .50 and high when it is at least .80. Power increases as α
increases, and also as the sample size and/or the effect size increase. The effect size can be
conceived as the researcher's idea about "the degree to which the H0 is believed to be false"
(Cohen, 1992, 156).

The relation between effect size, power, significance level, and sample size can be presented in
one formula. This formula is an approximation that is valid for practical use when the test in
question is a one-sided t-test with a reasonably large number of degrees of freedom (say, d.f. ≥
10). We suppose that the effect size is expressed by a parameter that we can estimate with a
certain standard error. Bear in mind that the size of the standard error is a monotone decreasing
function of the sample size: the larger the sample size the smaller the standard error! The
formula is

(effect size / standard error) ≈ (z1-α + z1-β ) = (z1-α - zβ ) (1)
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where zα, zβ and z1-β are the z-scores (values from the standard normal distribution) associated
with the indicated α- and β-values. If, for instance, α is chosen at .05 and 1-β at .80 (β thus
being .20), and a medium effect size of .50 is what we expect, then we can derive that we are
searching for a minimum sample size that satisfies:

standard error ≤ [ .50 / (1.64 + 0.84) ]
  ⇔ 

standard error ≤ 0.20 .

Formula (1) contains 4 "unknowns": this means that if 3 of these are given, then we can
compute the fourth. In most applications that we have in mind, the significance level α is given
and the effect size is hypothetically considered (or guessed) to have a given value; either the
standard error is also known and the power 1-β is calculated, or the power is known and the
standard error calculated.

For many types of design one can choose the sample size necessary to achieve a certain
level of power on the basis of Cohen's work. For nested designs, however, there are two kinds
of sample sizes: the sample size of the micro-units within each macro-unit (n) and the sample
size of the macro-units (N), with N × n being the total sample size for the micro-units. For
hierarchically structured ("multilevel") data, where the hypothesis tested refers to one of the
regression coefficients ("fixed parameters") in the model, the recipes for standard errors and
sample sizes are presented in Snijders & Bosker (1993). The formulae being complex,
however, the present software, PINT, was developed to help researchers in designing their
studies in the case of hierarchical designs.

In these calculations, it is assumed that for each macro-unit the number of sampled
micro-units is equal (the n mentioned above). In practice, this is not often the case. However,
the aim of power calculations is to have insight in the order of magnitude of the desired sample
sizes and the achieved power, and not to have perfectly precise figures for these quantities.
Therefore, n may be interpreted in practice as the average sample size per macro-unit.

The determination of smaple sizes in two-level designs is discussed also in chapter 10
of Snijders & Bosker (1999) (where also parameters of the random part are considered, which
are not treated by PINT) and in Snijders (2001). Other papers about determination of sample
sizes in multilevel designs are Afshartous (1995) and Mok (1995). These papers both
investigate the effect of sample sizes on standard errors by taking one existing data set and
simulating (using the Monte Carlo method) two-stage samples from this data set using various
sample sizes. Another aspect, the allocation of treatments to subjects or groups, and the gain in
precision obtained by including a covariate, is discussed in Raudenbush (1997).
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2. The two-level linear model

2.1. A brief introduction to the Hierarchical Linear Model

Since we assume that the user of this software is going to apply hierarchical linear models to
test his hypotheses within a multilevel framework, a short introduction to two-level linear
models will be presented. For a full-fledged introduction the user is referred to Bryk &
Raudenbush (1992), Goldstein (1995), Hox (2002) or Snijders & Bosker (1999). Some of the
symbols used are different from those in Snijders and Bosker (1993), because for explaining
this computer program the present symbols are simpler.

Model assumptions
We assume a two-level structure. The first level is also the called the micro level, the second
level the macro level. At macro level there are N macro-units (for instance, 100 schools), that
are assumed to be randomly sampled from an (assumed) infinite population of units. These
macro-units are also called groups. At micro level there are n micro-units per macro-unit (for
instance, 50 students per school), so that the total sample size is N × n (in the example
100×50=5000 students).
In practically all research, the number of micro-units per macro-unit is not a fixed number.
Since the determination of optimal sample sizes is in practice always an approximate matter, it
is not a serious drawback that we have to assume constant group sizes.

The dependent variable is defined at the micro level and is denoted yi j (e.g. the score of student
i in school j on an achievement test). The independent variables at micro level are denoted x1 i j

to xk i j and at macro level we have a set of predictor variables z1 j to zm j . The two-level model
can now be formulated as

yi j = β0 j + β1 j x1 i j +...+ βh j xh i j

+ βh+1 x(h+1) i j + ... + βk xk i j + ri j . (2)

Formula (2) is the micro level model, where a random variable y (e.g. achievement) is
regressed on a set of micro level predictors and/or covariates (e.g. aptitude, pretest-score, socio-
economic status, motivation, gender, etc.). Note that there are two types of regression
coefficients:  β0 j as well as β1 j to βh j (bold faced and indexed with the subscript j ) are random
coefficients and βh+1 to βk are fixed coefficients. The interpretation of the regression
coefficients is straightforward: for every unit increase in x, y is predicted to increase with β
units. The fact that β0 j and β1 j to βh j are random regression coefficients indicates that these
coefficients in the regression of y on x may vary between the macro-units.
Next to the micro level model, a macro level model is formulated:

β0 j = γ 0 0 + γ 0 1 z1 j +...+ γ 0 m zm j + u0 j  (3a)

β1 j = γ 1 0 + γ 1 1 z1 j +...+ γ 1 m zm j + u1 j (3b)
.
.
.

βh j = γ h 0 + γ h 1 z1 j +...+ γ h m zm j + uh j .  (3h)
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In (3a) the macro-unit specific intercept (i.e., the expected value for the dependent variable in
macro-unit j in case all the x's are zero) is modelled as a function of the macro level predictors
and/or covariates. If the x-variables all have a mean of zero, then β0 j is the expected score for
the average micro-unit in the population corresponding to macro-unit j. Parameter γ0 0 is
sometimes called the GRAND MEAN: it is not really the mean (except in exceptional cases),
but it is the expected value for yi j in case all the x's and z's are zero. Parameter γ0 1 is the average
regression coefficient associated with the regression of β0 j on the macro level variable z1 (for
each unit increase in z1 the predicted increase in β0 j is γ0 1 units), and similarly for the other γ ’s.
The regression coefficients γ are also called the fixed parameters of the multilevel model.

The micro level residual ri j is assumed to be normally distributed with zero mean and some
unknown variance σ2 . This residual is uncorrelated with the macro level residuals u0 j to uh j .
These latter residuals are multivariate normally distributed, with zero mean and variance-
covariance τ.

A simple example
Suppose we want to assess the effect of a school policy to enhance the achievement of students
from low socio-economic status families, while taking into account aptitude differences
between students. Then formulae (2) to (3h) read as follows:

ACHIEVEMENTi j = β0 j + β1 j SESi j + β2 IQi j + ri j (2)

β0 j = γ 0 0 + γ 0 1 POLICYj + u0 j (3a)

β1 j = γ 1 0 + γ 1 2 POLICYj + u1 j (3b)

with ri j ~ N(0,σ2 ) and (u0 j , u1 j )' ~ N(0,τ), where 0 is a vector and τ is a 2×2 matrix.

The formulae presented above are in line with the notation used in Bryk & Raudenbush (1992).
In Snijders & Bosker (1993) a slightly different notation is used to facilitate the specific matrix-
partitionings helpful to express the formulae for the standard errors of the regression
coefficients. The example written in the Snijders - Bosker notation would be:

ACHIEVEMENTi j = γ 1 1 IQi j + γ 2 1 j + γ 2 3 j SESi j + Ri j (2)

γ 2 1 j = γ 2 1 + γ 2 2 POLICYj + U2 1 j (3a)

γ 2 3 j = γ 2 3 + γ 2 4 POLICYj + U2 2 j (3b)

with Ri j ~ N(0,σ2 ) and (u2 1 j , u2 2 j )' ~ N(0,τ).

Formulae (2) to (3b) can be combined to one equation by substituting (3a) and (3b) into (2).
The result then reads, for this example,
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ACHIEVEMENTi j = γ 1 1 IQi j + γ 2 1+ γ 2 2 POLICYj + γ 2 3 SESi j

   + γ 2 4 SESi j ×POLICYj  + U2 1 j + SESi j × U2 2 j + Ri j . (4)

PINT is aimed at the calculation of the standard errors of the estimates of the regression
coefficients γ. The formulae given in Snijders and Bosker (1993), that are computed by PINT,
are approximations that are sufficiently accurate if the sample sizes are not too small. As a rule
of thumb one should require that n is at least 6, and N is at least 10. For testing hypotheses
about these regression coefficients, standard errors may be translated into power, and vice
versa, using formula (1).

2.2. Information required for PINT

Three types of predictor variables
For the purposes of calculating standard errors, three categories of predictor variables must be
distinguished:

(1) micro level variables with only a fixed effect;
(2) micro level variables with a fixed and a random effect;
(3) macro level variables explaining between-group variability.

In the derivation of the formulae for the calculation of optimal sample sizes, it appeared to be
convenient to take the micro level predictors with fixed and random effects ("category 2") as
deviates from their group means. In other words, for the original X i j the centered variable X’i j

= X i j - X. j (with  X. j denoting the mean of X in macro-unit j ) is used instead. This centering of
course leads to a model modification, which might partially be compensated, however, by
introducing X j as a macro level predictor into the model. Returning to our example, SESi j is
taken as the deviate from the original school mean SESj , so it represents the relative socio-
economic status score for student i in school j.

For simplicity we also assume that every macro level predictor ("category 3") is entered
as a predictor for all between-group variability into the model: so it is assumed that when one is
interested in a cross-level interaction effect (SESi j × POLICYj in the example), one is also
interested in the main effects of these variables; and that when one is interested in the main
effect of a macro level variable, one is also interested in its interaction effect with all micro
level predictors having random effects. In actual practice this does not cause problems since in
using PINT the user may ignore the standard errors of the regression coefficients for those parts
of the equation in which there is no interest. Further, in transforming a priori information into
program-input, the researcher may assume that these effects are zero (not affecting residual
between school variation).

Information needed for calculating standard errors
PINT calculates approximate standard errors of the fixed regression coefficients, which are
denoted γ in the model specifications above. To make these calculations, information is needed
about the means, variances and covariances of the predictor variables, as well as about the
variances and covariances of the random effects. (If the standard errors are to be translated into
statistical power values by formula (1), then we also need an estimate for the effect size.) Such
information can be gathered from earlier research or a reasonable guess can be made. This
section indicates which information is required.
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Numbers of predictor variables
The numbers of variables of "categories 1, 2, and 3", as defined on the top of this page, are
indicated in the program description by L1 , L2 , and L3 , respectively. (In the formulae in
Section 2.1, k corresponds to L1 +L2 , h corresponds to L2 , and m corresponds to L3 .) The
`constant' variable, which represents the intercept, is included anyway in the model, and not
included in these numbers L. For example, L2 indicates the number of random slopes. It is
allowed that some or all of these numbers are 0, corresponding to absence of variables in the
corresponding category or categories.

Means, variances and covariances of predictor variables
The whole idea of multi-level modelling is, that we are modelling at the micro level as well as
at the macro level. In other words: we are modelling within-macro-units variation as well as
between-macro-units variation. In determining optimal sample sizes we consequently should be
careful about the distinction of these two kinds of variability.

It is very convenient, but not necessary, to assume that all variables are standardized scores
(with mean 0 and variance 1). Because of the two-level structure, however, more information is
required: also the decomposition of variability into within-group and between-group variability
must be given, as well as various correlation coefficients. The distinction between the three
categories of variables is important here.
•  The variables of "category 1" (micro level variables with only a fixed effect) are

assumed to have within-group as well as between-group variability (but it is allowed
that some of these variables have only within-group variability).

•  Variables of "category 2" (micro level variables with a fixed and a random effect) are
assumed to be within-group deviation variables, and have therefore no between-group
variability.

•  Variables of "category 3" (macro level variables explaining between-group variability)
are macro level variables, so that they have no within-group variability.

In the first place, we need the expectations (i.e., population means) of the predictor variables.
The vector µ1 contains the means over schools of the micro level variables with fixed effects
only ("category 1"). (If we use z-scores these means are 0). Vector µ3 contains the means over
schools of the macro level predictors ("category 3"). If we are using z-scores this vector again
has all elements equal to 0.

In the next place, information is needed about the within- as well as the between-groups
covariance matrix of the predictors. This information is given in matrices ΣW and ΣB. For input
into PINT these are constructed as follows.

ΣW is a matrix of order L1 + L2 (the total number of micro level variables). The first elements of
the diagonal of this matrix contain the within-group variances of the micro level predictors
("category 1") having fixed effects only. The remaining elements of the diagonal give the
within-group variances of the micro level predictors having random effects (if we rescaled all
variables to z-scores, these latter variances are 1). The remaining part of this symmetric matrix
contains the within-group covariances between the corresponding variables.

There are a total of L3 + L1 macro level variables: L3 "original" macro level variables (of
"category 3") but also the group means of the L1 micro level variables of "category 1". The
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corresponding covariance matrix ΣB is therefore a matrix of order L3 + L1. The first L3 elements
of the diagonal of this matrix contain the between-group variances of the original macro level
predictors ("category 3") (if all variables were rescaled to z-scores, this variance is 1). The
remaining elements of the diagonal refer to the between-group variances of the predictor
variables of "category 1" (and if we rescaled all variables to z-scores, the sum of this figure and
the corresponding within-group variance can be assumed to be 1). The remaining part of this
symmetric matrix contains the between-group covariances between these variables.

Variances and covariances of residuals (the random part of the model)
Finally, we need information on the residual variance σ2 and the covariance matrix τ of the
random intercept and random slopes.

Although it will usually be hard to have all this information on within- and between group
variances and covariances, the user of PINT can do a number of runs with the software,
providing PINT with various reasonable looking estimates of these parameters, so as to find
lower and upper limits for the sample sizes at micro- and macro level.

2.3. Remarks about parameters in the two-level model1

Some of the parameters mentioned in Section 2.2, especially the means, variances and
covariances of the predictor variables, may be obtained from existing knowledge, combined
with intelligent guesswork. Other parameters, especially the parameters of the random part of
the model, may be harder to specify. It may be helpful to have some insight into how the
parameters jointly imply a decomposition of the variance of the dependent variable.

It is convenient to work with standardized predictor variables, i.e., to have them scaled
so that their mean is 0 and their variances 1. In this case, the variance of the dependent variable
can be decomposed as follows.

First consider a random intercept model, i.e., a model without random slopes. This is
formulated as a special case of (2) (namely, with h = 0):

yi j = γ 0 0 + β1 x1 i j + ... + βk xk i j + u0 j + ri j .

If the predictor variables also are uncorrelated, then the variance of the dependent variable can
be decomposed as

var(yi j ) = β1 
2 + ... + βk 

2 + τ0 0 + σ2  , (5)

i.e., the sum of squared regression coefficients, plus the intercept variance, plus the residual
level-1 variance.  If the predictor variables are correlated, one has to add to this two times the
sum of βr βs ×ρ(xr , xs ), summed over all r and s with 1 ≤ r < s ≤ k (with ρ(xr , xs ) being the
correlation between the two predictor variables xr  and xs ).

                                                
    1It is best to skip this section, unless you need more insight into the parameters of the multilevel model in order
to specify their values for input in PINT. If you do wish to know more about the decomposition of variance of y
implied by the multilevel model, you can consult Section 7.2 of Snijders & Bosker (1999).
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Second consider a random slope model. Such a model is obtained by substituting (3a) through
(3h) into (2), and the result is

yi j = γ 0 0 + γ 1 0 x1 i j + ... + γ h 0 xh i j + βh+1 x(h+1) i j + ... + βk xk i j   

+ γ 0 1 z1 j + ... + γ 0 m zm j + γ 1 1 x1 i j z1 j + ... + γ h m xh i j zm j   

+ u0 j + u1 j x1 i j + ... uh j xh i j + ri j  .

Assume that the variables with random slopes have no between-group variability (i.e., their
group means are always 0), and all variables xr and zs again have a mean of 0 and a variance of
1. This implies that the product variables xr zs also have mean 0 and variance 1.

To keep away from too great complexity, it is also assumed that all variables are
uncorrelated. This implies that the variance of y can be decomposed as a sum of squared
regression coefficients, plus the intercept variance, plus a sum of squared random slope
variances, plus the residual variance:

var(yi j ) = γ 1 0
2+ ... + γ h 0

2 + βh+1
2 + ... + βk 

2   

+ γ 0 1
2 + ... + γ 0 m

2 + γ 1 1
2 + ... + γ h m

2 (6)

 + τ00 + τ11 + ... + τhh + σ2  .

Since the variables with random slopes are assumed to be pure level-1 variables, the sum of the
squared slope variances represents part of the within-group variability.
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3. Permitted sample sizes: cost function or all combinations

In the PINT software there are two options for limiting the sample sizes at the two levels. The
first option is based on a budget constraint. The second option uses all combinations of sample
sizes at either level between certain minimum and maximum values.

Budget constraints option

In the first option, the program takes into account that it may be (but it does not have to be)
more costly to sample one extra macro-unit (with n micro-units) than to sample n extra micro-
units from already sampled macro-units. E.g., when administering aptitude and achievement
tests to students, travelling costs and salary are needed for research assistants and these will be
increased by having to visit extra schools.

To give an idea: assume that observation costs are composed of salary, traveling costs, and the
material required. Assume that the costs of contacting one school and the travel for the visit is
$150. Further assume that the salary and material costs for testing one students are $5. E.g.,
investigating 25 students at one school costs a total of $150 + 25×$5 = $275. More generally,
this means that the cost function can be taken as $150N + $5Nn = $ 5N(n+30).

In general, PINT assumes that the cost function is proportional to N(n+c) for some value c. The
program requires that c is an integer number. The number c is the ratio, indicating how much
more costly it is to sample one extra macro-unit (without changing the overall total number of
micro-units sampled), than it is to sample one extra micro-unit within an already chosen macro-
unit. In the example above, c = 30. Usually for mail or telephone surveys using a two-stage
sampling design c = 0: there is no efficiency gain in using a two-stage sample as compared to
using a simple random sample. But for research studies in which face-to-face interviewing or
supervised testing is required efficiency gains can be made by using a two-stage sampling
design, which is reflected by a positive value for c.

Further, PINT assumes that one wants to find sample sizes at micro and macro level that satisfy
the following inequality:

 N(n+c) ≤ K , (7)

with N being the sample size of macro-units, n the sample size of micro-units per macro-unit,
and K  the budget expressed in monetary units equal to the cost of sampling one additional
micro level unit. In the example above, c would be 30 and K would be the budget in dollars
divided by $5. Equation (7) is called a linear budget constraint.

For a number of values of n, PINT calculates the largest value of N that satisfies the budget
constraint (7), and computes the standard errors of the parameter estimates for these
combinations of n and N. This implies, if n increases with steps of 1, a kind of saw-tooth
pattern for the total sample size Nn, because of the requirement that n as well as N be integer
numbers. The actual costs N(n+c) can be (slightly) less than the allowed budget K, for some
(usually: most) combinations of n and N.
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One should realize that the groups are independent replications of each other and therefore the
number of groups, N, has the usual effect of a sample size on the standard errors: these are
inversely proportional to √N, when n remains constant.

All combinations option

The second option is that the user specifies minimum and maximum numbers of the level-1
sample size n, as well as minimum and maximum numbers of the level-2 sample size N. All
combinations of n and N between these bounds are in principle permitted; but to limit the
quantity of output obtained, the step sizes with which n and N are increased may be less than 1.
The incremental step size for n is specified by the user; the incremental step size for N is
determined internally by PINT according to the following rule. The minimum and maximum
values for N are denoted, respectively, N2min and N2max .

� If N2max –  N2min    ≤  20  then the step size is 1;
� If 20 < N2max –  N2min  ≤  50 then the step size is 2;
� If 50 <  N2max –  N2min  ≤  100 then the step size is 5;
� If N2max –  N2min  >  100 then the step size is 10.
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4. Running the PINT-program

4.1. Introduction: PINT for Windows

PINT computes the expressions provided by Snijders and Bosker (1993) for the standard errors
of the estimated regression coefficients in the two-level model. This is done for parameter
values that have to be provided by the user. The purpose is not to compute standard errors for
data that have already been collected and analyzed; such standard errors are provided by the
multilevel software used for the data analysis. The purpose is to estimate the standard errors
that would be obtained in future research about populations, parameter values of which (means,
variances, covariances) can be estimated or guessed, if one would employ given sample sizes.

If one starts with given sample sizes at levels 1 and 2, and an estimated effect size, these
standard errors can then be used with formula (1) to compute the statistical power of the design.
On the other hand, if one wishes to achieve a given power for a given effect size, one can use
formula (1) to calculate the required standard error, let PINT calculate standard errors for a
variety of sample sizes, and determine the sample size that yields this value for the standard
error.

Parameter file

The Windows version of PINT uses a parameter file that contains all parameters values and the
constraints to the sample sizes described in Section 3. The user interactively specifies the values
used in this parameter file, and this file is then saved for future reference. The parameter file is
written in ASCII code (also called a DOS text file). The default name is AX.DAT, but any other
name can be specified. If an existing parameter input file is specified, then PINT will read the
values from this file, and the user is requested to confirm or change these values.

The normal way to write and change this parameter file is through PINT itself. However, the
parameter file can also be written and changed with any editor that can produce ASCII files,
provided the format indicated below is used. (For those used to version 1.6 of PINT, the older
DOS program PPINT can also still be used, provided that one uses thet “Budget Constraint”
option from Section 3.)

4.2. File names

Given that one chooses the parameter file name, e.g., AX.DAT, output is written by default to
files AX.OUT (main output: standard errors) and AX.COV (secondary output: covariance
matrices of the regression coefficients, which sometimes are useful but often are superfluous).
These files are introduced in the sequel of this chapter.

PINT asks the user interactively for the name of the main output file; if the root name
(e.g., AX) differs from the root name of the parameter file, e.g., BX.OUT, then the secondary
output file will be BX.COV. If the names selected for the input and output files are already in
use, PINT will ask for a confirmation, because the files will be overwritten. For the secondary
output file, PINT will try to find an unused extension names (.CO1, or if this is in use already
then .CO2, etc.). The main output file will indicate the name used for the secondary output file.
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PINT writes the names of the output files used at the end of the constructed input file,
so you will know later which output files to look at for a given input file. This last line of the
input file is not read by PINT, and serves only as information to the user.

4.3. Specifying the input

Sections 2 and 3 indicated the input that is required for calculating the standard errors. This
input can be summarized as follows. (The ‘categories’ mentioned refer to Section 2.2.)
•  Number of variables in the three categories (cf. section 2.2): L1 , L2 , and L3 .
•  Means of predictor variables: µ1 and µ3 .
•  Within-groups covariance matrix ΣW of order L1 +L2  (for predictor variables of

categories 1 and 2: those in category 3 have no within-group variance).
•  Between-groups covariance matrix ΣB of order L1 +L3  (for predictor variables of

categories 1 and 3: those in category 2 have no between-group variance). Note that the
between-group variances and covariances of the variables in category 1 (which are
level-1 variables) are the variances and covariances of their group means.

•  Residual variance at level 1, σ2 .
•  Covariance matrix of the random coefficients (random intercept and random slopes):

covariance matrix τ of order L2 +1. In this covariance matrix, the first variable
corresponds to the random intercept, the last L2 to the random slopes.

•  Choice between the option of a linear budget constraint, or all combinations of level-1
and level-2 sample sizes between certain bounds.

•  For the first option: cost parameter c and budget constraint K.
•  For the second option: minimum and maximum level-2 sample sizes N2min and N2max .

In addition, to indicate for which values of n the standard errors are to be calculated, required
input is
•  the smallest and largest values of n, to be called nmin and nmax , and the step size nstep

with which n is to be increased in going from nmin to nmax .

With respect to the covariance matrices ΣB and ΣW , the first blocks of these, of dimensions
L1 ×L1 , refer to the variables in category 3. The overall covariance matrix of these variables is
the sum of the two corresponding blocks. This implies, e.g., that if all variables are z-scores and
have variances equal to 1, then it holds for each i = 1, ..., L1 that the sum (ΣB)i i + (ΣW)(L3+i, L3+i)

is equal to 1.

The various parameters have to be determined from existing knowledge, supplemented by
intelligent guesswork. What is said in Section 2.3 about the decomposition of the variance of
the dependent variable may be used to get some insight into the values that the various
parameters could have.
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4.3.1. Parameter input

PINT asks the values of these parameters in the following order. Logical constraints are
required for some of the parameters (e.g., variances may not be negative, etc.).
•  Number of predictor variables:

the total number of level-1 variables, L1 +L2 ;
the number of variables with only a fixed effect, L1 ;
the number of level-2 variables, L3 .

•  Means of predictor variables:
the means of the level-1 variables with fixed effects only, i.e., L1 numbers together
forming the vector µ1;
then the means of the level-2 variables, i.e., L3 numbers together forming the vector µ3.

•  Within-groups covariance matrix ΣW :
The variables must be ordered so that first come the L1 variables in category 1, then the
L2 variables in category 2.
Since the matrix is symmetric, only the sub-diagonal part needs to be given. Each row
of the covariance matrix must be given on a separate input line. A total of L1 +L2 input
lines are required, the first containing one number, the second 2 numbers, etc., up to the
last one containing L1 +L2 numbers.

•  Between-groups covariance matrix ΣB :
The variables must be ordered so that first come the L3 variables in category 3, then the
L1 variables in category 1.
Again, only the sub-diagonal part needs to be given and each row of the covariance
matrix must be given on a separate input line. A total of L3 +L1 input lines are required,
the first containing one number, the second two numbers, etc., up to the last one
containing L3 +L1 numbers.

•  Residual variance at level 1, σ2 .
•  Covariance matrix of the random coefficients (first random intercept, then random

slopes): covariance matrix τ of order L2 +1. It must be given in the same way as the
other covariance matrices.

•  Choice between the option of a linear budget constraint, or all combinations of level-1
and level-2 sample sizes between certain bounds.

•  For the first option: cost parameter c and budget constraint K; and the smallest and
largest values of n, to be called nmin and nmax , and the step size nstep with which n is to
be increased in going from nmin to nmax .

•  For the second option: minimum and maximum level-2 sample sizes N2min and N2max ;
and here also the smallest and largest values of n, to be called nmin and nmax , and the
step size nstep with which n is to be increased in going from nmin to nmax .

After having given in all these values, the user has to choose one of the following optons to
proceed:
1. Save the parameter file and calculate the standard errors.
2. Save the parameter file without calculating the standard errors.
3. Quit the program without saving the parameter file or doing any calculations (in this case,

all specifications given will be lost).
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4.3.2. Format of the parameter file

If you wish to write a parameter file for PINT directly (using some text editor), the required
input order is the following.

In the option of a budget constraint:

L1+L2 L1 L3

nmin nstep nmax

K c
σ2

τ
ΣW

ΣB

µ1

µ3

In the option of all combinations of sample sizes between certain bounds:

L1+L2 L1 L3

nmin − nstep   nmax

N2min N2max

σ2

τ
ΣW

ΣB

µ1

µ3

(note that the step size nstep now is given with a minus sign, i.e., it is multiplied by –1).

The matrices τ, ΣW , and ΣB  may be given as entire matrices, or as lower diagonal matrices;
only the lower diagonal part is read. They are read as one matrix row per input line. (In other
words: after reading the diagonal element, the program passes on to reading the next line.)
All other input elements are read in free format. This implies that it is not an error if the first 8
integer numbers (L1 +L2 up to c) are given in a total of more than 3 lines, provided the order of
these numbers is as indicated. Comments are not allowed in the input file before µ3 . After this,
you may give any comments you like.
The first 8 input variables (until the value of c) must be integers (no decimal point). The other
variables are read as real numbers (may, but need not, contain a decimal point.)
The matrix τ must be of order L2 +1, matrix ΣW must be of order L1 +L2 , and matrix ΣB of order
L3 +L1 . The vector µ1 has L1 elements, while µ3 has L3 elements.
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A possible input file AX.DAT is as follows:

   2 1  1
  10 5 60
1000 5
  0.5
  0.09
 -0.01 0.0075
  0.8
  0.3 1
  1
 -0.13 0.2
  0
  0

4.3.3. An example

We will illustrate the input by proceeding with the example provided earlier that was also
treated in Snijders and Bosker (1993).
In this example the effect of a POLICY variable on ACHIEVEMENT of students is assessed
after taking into account IQ and SES differences between students. Furthermore this variable
may affect the within-school relation between ACHIEVEMENT and SES, i.e. we hypothesize
a cross-level interaction effect of SES×POLICY on ACHIEVEMENT. The two-level model
was expressed in Section 2.1 by the formula

ACHIEVEMENTi j = γ 1 1 IQi j + γ 2 1+ γ 2 2 POLICYj + γ 2 3 SESi j

+ γ 2 4 SESi j × POLICYj +  U2 1 j + SESi j ×U2 2 j + Ri j . (4)

We suppose that the standard errors demanding our interest are those that are associated with
the regression coefficients γ22 and γ24. The various parameters for input into PINT are
determined as follows.

•  Number of variables in the three categories: L1 , L2 , and L3 .
In our example there are two level-1 predictor variables (IQ and SES) so that L1 +L2 =
2.
The only micro level predictor with a fixed effect is IQ, so L1 = 1.
There is only one level-2 predictor in the model (POLICY), so L3 = 1.
Recall that for each level-2 predictor it is assumed that it predicts intercept-differences
between macro-units as well as differences in (random modeled) regression coefficients
between macro-units.

•  Means of predictor variables with fixed effects only: µ1 and µ3 .
All variables are used as z-scores, thus both µ1 = 0 (a vector of L1 = 1 element) and
likewise µ3 = 0 (L3 = 1 element).
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•  Within-groups covariance matrix ΣW of order L1 +L2  .
In this case, the level-1 variables are IQ and SES (in this order: IQ is in "category 1"
while SES is in "category 2"; see page 7). Since we are dealing with a hierarchical
design, the predictor variables at level 1 will usually have within-group as well as
between-group (co)variation. The within-group covariance matrix is the matrix ΣW .
Since all variables are z-scores, the only problems in specifying this matrix deal with
the following:
   - how much of the variance in the fixed effect level-1 variables is located at level

1?
   - what is the within-group covariance between these variables?
   - what is the within-group covariance between these variables and the random

effects variables?
   - what is the within-group covariance between the random effects variables?
For the present example IQ is the fixed effect variable at level 1, and we assume that 80
percent of its variance is located at level 1, and the remaining variance (20 percent) is
located at level 2. Since random effects variables should be taken as within-group
deviates and are z-scores, their variance can be taken to be 1. The only specification
problem that remains is the within-group covariance between IQ and SES. For the
present example we assume it to be 0.30, so that ΣW  is

0.80 0.30
0.30 1.00

This matrix indicates the values of

level-1 var in IQ covar between IQ and SES
covar between IQ and SES level-1 var in SES .

•  Between-groups covariance matrix ΣB of order L3 +L1  .

The variable in category 1 is IQ, the variable in category 3 is POLICY. Here we need
some a priori information, or an educated guess, on the level-2 (between-group)
variances and covariances. The order of variables is: first original level-2 variables
(POLICY), then group means of level-1 variables with fixed effects (IQ).
The variance at level-2 of the IQ-variable is already implied by what was decided about
the amount of level-1 variance in this variable: the remaining 20% is its between-group
variance. The POLICY variable is a z-score, so has variance 1. The specification of the
between-group covariance between IQ and POLICY, which is the covariance between
the group-average IQ.j and the POLICY variable, can be deduced from our guess about
the correlation since

In the present example we assumed a negative correlation (because the POLICY was
aimed at low-SES and therefore on average lower-IQ students) of -.30, which, given
standard deviations of √0.20 = 0.45 and √1.00 = 1.00, results in a covariance of -.13.

.  
) (.d.s      ) (.d.s

)   , (covariance
 = )   , (ncorrelatio

yx
yx

yx
×
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For the present example this leads to the following specification of ΣB :

 1.00 -0.13
-0.13  0.20

This matrix indicates the values of

var in POLICY covar between POLICY and IQ.j

covar between POLICY and IQ.j var in IQ.j .

•  Residual variance at level 1, σ2 .
Since we have assumed that all variables were z-scores, the residual variance at the
micro level is the amount of variation accounted for neither by the variables in the
model nor by the grouping (the random intercept). The range is from 0 (if there is no
residual variance) to 1 (no explanatory variables in the model). For the present example
we take σ2  = 0.5, meaning that half of the variation in the dependent variable
(ACHIEVEMENT) is accounted for by variables in the model, whether these are the
fixed effects (main effects of IQ, SES, and POLICY; interaction effect SES×POLICY)
or the random effects (the schools that the students are in).

•  Covariance matrix of the random coefficients (random intercept and random slopes):
covariance matrix τ of order L2 +1.
Here the relevant sizes of the residual variance components at level 2 will be specified.
To start with, var(U2 1 j )=τ0 0 , the random intercept variance, which is the amount of
residual between-group variance in the dependent variable given that all level-1
variables with a random slope have a value of 0, has to be specified. Since all variables
with random slopes are within-group deviation variables, this can be identified with the
amount of variance in the dependent variable located at level 2 that is left after the fixed
effects have been controlled for. We suppose that 20% of the variance of achievement
is a school effect, half of which is explained by IQ.j  (schools having students with
higher IQ-scores having higher ACHIEVEMENT-scores) and that about 10% of the
residual variation in school effects may be explained by the POLICY variable. There
remains a random intercept variance of 0.09.
We also assume that the regression coefficient of ACHIEVEMENT on SES has a
variance of 0.01 (i.e., a standard deviation of 0.1) and that about 25% of this variance is
accounted for by the regression of this slope on POLICY. There remains an
unexplained random slope variance of 0.0075. Finally, the residual intercept-slope
covariance is estimated at -0.01, corresponding to a correlation of -0.39. (This
coefficient is rather hard to specify; fortunately, the resulting standard errors as
calculated by PINT are not very sensitive to it.)
The resulting covariance matrix is

    0.09   -0.01
  -0.01    0.0075
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This matrix indicates the values of

residual intercept variance intercept-slope covariance
intercept-slope covariance residual slope variance.

•  The smallest and largest values of n, called nmin and nmax , and the step size nstep with
which n is to be increased in going from nmin to nmax .
The smallest practical group size here is nmin=10. To get a first idea about the behaviour
of the standard errors, we set nstep=5.
The level-2 units of course mostly set a ceiling to the number of level-1 units that are
available. When investigating neighbourhood effects on political affiliation of the
inhabitants, the number is rather large, but in educational research, schools will have a
limited total number of, e.g., 30 (primary schools) or 200 students (secondary schools)
per grade. This then sets the limit. For the present example we assume that nmax=60.
Since nstep is given as a positive number, PINT knows that the option of a linear budget
constraint is used.

•  Cost parameter c and budget constraint K .
These amounts are expressed as multiples of the marginal cost of having one extra
student; in other words, this marginal cost is used as the unit of cost.
For the present example we take K=1000, implying that in any case we cannot have a
total sample size of more than 1000 students.
Parameter c represents the extra costs involved in sampling an extra macro-unit. For
this example we take c=5, meaning that sampling the same total amount of students in
one extra school is 5 times more expensive than taking one student extra in one already
sampled school.

The corresponding parameter file AX.DAT for PINT, that was already given at the end of
Section 4.3.2, then reads:

   2 1  1
  10 5 60
1000 5
  0.5
  0.09
 -0.01 0.0075
  0.8
  0.3 1
  1
 -0.13 0.2
  0
  0
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4.4. Output

The output is written to two files. The first (default name AX.OUT) contains the standard errors
of the estimated regression coefficients. The second (default name AX.COV) contains the
variance-covariance matrices of the estimates.

4.4.1. Primary output on AX.OUT

The primary output is written to AX.OUT. In discussing the output we will proceed with the
output as produced by the example given. Italicised remarks are explanations that are not part
of the output.

(First comes the program header.)

  PPPPPP       III    NNN      NNN  TTTTTTTTTTTTT
  PPP   PPP           NNNN     NNN       TTT
  PPP   PP     III    NNN NN   NNN       TTT
  PPPPPP       III    NNN  NN  NNN       TTT
  PPP          III    NNN   NN NNN       TTT
  PPP          III    NNN    NNNNN       TTT
  PPP          III    NNN     NNNN       TTT
  PPP          III    NNN      NNN       TTT

            power in two-level designs
            version 2.1       april 2003

copyright:   roel bosker    (RUG)  & tom snijders (RUG)
programming: henk guldemond (RUG)  & tom snijders (RUG)

This programs performs calculations corresponding to the paper
"Standard errors and Sample Sizes for Two-Level Research",
by Tom A.B. Snijders and Roel J. Bosker,
Journal of Educational Statistics, Vol. 18, 1993, p. 237-259.

Date and time: 4/27/2003 2:18:00 PM

Input parameters read from file C:\Tom\Mulev\Pint\Examples\ax1.dat.

File C:\Tom\Mulev\Pint\Examples\ax1.cov contains secondary output
(entire covariance matrices).

(The first section of the output summarizes the input as specified on AX.DAT)

Design:
(Between parentheses, the symbol is mentioned that is used for this parameter;
 if the PINT manual uses a different symbol than the Snijders-Bosker paper,
 then the symbol from the paper is given between parentheses,
 the symbol from the manual between square brackets.)

NUMBER OF FIXED EFFECTS              (K_1)            [L_1 + L_2 + 1] :    1
NUMBER OF RANDOM EFFECTS INCL. CONST (K_2)            [L_2 + 1]       :    2
NUMBER OF LEVEL-2 VARS INCL. CONST   (length of W_3j) [L_3 + 1]       :    2
TOTAL COSTS                          (k)              [K]             : 1000
RELATIVE COST PER LEVEL-2 UNIT       (c)                              :    5
SMALLEST VALUE OF n                                   [n_min]         :   10
STEP SIZE FOR n                                       [n_step]        :    5
LARGEST VALUE FOR n                                   [n_max]         :   60

(The parameters given next are in expanded form, also containing elements corresponding to
the "constant" as one of the explanatory variables. This is to give exact correspondence with
Snijders and Bosker (1993). This gives extra rows and columns of zeros in the covariance
matrices, an extra zero in the vector µ3 of expected values for the level-2 variables, and an
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extra vector µ2 consisting of a one followed by zeros. You may forget about all this, unless you
want to study very precisely the correspondence with the paper.)

Parameters:

WITHIN-GROUPS COVARIANCE MATRIX  (SIGMA-W)

      0.80000      0.00000      0.30000
      0.00000      0.00000      0.00000
      0.30000      0.00000      1.00000

BETWEEN-GROUPS COVARIANCE MATRIX (SIGMA-B)

      0.00000      0.00000      0.00000
      0.00000      1.00000     -0.13000
      0.00000     -0.13000      0.20000

RESIDUAL VARIANCE (sigma-squared)

          0.50000

COVARIANCE MATRIX OF RANDOM EFFECTS (tau_2)

      0.09000     -0.01000
     -0.01000      0.00750

EXPECTATION OF LEVEL-1 VARIABLES WITH FIXED EFFECTS (mu_1)

      0.00000

EXPECTATION OF LEVEL-2 VARIABLES (mu_3)

      1.00000
      0.00000

CONSTANT MEAN VECTOR (mu_2 = e)

      1.00000
      0.00000

(An explanation of the produced table of standard errors follows.)

The following table contains the standard errors (s.e.):
Fixed:   s.e. of regr. coeff.s of level-1 variables with a fixed effect only.
Const:   s.e. of the intercept.
Group:   s.e. of regr. coeff.s of level-2 variables.
Random:  s.e. of regr. coeff.s of level-1 variables with a random effect.
Cross-L: s.e. of regr. coeff.s of cross-level interactions
         (product of "Group" with "Random effect" variables).

(And now for the real output.)

    Sample sizes      costs   Standard errors

    N*n     N     n (n+c)*N    Fixed   Const   Group   Random Cross-L
    660    66    10     990   0.03124 0.04606 0.04624 0.03097 0.02952
    750    50    15    1000   0.02961 0.04967 0.04981 0.02993 0.02858
    800    40    20    1000   0.02885 0.05362 0.05375 0.02979 0.02850
    825    33    25     990   0.02853 0.05774 0.05785 0.03011 0.02887
    840    28    30     980   0.02837 0.06172 0.06183 0.03059 0.02938
    875    25    35    1000   0.02786 0.06459 0.06469 0.03068 0.02952
    880    22    40     990   0.02783 0.06826 0.06835 0.03129 0.03015
    900    20    45    1000   0.02756 0.07110 0.07119 0.03161 0.03051
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    900    18    50     990   0.02760 0.07454 0.07462 0.03226 0.03118
    880    16    55     960   0.02794 0.07870 0.07878 0.03327 0.03220
    900    15    60     975   0.02765 0.08097 0.08105 0.03353 0.03249

The first three columns contain information on the sample sizes; since in this example c > 0, the
total sample size will tend to increase when less macro-units are sampled. The next five
columns contain information on the standard errors; generally the standard error of the level-1
fixed effect will decrease as the total sample size (N × n) increases whereas for the constant (i.e.
the intercept) and the macro-level variable the standard error will increase with a decrease in
the sample size of the macro-units N (at least when the amount of residual variance in the
dependent level at level-2 exceeds 0). The 6th and 8th column contain the standard errors of
primary interest. The standard errors of the main effect of the POLICY-variable as well as the
standard error of the cross-level interaction effect POLICY×SES appear to have an optimum
somewhere between 10 < n < 40. We take these boundaries rather loosely since N and n have to
be integer numbers such that N (n + c) ≤  K, which implies that N × n can vary substantially
when the number of micro-units increases.

4.4.2. Secondary output on AX.COV

AX.COV contains the variance-covariance matrix of the estimated coefficients. The square root
of the diagonal elements are the standard errors of the primary output. The covariance matrices
can be used if it is necessary to calculate standard errors of linear combinations of the estimated
coefficients. If you have messed up your files, you can look at the date and time when the
output was produced to check the correspondence between the AX.COV and the AX.OUT
files.

The variance-covariance matrix of the estimated coefficients has the same structure as the
produced table of standard errors in the primary output. So in this example the structure is,
according to the head of this table:

Fixed: s.e. of regr. coeff.s of level-1 variables with a fixed effect only.
Const: s.e. of the intercept.
Group: s.e. of regr. coeff.s of level-2 variables.
Random: s.e. of regr. coeff.s of level-1 variables with a random effect.
Cross-L: s.e. of regr. coeff.s of cross-level interactions

(product of "Group" with "Random effect" variables).

4/27/2003 2:18:00 PM

N = 66 ; n     = 10

Covariance matrix of estimated coefficients

   0.00097599   0.00000000   0.00012688  -0.00029280   0.00000000
   0.00000000   0.00212121   0.00000000  -0.00015152  -0.00000000
   0.00012688   0.00000000   0.00213771  -0.00003806  -0.00015152
  -0.00029280  -0.00015152  -0.00003806   0.00095905  -0.00000000
   0.00000000   0.00000000  -0.00015152  -0.00000000   0.00087121

N = 50 ; n     = 15
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Covariance matrix of estimated coefficients

   0.00087663  -0.00000000   0.00011396  -0.00026299   0.00000000
  -0.00000000   0.00246667   0.00000000  -0.00020000  -0.00000000
   0.00011396   0.00000000   0.00248148  -0.00003419  -0.00020000
  -0.00026299  -0.00020000  -0.00003419   0.00089556   0.00000000
   0.00000000  -0.00000000  -0.00020000   0.00000000   0.00081667

N = 40 ; n     = 20

Covariance matrix of estimated coefficients

   0.00083234  -0.00000000   0.00010820  -0.00024970  -0.00000000
   0.00000000   0.00287500   0.00000000  -0.00025000   0.00000000
   0.00010820   0.00000000   0.00288907  -0.00003246  -0.00025000
  -0.00024970  -0.00025000  -0.00003246   0.00088741   0.00000000
  -0.00000000  -0.00000000  -0.00025000   0.00000000   0.00081250

N = 33 ; n     = 25

Covariance matrix of estimated coefficients

   0.00081413  -0.00000000   0.00010584  -0.00024424  -0.00000000
  -0.00000000   0.00333333  -0.00000000  -0.00030303   0.00000000
   0.00010584  -0.00000000   0.00334709  -0.00003175  -0.00030303
  -0.00024424  -0.00030303  -0.00003175   0.00090660   0.00000000
  -0.00000000   0.00000000  -0.00030303   0.00000000   0.00083333

N = 28 ; n     = 30

Covariance matrix of estimated coefficients

   0.00080463   0.00000000   0.00010460  -0.00024139   0.00000000
   0.00000000   0.00380952   0.00000000  -0.00035714   0.00000000
   0.00010460   0.00000000   0.00382312  -0.00003138  -0.00035714
  -0.00024139  -0.00035714  -0.00003138   0.00093551  -0.00000000
   0.00000000  -0.00000000  -0.00035714  -0.00000000   0.00086310
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N = 25 ; n     = 35

Covariance matrix of estimated coefficients

   0.00077615   0.00000000   0.00010090  -0.00023284   0.00000000
   0.00000000   0.00417143  -0.00000000  -0.00040000   0.00000000
   0.00010090   0.00000000   0.00418455  -0.00003027  -0.00040000
  -0.00023284  -0.00040000  -0.00003027   0.00094128  -0.00000000
   0.00000000  -0.00000000  -0.00040000  -0.00000000   0.00087143

N = 22 ; n     = 40

Covariance matrix of estimated coefficients

   0.00077464   0.00000000   0.00010070  -0.00023239   0.00000000
   0.00000000   0.00465909  -0.00000000  -0.00045455   0.00000000
   0.00010070  -0.00000000   0.00467218  -0.00003021  -0.00045455
  -0.00023239  -0.00045455  -0.00003021   0.00097881   0.00000000
   0.00000000   0.00000000  -0.00045455   0.00000000   0.00090909

N = 20 ; n     = 45

Covariance matrix of estimated coefficients

   0.00075973   0.00000000   0.00009877  -0.00022792  -0.00000000
   0.00000000   0.00505556   0.00000000  -0.00050000   0.00000000
   0.00009877   0.00000000   0.00506840  -0.00002963  -0.00050000
  -0.00022792  -0.00050000  -0.00002963   0.00099893   0.00000000
   0.00000000   0.00000000  -0.00050000  -0.00000000   0.00093056

N = 18 ; n     = 50

Covariance matrix of estimated coefficients

   0.00076164   0.00000000   0.00009901  -0.00022849   0.00000000
   0.00000000   0.00555556   0.00000000  -0.00055556   0.00000000
   0.00009901   0.00000000   0.00556843  -0.00002970  -0.00055556
  -0.00022849  -0.00055556  -0.00002970   0.00104077  -0.00000000
   0.00000000   0.00000000  -0.00055556   0.00000000   0.00097222

N = 16 ; n     = 55

Covariance matrix of estimated coefficients

   0.00078059  -0.00000000   0.00010148  -0.00023418   0.00000000
  -0.00000000   0.00619318  -0.00000000  -0.00062500  -0.00000000
   0.00010148   0.00000000   0.00620637  -0.00003044  -0.00062500
  -0.00023418  -0.00062500  -0.00003044   0.00110719   0.00000000
   0.00000000  -0.00000000  -0.00062500  -0.00000000   0.00103693

N = 15 ; n     = 60

Covariance matrix of estimated coefficients

   0.00076462   0.00000000   0.00009940  -0.00022938  -0.00000000
   0.00000000   0.00655556  -0.00000000  -0.00066667   0.00000000
   0.00009940   0.00000000   0.00656848  -0.00002982  -0.00066667
  -0.00022938  -0.00066667  -0.00002982   0.00112437   0.00000000
  -0.00000000   0.00000000  -0.00066667   0.00000000   0.00105556

5. Examples
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This section contains a number of examples. For the examples of Sections 5.1 and 5.3, the
exact methods of Snijders (2001, Sections 11.4 and 11.5) could also be applied (but those
methods have a much smaller scope than the approximations used in PinT). Another extensive
example of PinT is given in Snijders (2001, Section 11.9); but this example has an error in the
between-groups covariance between X1 and X3 , which should be –0.043 instead of +0.043. Still
another example is given in Snijders & Bosker (1999, Section 10.4).

5.1. An assessment study with a two-stage sample

In this first example we have an international assessment study on mathematics achievement in
secondary schools. The mathematics achievement variable is a z-score, and within each country
the mean should be estimated with a standard error of .02. If a random sample would be taken it
can readily be deduced that the sample size should be:

s.e.=s.d./√n
  ⇔ 
n = 1/.022 = 2,500.

What will happen to the standard error if a two-stage sampling scheme is employed (first
schools then students), in case the between-school variance is 0.20, and assuming that there are
no direct extra budgetary consequences of sampling schools (this might be the case where one
is estimating costs, when the standard errors are imposed by some international board)?
The model can be formulated as follows:

ACHIEVEMENTi j = β0 j + ri j (2)

β0  j = γ 0  + u0 j (3a)

with ri j ~ N(0,σ2 ) and u0 j ~ N(0,τ). Note that we have no explanatory variables at all. In
multilevel terminology, this is called the empty model.

The parameter file would have to be specified as follows:

     0     0     0

(0 level-1 predictor variables; none of these has a fixed effect; 0 level-2 variables)

     1     1    30

(start with 1 micro-unit per macro-unit, then run with an increase of 1 micro-unit per macro-
unit until a maximum of 30 micro-units per macro-unit)

  2500     0

(total budget available is 2500 units and it will cost 0 units extra when sampling an additional
school)

      0.80
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(the residual variance at level 1)

      0.2

(the residual covariance matrix at level 2, which is simply the variance in mathematics
achievement between schools).

 Thus AX.DAT would look like:

     0     0     0
     1     1    30
  2500     0
      0.80
      0.20

The primary output file AX.OUT then contains the following output concerning the standard
errors:

    Sample sizes      costs   Standard errors

    N*n     N     n (n+c)*N     Const
   2500  2500     1    2500   0.02000
   2500  1250     2    2500   0.02191
   2499   833     3    2499   0.02367
   2500   625     4    2500   0.02530
   2500   500     5    2500   0.02683
   2496   416     6    2496   0.02831
   2499   357     7    2499   0.02967
   2496   312     8    2496   0.03101
   2493   277     9    2493   0.03229
   2500   250    10    2500   0.03347
   2497   227    11    2497   0.03466
   2496   208    12    2496   0.03581
   2496   192    13    2496   0.03691
   2492   178    14    2492   0.03801
   2490   166    15    2490   0.03907
   2496   156    16    2496   0.04003
   2499   147    17    2499   0.04100
   2484   138    18    2484   0.04209
   2489   131    19    2489   0.04299
   2500   125    20    2500   0.04382
   2499   119    21    2499   0.04473
   2486   113    22    2486   0.04574
   2484   108    23    2484   0.04663
   2496   104    24    2496   0.04737
   2500   100    25    2500   0.04817
   2496    96    26    2496   0.04903
   2484    92    27    2484   0.04996
   2492    89    28    2492   0.05068
   2494    86    29    2494   0.05144
   2490    83    30    2490   0.05226

Here you can clearly see the saw-tooth pattern in the total sample size N×n. For n = 1, as
expected, the standard error is exactly the desired 0.2. It can be seen that, since the between-
school variance is larger than 0, the standard errors deteriorate as the total number of schools in
the sample increases.
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Suppose now that practical restrictions lead to sampling one class of, on average, n = 30 pupils
per school. For n = 30, the standard error in the output above is seen to be 0.05226 for N = 83
groups. Since the groups are independent replications, multiplying the number of groups by
some factor f will multiply the standard error by a factor 1/√f. This suggests that to arrive at a
standard error of 0.02, which amounts to multiplication by 1/√f = 0.02/0.05226, the number of
schools should be multiplied by f = (0.05226/0.02)2 = 6.83. The total sample size then would be
approximately (6.83×83×30=) 17,000. Running PINT with a budget of K = 17000 for n from
25 to 35 leads to the following output:

       N*n     N     n     Const
  17000   680    25   0.01847
  16978   653    26   0.01880
  16983   629    27   0.01911
  16996   607    28   0.01941
  16994   586    29   0.01971
  16980   566    30   0.02001
  16988   548    31   0.02030
  16992   531    32   0.02058
  16995   515    33   0.02087
  17000   500    34   0.02114
  16975   485    35   0.02144

This shows that sampling N = 566 schools with each n = 30 pupils will yield a standard error
of 0.02, as desired.

Because this design, without explanatory variables, is so simple, we could also have obtained
this result from existing formulae. Cochran (1977, Chapter 9) provides formulae to calculate
sample sizes in case of two-stage sampling. On p. 242, he indicates that the "design effect" for a
two-stage sample, which is the factor by which the variance of an estimate is increased because
of using a two-stage sample rather than a simple random sample, is given by

design effect = 1 + (n - 1) × ρ ,

where ρ is the intra-class correlation (ratio of between-group variance to total variance, given
by τ00 /(τ00 + σ2 ) ). The design effect is also the factor by which the total sample size has to be
multiplied to obtain the same standard error.
In this case, ρ = 0.2. Using Cochran's formulae and assuming that per school one class of
students will be sampled, so that n = 30, the total sample size for a two-stage random sample
that is equivalent to a simple random sample of size 2,500 should be

Nn = 2,500 × (1 + (30 - 1) × 0.2) = 17,000.
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5.2. An association between level-1 variables using a two-stage sample

Suppose one wants to assess the association between, for instance, income and total number of
years spent in school as part of a larger national survey using face-to-face interviews. Since
interviewers have to travel to the respondents it seems worthwile to reduce travelling costs and
to take a two-stage sample: randomly select neighbourhoods and within each neighbourhood
select a number of respondents. The model (a random intercept model) would be as follows:

INCOMEi j = γ 0 0 + γ 1 0YEARSi j + u0 j + ri j .

Let us assume that INCOME as well as YEARS are z-scores (mean 0, total variance 1), that
YEARS has a between-neighbourhood variance of 0.10 and therefore a within-neighborhood
variance of 0.90, that 20% of INCOME is explained by YEARS (so that the correlation
between YEARS and INCOME is 0.447), and that the 80% unexplained variance of INCOME
is distributed over individuals and neighbourhoods in the ratio of 70:10. Let us assume that
sampling one extra neigbourhood has a price attached to it - over and above the price associated
with sampling individuals within this neighbourhood - that is the equivalent of sampling 8
individuals.

The following might be a specification of the PINT-input on the parameter file AX.DAT:

   1   1   0
   8   2  30
1000   8
0.70
0.10
0.90
0.10
   0  

AX.OUT will contain the following information on the standard errors:

    N*n     N     n (n+c)*N    Fixed   Const
    496    62     8     992   0.03861 0.05499
    550    55    10     990   0.03677 0.05560
    600    50    12    1000   0.03529 0.05627
    630    45    14     990   0.03450 0.05774
    656    41    16     984   0.03387 0.05921
    684    38    18     988   0.03321 0.06046
    700    35    20     980   0.03286 0.06211
    726    33    22     990   0.03230 0.06320
    744    31    24     992   0.03193 0.06455
    754    29    26     986   0.03175 0.06616
    756    27    28     972   0.03172 0.06804
    780    26    30     988   0.03125 0.06887

Since the association between years of schooling and income is the object of investigation, the
relevant standard errors are those in the column "Fixed" (this column gives the standard errors
of γ10 ). It turns out that, given the cost parameter c = 8, and given that there are reasons not to
sample more than n = 30 persons per neigbourhood, it is best to sample the lowest possible
number of neighbourhoods, N = 26. The resulting standard error will be 0.03125. If we were
interested in the power of the statistical tests to be employed in this study, we could apply (1).
Suppose we would set α at .01, then the power would be derived to be:
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 .03125 = [.447/(2.33+z1-ß)]  ⇔  z1-ß = 11.97  ⇔  1-ß = 1.00

Bear in mind that this is the power of a test on the correlation against 0, which is not very
informative. No wonder that in this case the power of the test is perfect. More informative
would be a power calculation in case we were 0.10 off from the 'true' value 0.547. In that case
the power would be:

 .03125 = [.10/(2.33+z1-ß)]   ⇔  z1-ß = 0.87  ⇔  1-ß = .81.

5.3. Main effects of a macro level variable

Let us now turn to an example in which a macro level variable is supposed to have an effect on
a micro level variable. A case might be an experiment with class size, in which a class size
reduction of 6 pupils per class is compared to a usual class size of 26 in its effect on
achievement of young pupils.

ACHIEVEMENTi j = γ0 0 + γ0 1EXPERIMENTj + u0 j + ri j .

Let us assume that achievement is measured in z-scores, and that the experiment is set up to
detect an effect of 0.20 (or larger) in the population of interest. Transforming this effect size
into a correlation coefficient r using (Rosenthal, 1994, p.239)

d = 2r / √(1-r2)

results in r = 0.10. The astonishing thing about this example is, that most researchers would test
all pupils within a class and would take the within class size of 23 (being the average of 20 and
26) as given. There is no need at all to do so! A straigthforward use of the formulae
immediately points us to the clue that if c = 0, it is optimal (from a statistical point of view) to
take as many classes as possible with only one pupil per class. It is only because of budgetary
constraints that a two-stage sample may be preferred. Let us take c to be 23 (taking an extra
school is 23 times the price of taking one extra student within an already sampled school).

The following might be a specification of the PINT parameter file on AX.DAT:

     0     0     1
     1     1    23
  1000    23
      0.80
      0.19
      1.00
      0.00
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The file AX.OUT will contain the following information on the standard errors:

    Sample sizes      costs   Standard errors

    N*n     N     n (n+c)*N     Const   Group
     41    41     1     984   0.15539 0.15539
     80    40     2    1000   0.12145 0.12145
    114    38     3     988   0.10962 0.10962
    148    37     4     999   0.10267 0.10267
    175    35     5     980   0.10000 0.10000
    204    34     6     986   0.09752 0.09752
    231    33     7     990   0.09602 0.09602
    256    32     8     992   0.09520 0.09520
    279    31     9     992   0.09485 0.09485
    300    30    10     990   0.09487 0.09487
    319    29    11     986   0.09518 0.09518
    336    28    12     980   0.09574 0.09574
    351    27    13     972   0.09652 0.09652
    378    27    14     999   0.09567 0.09567
    390    26    15     988   0.09674 0.09674
    400    25    16     975   0.09798 0.09798
    425    25    17    1000   0.09738 0.09738
    432    24    18     984   0.09884 0.09884
    437    23    19     966   0.10046 0.10046
    460    23    20     989   0.10000 0.10000
    462    22    21     968   0.10182 0.10182
    484    22    22     990   0.10144 0.10144
    483    21    23     966   0.10346 0.10346

The optimum for the standard error associated with the effect of the treatment appears to be
when we take a sample of 9 pupils per school and 31 schools. In that case the standard error of
interest reaches its minimum of .09485. It will be clear from the outset that this standard error is
too big to reach a satisfactory level of power. Even with α as high as .10, the power will be .42
only. The first and most easy solution to this problem would be to increase the budget.
Straigthforward application of (1) shows that to reach a power of .80 with α=.10, the standard
error should be half of the size that was found. This implies a multiplication of the number of
schools by a factor 22=4, which amounts to 4*31=124 schools with 9 pupils in each of them. To
make it even more worse: politicians do not like to spend money on interventions that may not
work, and for that reason α may be put to be as low as .01. Applying the formulae will show
that the original standard error of .09485 should be brought down to one third of its value,
implying a sample size of schools of 279 (=32*31) schools. Raudenbush (1997) shows how
much the standard error for the experimental effect can be decreased (and thus the power
increased) if a covariate is added that is strongly related to the outcome variable. In this case
this would imply, in practice, to administer a pretest or intelligence test.
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5.4. A cross-level interaction effect

We have already presented an example on a cross-level effect when illustrating the general
principles of PINT, and when discussing the input and output of the program. For didactical
purposes we will add one more example, which illustrates power calculations in case of
studying determinants of growth. Let us think of a (very simple) study on cognitive growth of
young children. The treatment to be evaluated is a pre-school program (delivered at the child’s
home) to stimulate early literacy, and as a control group there are children not in this program.
The levels are defined as follows: time is level one and child is level two. The growth curve is
supposed to be represented well by a simple linear term. The general problem now is, should
we sample many children in the control and experimental condition, or should we increase the
number of timepoints on which we assess each child’s literacy status? Since this is an
intervention study, the costs of sampling an extra child (notice that in this case the child is the
macro unit) is very expensive, since each child in the experimental condition should be given
the treatment. Suppose now that treating one child costs $200 per two hour session, and that the
program lasts for half a year, with two sessions per week. The total costs per child then are
equal to ½ × 52 × 2 × 200 = $10,400. We assume that it is desired that the treatment and the
control groups are equally large. Since a child in the control group does not receive any (paid)
treatment, the costs per pair of children (one in the experimental and one in the control
condition) are $10,400 + $0 = $10,400, which amounts to $5,200 as the average costs for a
child in this study. Now let us suppose furthermore that administering one test per child at a
given timepoint costs $200. Initially the researchers planned to take the tests at 14 timepoints
(one per two week period). The total costs, as the study was designed and budgeted to be
conducted with 28 children (14 control, 14 experimental), are 28 × 14 × 200 + 28 × 5,200 =
$156,000. Or in our usual expression: 28 (14 + 26) = 1280 units of $200 per unit. Given this
situation, and having been granted the budget requested to conduct the study, a reconsideration
takes place. Is 28 enough, shouldn’t the number of children in this study be increased at the
expense of taking less measurements per child? Before running PINT plausible parameter
values have to be generated. The model to be tested looks like:

TESTSCORE t i = γ 0 i + γ 1 iTIME t i  + r t i

γ 0 i = γ 0 0 +  γ 0 1 PROGRAMi + u0i

γ 1 i = γ 1 0 +  γ 1 1 PROGRAMi + u1i.

Bearing in mind what has been said on the decomposition of the variance in the dependent
variable (see Section 2.3), we might assume –under the condition that both TIME and
PROGRAM are standard normal variables, uncorrelated which each other- that

var(TESTSCORE t i  ) = γ 0 1
2 + γ 1 0

2 + γ 1 1
2 + τ00 + τ11 + σ2,

with τ00 = var(u0 i ), τ11 = var(u1 i), and σ2 = var(rt i).
Without the PROGRAM variable these variances might be 0.25, 0.25, and 0.25 respectively
(with TIME already accounting for half of the variation at level 1, the level of the
measurements). Including PROGRAM as a predictor in the model τ00 and τ11 might reduce to
half of their initial value (0.125), implying that both γ 01

 and γ 11 are √(0.125) = 0.35. Now
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suppose that the program is considered to be sufficiently effective only if the difference in
average time slopes is at least 0.30, corresponding to γ 11  = 0.15. The difference between the
hypothesized and tested parameter values then is 0.35 – 0.15 = 0.20.
Let us assume a correlation between the growth line and the literacy status half way the
experiment of 0.72, so that the covariance τ01 = 0.72 / (√0.125 × √0.125) = 0.09.

The parameter file AX.DAT for PINT might look like (we cannot estimate a linear equation
with less than three points!):

     1     0     1
     3     1    30
  1280     26
      0.25
      0.125
      0.09 0.125
      1
      1
      0

The output file AX.OUT contains the following information on the standard errors:

    Sample sizes      costs   Standard errors

    N*n     N     n (n+c)*N    Const   Group   Random Cross-L
    132    44     3    1276   0.06881 0.06881 0.06881 0.06881
    168    42     4    1260   0.06682 0.06682 0.06682 0.06682
    205    41     5    1271   0.06533 0.06533 0.06533 0.06533
    240    40     6    1280   0.06455 0.06455 0.06455 0.06455
    266    38     7    1254   0.06503 0.06503 0.06503 0.06503
    296    37     8    1258   0.06498 0.06498 0.06498 0.06498
    324    36     9    1260   0.06514 0.06514 0.06514 0.06514
    350    35    10    1260   0.06547 0.06547 0.06547 0.06547
    374    34    11    1258   0.06592 0.06592 0.06592 0.06592
    396    33    12    1254   0.06648 0.06648 0.06648 0.06648
    416    32    13    1248   0.06714 0.06714 0.06714 0.06714
    448    32    14    1280   0.06682 0.06682 0.06682 0.06682
    465    31    15    1271   0.06760 0.06760 0.06760 0.06760
    480    30    16    1260   0.06847 0.06847 0.06847 0.06847
    493    29    17    1247   0.06941 0.06941 0.06941 0.06941
    522    29    18    1276   0.06920 0.06920 0.06920 0.06920
    532    28    19    1260   0.07024 0.07024 0.07024 0.07024
    540    27    20    1242   0.07136 0.07136 0.07136 0.07136
    567    27    21    1269   0.07121 0.07121 0.07121 0.07121
    572    26    22    1248   0.07242 0.07242 0.07242 0.07242
    598    26    23    1274   0.07229 0.07229 0.07229 0.07229
    600    25    24    1250   0.07360 0.07360 0.07360 0.07360
    625    25    25    1275   0.07348 0.07348 0.07348 0.07348
    624    24    26    1248   0.07489 0.07489 0.07489 0.07489
    648    24    27    1272   0.07479 0.07479 0.07479 0.07479
    644    23    28    1242   0.07631 0.07631 0.07631 0.07631
    667    23    29    1265   0.07622 0.07622 0.07622 0.07622
    660    22    30    1232   0.07785 0.07785 0.07785 0.07785

Notice that as a consequence of our standardization procedure the standard errors
accompanying the various effects are, for a given sample size, exactly the same. As it turns out,
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the smallest standard errors occur for a design with 40 children and 6 timepoints. If we take α
at 0.01 in a one-sided test, then the power for this design can be derived from

0.20 / 0.06455 ≈ 2.33 + z�    ⇔   0.77 =  z�    ⇔�����������

If this power is considered to be too low for such an important study, then the usual potential
manipulations are an increase of α or an increase of the budget to be able to increase the sample
size.

Note that the example is rather artificial, since in a normal study on growth one would employ
a more sophisticated model. A polynomial of a certain degree to model the curve adequately,
would imply a number of timepoints that is at least one more than the degree of the polynomial.
Or if one uses a spline function with a certain number of knots and complex curves, more
timepoints may be needed.
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6. Some general guidelines

6.1. Principles of optimal design

If you have run PINT more than once, the discovery will be made that in most cases the
number of macro-units is what really counts, unless there are budgetary constraints. If there are
budgetary constraints the balance between the sample size of the macro units, and that of the
micro units is not clear in advance, and PINT will hopefully be of help there. Generally for
each study the researcher should of course carefully address questions like the reliability of the
measures to be taken, and the general principles of good design. One of these we would like to
stress, and that is the minimisation of within group variability by including one or more proper
covariates and/or a pretest (see Raudenbush, 1997 for a more detailed treatment of this subject).

6.2. Loose ends

Some of the recommendations that you will derive from PINT may be counterintuitive.
Examples of such counterintuitive results are that it may be optimal to take as many macro
units (e.g. schools) as possible, at the expense of the number of micro units per macro unit (e.g.
pupils). Keep in mind that PINT only addresses the question of sample size from the point of
view of estimating regression coefficients, i.e. the strength of the fixed effects! If you have in
mind to estimate scale values or other relevant characteristics for each macro unit (like: mean
achievement level of the students to inform parents on the quality of a school, or a good
estimate of each child’s personal growth curve) PINT is of no help. We refer to Snijders &
Bosker (1999), notably Section 10.3, for guiding principles for these kind of situations.
PINT is of no help either in case you want to set up a study for exploring the variance structure
i.e. estimating the intraclass correlation ρ. In that case the standard error of ρ is what we are
interested in. This situation is dealt with in Section 10.5 of Snijders & Bosker (1999). Finally
you may be specifically interested in estimating the variance components. You will find some
guidelines and further references in the same section of the same textbook.

6.3. PINT as shareware

Feel free to use PINT, but please be so kind to inform us if you encounter problems and refer
to this manual and to Snijders & Bosker (1993) when publishing results based on power
calculations with PINT. In the latter case we would appreciate it very much if you send us a
copy of the paper or the article, or at least provide us with a reference.

6.4 Differences between versions 1.61 and 2.1

The only difference between versions 1.61 (April 1999) and 2.1 (April 2003) is that the
latter version is a full Windows version (programmed in Delphi 5), thereby more user-
friendly, and that the option has been added of giving results for all combinations of n
and N  between certain bounds. Parameter input files of version 1.61 (called “input
files” in the manual of 1.6) can also be used for version 2.1.



37

References

Afshartous, D. (1995). Determination of sample size for multilevel model design. Perspectives
on Statistics for Educational Research: Proceedings of the National Institute for Statistical
Sciences (NISS). Paper presented at the AERA meeting in San Francisco, April 1995.

Bryk, A.S. & S.W. Raudenbush (1992). Hierarchical Linear Models. Applications and Data
Analysis Methods. Newbury Park / London / New Delhi: Sage publications.

Cochran, W.G. (1977). Sampling Techniques (3rd ed.). New York: Wiley.

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Hillsdale,
NJ: Erlbaum.

Cohen, J. (1992). "A power primer". Psychological Bulletin, 112, 155-159.

Goldstein, H. (1995). Multilevel Statistical Models (2nd ed.). London: Edward Arnold.

Hox, J.J. (2002). Multilevel Analysis, Techniques and Applications. Lawrence Erlbaum
Associates, 2002.

Mok, M. (1995). "Sample size requirements for 2-level designs in educational research",
Multilevel Modelling Newsletter, 7(2), 11-15.

Raudenbush, S.W. (1997). "Statistical analysis and optimal design for cluster randomized
trials". Psychological Methods, 2(2), 173-185.

Rosenthal, R. (1994). "Parametric measures of effect size". In: H. Cooper & L.V. Hedges
(Eds.), Handbook of Research Synthesis. New York: Russell Sage Foundation. (pp. 231-244)

Snijders, T.A.B. (2001). "Sampling". Chapter 11 (pp. 159-174) in A. Leyland and H. Goldstein
(eds.), Multilevel Modelling of Health Statistics. Chichester etc.: Wiley.

Snijders, T.A.B. & R.J. Bosker (1993). "Standard errors and sample sizes for two-level
research". Journal of Educational Statistics, 18, 237-260.

Snijders, T.A.B. & R.J. Bosker (1999). Multilevel analysis. An introduction to basic and
advanced multilevel modeling. Newbury Park/London/New Delhi: Sage Publications.


