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Foreword

This is a set of slides following Snijders & Bosker (2012).

The page headings give the chapter numbers and the page numbers in the book.

Literature:

Tom Snijders & Roel Bosker,

Multilevel Analysis: An Introduction to Basic and Applied Multilevel Analysis,
2"d edition. Sage, 2012.

Chapters 1-2, 4-6, 8, 10, 13, 14, 17.

There is an associated website
http://www.stats.ox.ac.uk/~snijders/mlbook.htm
containing data sets and scripts for various software packages.

These slides are not self-contained, for understanding them it is necessary
also to study the corresponding parts of the book!
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2. Multilevel data and multilevel analysis

2. Multilevel data and multilevel analysis

Multilevel Analysis using the hierarchical linear model :

random coefficient regression analysis for data with several nested levels.
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Figure 2.1: Multi-stage sample.

Each level is (potentially) a source of unexplained variability.
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2. Multilevel data and multilevel analysis

Some examples of units at the macro and micro level:

macro-level micro-level
schools teachers
classes pupils
neighborhoods families
districts voters

firms departments
departments employees
families children
litters animals
doctors patients
interviewers respondents
judges suspects
subjects measurements
respondents = egos alters




2. Multilevel data and multilevel analysis 11-12

Multilevel analysis is a suitable approach to take into account the social contexts
as well as the individual respondents or subjects.

The hierarchical linear model is a type of regression analysis for multilevel data
where the dependent variable is at the lowest level.

Explanatory variables can be defined at any level
(including aggregates of level-one variables).

Z\ Z\ Z\
Yy r—Yy x——Y

Figure 2.5 The structure of macro—micro propositions.

Also longitudinal data can be regarded as a nested structure;
for such data the hierarchical linear model is likewise convenient.



2. Multilevel data and multilevel analysis

78

Two kinds of argument to choose for a multilevel analysis instead of an OLS

regression of disaggregated data:

1. Dependence as a nuisance
Standard errors and tests base on OLS regression are suspect
because the assumption of independent residuals is invalid.

2. Dependence as an interesting phenomenon
It is interesting in itself to disentangle variability at the various levels;
moreover, this can give insight in the directions
where further explanation may fruitfully be sought.



4. The random intercept model

42

4. The random intercept model

Hierarchical Linear Model:

¢ indicates level-one unit (e.g., individual);
J indicates level-two unit (e.g., group).

Variables for individual 2 in group 7 :

Y;; dependent variable;
x;; explanatory variable at level one;

for group 7 :
z; explanatory variable at level two; 1 group size.

OLS regression model of Y on X ignoring groups :
Yii =00 + Bixij + Ry; .
Group-dependent regressions:

Yij = Boj + Bijxi; + Rij .



4. The random intercept model 42

Distinguish two kinds of fixed effects models:

1. models where group structure is ignored;

2. models with fixed effects for groups: Bg; are fixed parameters.

In the random intercept model, the intercepts By; are random variables
representing random differences between groups:

Yij = Boj + Bixzij + Rij .
where Bg; = average intercept oo plus group-dependent deviation Ul; :

Boj = Yoo + Uy; -

In this model, the regression coefficient (3; is common to all the groups.



4. The random intercept model

45

In the random intercept model, the constant regression coefficient 3¢ is

sometimes denoted ~1¢:

Substitution yields

Yii = Yoo + Ywoxij + Uoj + R;j .

In the hierarchical linear model, the Uy; are random variables.
The model assumption is that they are independent,
normally distributed with expected value 0, and variance

72 = var(Uy;).

The statistical parameter in the model is not their individual values,

but their variance 7'02 .



4. The random intercept model

45

Y Y12 regression line group 2
R12{

regression line group 3
Bo2 A

regression line group 1
Bos A
Bo1 A

X

Figure 4.1 Different parallel regression lines.

The point y;2 is indicated with its residual Rqo .



4. The random intercept model 46-47

Arguments for choosing between fixed (F) and random (R) coefficient models for

the group dummies:

1.

If groups are unique entities and inference should focus on these groups: F .
This often is the case with a small number of groups.

. If groups are regarded as sample from a (perhaps hypothetical) population and

inference should focus on this population, then R .
This often is the case with a large number of groups.

. If level-two effects are to be tested, then R .

If group sizes are small and there are many groups, and it is reasonable to
assume exchangeability of group-level residuals, then R makes better use of the
data.

. If the researcher is interested only in within-group effects, and is suspicious

about the model for between-group differences, then F is more robust.

. If group effects Uy; (etc.) are not nearly normally distributed, R is risky

(or use more complicated multilevel models).
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4. The random intercept model 49; also see 17-18

The empty model (random effects ANOVA) is a model

without explanatory variables:
Yij = Y0 + Uo; + R;; .

Variance decomposition:
var(Y;;) = var(Uy;) + var(Rij) =75 + o°.

Covariance between two individuals (¢ # ¢’ ) in the same group J
cov(Yyj, Yirj) = var(Uoj) = 75

and their correlation:

p(Yij, Yij) = pr(Y) =

2
To

(mf + %)

This is the intraclass correlation coefficient.

Often between .05 and .25 in social science research,
where the groups represent some kind of social grouping.
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4. The random intercept model

Example: 3758 pupils in 211 schools , Y = language test.

Classrooms / schools are level-2 units.

Table 4.1 Estimates for empty model

Fixed Effect Coefficient S.E.
Yoo = Intercept 41.00 0.32
Random Part Variance Component S.E.
Level-two variance:

78 = var(Up;) 18.12 2.16
Level-one variance:

o? = var(R;;) 62.85 1.49

Deviance 26595.3

13



4. The random intercept model 50-51

Intraclass correlation
18.12

~ 18.12 + 62.85

P = 0.22

Total population of individual values Y;; has estimated mean 41.00 and standard
deviation 4/18.12 + 62.85 = 9.00 .

Population of class means Bgp; has estimated mean 41.00 and standard deviation

Vv18.12 = 4.3 .

The model becomes more interesting,
when also fixed effects of explanatory variables are included:

Yij =Yoo + Yioxi; + Uo; + Rij -

(Note the difference between fixed effects of explanatory variables
and fixed effects of group dummies!)
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4. The random intercept model 52-53

Table 4.2 Estimates for random intercept model with effect for 1Q

Fixed Effect Coefficient S.E.
~Yoo = Intercept 41.06 0.24

~10 = Coefficient of IQ 2.507 0.054
Random Part Variance Component S.E.
Level-two variance:

78 = var(Up;) 9.85 1.21

Level-one variance:

o? = var(R;;) 40.47 0.96

Deviance 24912.2

There are two kinds of parameters:

1. fixed effects: regression coefficients « (just like in OLS regression);

2. random effects: variance components o2 and 7'02 .
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4. The random intercept model 54-55

Table 4.3 Estimates for ordinary least squares regression

Fixed Effect Coefficient S.E.
~Yoo = Intercept 41.30 0.12

~10 = Coefficient of IQ 2.651 0.056
Random Part Variance Component S.E.
Level-one variance:

o? = var(R;;) 49.80 1.15

Deviance 25351.0

Multilevel model has more structure ( “dependence interesting” );

OLS has misleading standard error for intercept (“dependence nuisance”).

16



4. The random intercept model 54-55
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Figure 4.2 Fifteen randomly chosen regression lines according to the random intercept model of
Table 4.2.



4. The random intercept model 54-59

More explanatory variables:

Yij = Yo + Y015 + -+ + YpoTpi; + Yor 215 + .-+ + Yoq Zq;
+ Uo; + Rij .

Especially important:
difference between within-group and between-group regressions.

The within-group regression coefficient is the regression coefficient within each

group, assumed to be the same across the groups.

The between-group regression coefficient is defined as the regression coefficient for
the regression of the group means of Y on the group means of X.

This distinction is essential to avoid ecological fallacies (p. 15-17 in the book).
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4. The random intercept model

54-59

between-group regression line

regression line
within group 2

regression line within group 3

regression line within group 1

X

Figure 4.3 Different between-group and within-group regression lines.

This is obtained by having separate fixed effects for the level-1 variable X
and its group mean X.

(Alternative:
use the within-group deviation variable X;; = (X — X)) instead of X.)

19



4. The random intercept model 54-59

Table 4.4 Estimates for random intercept model

with different within- and between-group regressions

Fixed Effect Coefficient S.E.
Yoo = Intercept 41.11 0.23

~10 = Coefficient of 1Q 2.454 0.055
~o1 = Coefficient of 1Q (group mean) 1.312 0.262
Random Part Variance Component S.E.
Level-two variance:

78 = var(Up;) 8.68 1.10

Level-one variance:

o? = var(R;;) 40.43 0.96

Deviance 24888.0
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4. The random intercept model 53-54

In the model with separate effects for the original variable x;; and the group mean

Yii =Yoo + Yioxij + Yorx.; + Uo; + R;j,

the within-group regression coefficient is 1 ,

between-group regression coefficient is y19 + Yo1.

This is convenient because the difference between within-group and between-group
coefficients can be tested by considering ~o1.

In the model with separate effects for group-centered variable x;;
and the group mean

Yii = Yoo + Y10Zij + Youx.; + Uo; + R;j
the within-group regression coefficient is 1¢ ,
the between-group regression coefficient is 1.

This is convenient because these coefficients are given immediately in the results,
with their standard errors.

Both models are equivalent, and have the same fit: 410 = Y10, Y01 = Y10 + Yo1-

21



4. The random intercept model 62-63

Estimation /prediction of random effects

The random effects Uy, are not statistical parameters and therefore they are not
estimated as part of the estimation routine.

However, it sometimes is desirable to ‘estimate’ them. This can be done by the
empirical Bayes method; these ‘estimates’ are also called the posterior means.

In statistical terminology, this is not called ‘estimation’ but ‘prediction’, the name
for the construction of likely values for unobserved random variables.

The posterior mean for group 7 is based on two kinds of information:

= sample information : the data in group 7;
=> population information : the value Uy, was drawn from a normal distribution

with mean 0 and variance 7'02 .

The population information comes from the other groups.
If this information is reasonable, prediction is improved on average.
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4. The random intercept model 62-63

Suppose we wish to predict the ‘true group mean’ oo + Ub;.

The empirical Bayes estimate in the case of the empty model is a weighted average
of the group mean and the overall mean:

B85 =X Y5 + (1= X)) A0 ;
where the weight A; is the ‘reliability’ of the mean of group j

N — 7'02 o n 5P
T2+ 02n; 1+ (n;—1)p
Aj
1.0 p =04
The reliability coefficient indicates 0.8 pr = 0.1
how well the true mean ~ygo 4+ Uy is
measured by the observed mean l_/,j; 0.4
see Section 3.5. '
The picture to the rights gives a plot.
0.0

10 30 50 75
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4. The random intercept model 62-63

These ‘estimates’ are not unbiased for each specific group, but they are more
precise when the mean squared errors are averaged over all groups.

For models with explanatory variables, the same principle can be applied:
the values that would be obtained as OLS estimates per group are
“shrunk towards the mean”.

The empirical Bayes estimates, also called posterior means,
are also called shrinkage estimators.
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4. The random intercept model 64-66

There are two kinds of standard errors for empirical Bayes estimates:
comparative standard errors
“TEB\ __ “rEB )
S.E.comp (Uf2) = SE (U — Upy)

for comparing the random effects of different level-2 units
(use with caution — E.B. estimates are not unbiased!);

and diagnostic standard errors

S.Eding (Uf5) = SE. (UF)

used for model checking (e.g., checking normality of the level-two residuals).
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4. The random intercept model 67
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The ordered added value scores for 211 schools with comparative posterior confidence intervals.

In this figure, the error bars extend 1.39 times the comparative standard errors
to either side, so that schools may be deemed to be significantly different
if the intervals do not overlap (no correction for multiple testing!).
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5. The hierarchical linear model

74-75

5. The hierarchical linear model

It is possible that not only the group average of Y,

but also the effect of X on Y is randomly dependent on the group.

In other words, in the equation
Yij = Boj + Bijzi; + Rij,

also the regression coefficient (3;; has a random part:

Boj = Yoo + Uy;
B1; = vio + Uyj .

Substitution leads to
Yij =Yoo + Ywoxi; + Uoj + Urjzi; + Rij .

Variable X now has a random slope.
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5. The hierarchical linear model 74-75

It is assumed that the group-dependent coefficients (Uy;, Ui;)

are independent across 7, with a bivariate normal distribution

with expected values (0, 0) and covariance matrix defined by
var(Up;) = Too = T§ ;

var(Ui;) =TI =T7;

COV(U()j,Ulj) = T01 -

Again, the (Ug;j, Uj;) are not individual parameters in the statistical sense, but
only their variances, and covariance, are the parameters.

Thus we have a linear model for the mean structure, and a parametrized
covariance matrix within groups with independence between groups.
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5. The hierarchical linear model 78

5.1 Estimates for random slope model

Fixed Effect Coefficient S.E.
Yoo = Intercept 41.127  0.234
Y10 = Coeff. of 1Q 2480 0.064
~o1 = Coeff. of 1Q (group mean) 1.029  0.262
Random Part Parameters S.E.
Level-two random part:

78 = var(Uy,) 8.877  1.117
72 = var(Uy,) 0.195 0.076
701 = cov(Uyj, U1j) -0.835  0.217
Level-one variance:

o? = var(R;j) 39.685  0.964
Deviance 24864.9

IQ is defined as the group mean.

29

The equation for this table is

Y;; = 41.13 + 2.4801Q;;
+1.0291Q,
+Uo; + Uy 1Qi; + Ryj .

The slope 31 has
average 2.480
and

s.d. +/0.195 = 0.44.



5. The hierarchical linear model

78

Y
55

—4-3-2-10 1 2 3 4 X=IQ
Figure 5.2 Fifteen random regression lines according to the model of Table 5.1.

Note the heteroscedasticity: variance is larger for low X than for high X.
The lines fan in towards the right.

Intercept variance and intercept-slope covariance depend on the position of the
X = 0 value, because the intercept is defined by the X = 0 axis.
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5. The hierarchical linear model

80

The next step is to explain the random slopes:
Boj = Yoo + o1 2; + Upj
B1; = Y0 + Y1125 + Uyj -

Substitution then yields

Y, (700 + o1 2; + Uyj)
+ (710 + 71125 + Usj) zij + Ryj
= Yoo + Vo1 2Z; + Yi0Ti; + Y11 Zj Tij
+ Uo; + Usjxij + Rij .

The term 711 25 x5 is called the cross-level interaction effect.

31



5. The hierarchical linear model

82

Table 5.2 Estimates for model with random slope

and cross-level interaction

Fixed Effect Coefficient S.E.
Yoo = Intercept 41.254  0.235
~10 = Coefficient of IQ 2.463 0.063
~o1 = Coefficient of 1Q 1.131  0.262
~11 = Coefficient of 1Q x 1Q -0.187  0.064
Random Part Parameters S.E.
Level-two random part:

7'02 = var(Uy;) 8.601  1.088
7'12 = var(Uy;) 0.163  0.072
701 = cov(Uyj, Us;) -0.833  0.210
Level-one variance:

o? = var(R;;) 39.758  0.965

Deviance 24856.8
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5. The hierarchical linear model 83-84

For two variables (IQ and SES) and two levels (student and school),
the main effects and interactions give rise to a lot of possible combinations:

Table 5.3 Estimates for model with random slopes and many effects

Fixed Effect Coefficient S.E.
Yoo = Intercept 41.632 0.255
~10 = Coefficient of 1Q 2.230 0.063
20 = Coefficient of SES 0.172 0.012
~30 = Interaction of 1Q and SES —0.019 0.006
~o1 = Coefficient of 1Q 0.816  0.308
~oz = Coefficient of SES -0.090 0.044
~o3 = Interaction of IQ and SES —0.134 0.037
~11 = Interaction of 1Q and 1Q —0.081 0.081
~12 = Interaction of IQ and SES 0.004 0.013
~21 = Interaction of SES and 1Q 0.023 0.018
~22 = Interaction of SES and SES 0.000 0.002

N—"

(continued next page....
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5. The hierarchical linear model

83-84

Random Part Parameters  S.E.
Level-two random part:

15 = var(Uy;) 8.344 1.407
7'12 = var(Uy;) 0.165 0.069
701 = cov(Upj, Uyj) —0.942 0.204
17 = var(Uz;) 0.0 0.0
To2 = cov(Uyp;, Uaj) 0.0 0.0
Level-one variance:

o? = var(R;;) 37.358 0.907
Deviance 24624.0

The non-significant parts of the model may be dropped:
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5. The hierarchical linear model

85-86

Table 5.4 Estimates for a more parsimonious model with a random slope and many effects

Fixed Effect Coefficient S.E.
~oo = Intercept 41.612  0.247
~10 = Coefficient of 1Q 2.231  0.063
~20 = Coefficient of SES 0.174  0.012
~30 = Interaction of 1Q and SES —0.017  0.005
~o1 = Coefficient of 1Q 0.760  0.296
~o2 = Coefficient of SES -0.089  0.042
~o3 = Interaction of IQ and SES —0.120  0.033
Random Part Parameters S.E.
Level-two random part:

7'02 = var(Uy;) 8.369  1.050
i = var(Uy;) 0.164  0.069
T01 = cov(Uyj, U;) -0.929 0.204
Level-one variance:

o? = var(R;;) 37.378  0.907

Deviance

24626.8
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Estimation for the hierarchical linear model

General formulation of the two-level model

As a link to the general statistical literature,
it may be noted that the two-level model can be expressed as follows:

Y; = Xjv + Z;U; + R,

o ]

and (R;,U;) L (R, Uy) forall 3 # £.

¥i(0) 0
D Q)

P

Standard specification X;(8) = o*I, ,
but other specifications are possible.
Mostly, 32,(8) is diagonal, but even this is not necessary (e.g. time series).
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Estimation for the hierarchical linear model

The model formulation yields

Y, ~ N (X7, ZiUEZ) + 3,(0)) -

This is a special case of the mixed linear model
Y =X~+ZU + R,
with X [n, r], Z[n, p], and

(£) () ()

For estimation, the ML and REML methods are mostly used.

These can be implemented by various algorithms: Fisher scoring,
EM = Expectation—Maximization, IGLS = Iterative Generalized Least Squares.
See Section 4.7 and 5.4.
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6. Testing 94-98

6. Testing
To test fixed effects, use the t-test with test statistic
Y
T(vn) = — .
S.E.(n)

(Or the Wald test for testing several parameters simultaneously.)
The standard error should be based on REML estimation.

Degrees of freedom for the t-test, or the denominator of the F'-test:
For a level-1 variable: M — r — 1,
where M = total number of level-1 units, » = number of tested level-1 variables.

For a level-2 variable: N — q — 1,
where IN = number of level-2 units, g = number of tested level-2 variables.

For a cross-level interaction: again N — q — 1,
where now g = number of other level-2 variables interacting with this level-1
variable.

If d.f. > 40, the t-distribution can be replaced by a standard normal.
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6. Testing

94-98

For parameters in the random part, do not use %-tests.

Simplest test for any parameters (fixed and random parts)
is the deviance (likelihood ratio) test, which can be used

when comparing two model fits that have used the same set of cases:

subtract deviances, use chi-squared test
(d.f. = number of parameters tested).

Deviance tests can be used to compare any two nested models.
If these two models do not have the same fixed parts,
then ML estimation should be used!

Other tests for parameters in the random part have been developed
which are similar to F'-tests in ANOVA.
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6. Testing 94-98

6.1 Two models with different between- and within-group regressions

Model 1 Model 2
Fixed Effects Coefficient S.E. Coefficient S.E. Test for equality of within- and
Yoo = Intercept 4115 023 4115 023 between-group regressions
V1o = Coeff. of 1Q 2.265 0.065 is t-test for IQ in Model 1:
20 = Coeff. of IQ 2.265 0.065
30 = Coeff. of SES 0.161 0.011 0.161 0.011 t = 0'647/0'264 T 2'45’
~o1 = Coeff. of IQ 0.647 0.264 2912 0.262 p < 0.02.
Random Part Parameter S.E. Parameter S.E. Model 2 gives
Level-two parameters: within-group coefficient 2.265
7'02 = var(Uy;) 9.08 1.12 9.08 1.12 db ffici
72 = var(Uy;) 0.197 0074 0197 0.074 and between-group coeflicient
701 = cov(Uyj, U1 ) -0.815 0.214 -0.815 0.214 2.912 = 2.265 + 0.647.
L evel-one variance:
o? = var(R;;) 3742 091 3742 001
Deviance 24661.3 24661.3
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6. Testing 98-99

However, one special circumstance: variance parameters are necessarily positive.
Therefore, they may be tested one-sided.

E.g., in the random intercept model

under the null hypothesis that 7'02 = 0,

the asymptotic distribution of —2 times the log-likelihood ratio (deviance difference)
is a mixture of a point mass at 0 (with probability %)

and a x? distribution (also with probability %.)

The interpretation is that if the observed between-group variance
is less than expected under the null hypothesis

— which happens with probability % —

the estimate is 77 = 0 and the log-likelihood ratio is 0.

The test works as follows:
if deviance difference = 0, then no significance;
if deviance difference > 0, calculate p-value from x% and divide by 2.

41



6. Testing 98-99

For testing random slope variances,
if the number of tested parameters (variances & covariances) is p + 1,

the p-values can be obtained as

2

Sl distributions.

the average of the p-values for the X?, and 'y

(Apologies for the use of the letter p in two different meanings...)

Critical values for 50-50 mixture of Xf, and X,2,+1 distribution.

o
0.10 0.05 0.01 0.001
3.81 5.14 8.27 12.81
553 7.05 10.50 15.36
7.09 8.76 12.43 17.61

w N RS
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6. Testing 98-99

For example: testing for a random slope in a model that further contains the
random intercept but no other random slopes: p = 1;

testing the second random slope: p = 2;

testing the third random slope: p = 3 — etc.

To test the random slope in the model of Table 5.1,
compare with Table 4.4 which is the same model but without the random slope;

deviance difference 15,227.5 — 15,213.5 = 14.0.
In the table with p = 1 this yields p < 0.001.

Further see p. 99.
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7. Explained variance

109-110

/. Explained variance

The individual variance parameters may go up when effects are added to the model.

7.1 Estimated residual variance parameters 62 and 72 for models
0

with within-group and between-group predictor variables

&2 72

|. BALANCED DESIGN

A.Y;; = Bo + Ug; + E;j 8.694 2.271
B.Y:; = B0+ 61 X.j + Uoj + Eij 8.694 0.819
C. Y. = Bo+ B2AXij — X ;) + Up; + Ei; 6973 2.443
Il. UNBALANCED DESIGN

A.Yi; = Bo + Uoj + E;j 7.653 2.798
B.Y:; = B0+ B1 X + Uoj + Eij 7.685 2.038
C.Yi; = Bo + B2(Xi; — X ;) + Uo; + E;; 6.668 2.891
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7. Explained variance

112-113

The best way to define R?, the proportion of variance explained, is the
proportional reduction in total variance ;

for the random intercept model total variance is (o® 4+ 7).

Table 7.2 Estimating the level-1 explained variance
(balanced data)

62 72
A.Y;; = Bo + Uy; + E;; 8.694 2271
D.

Yi; = Bo + B1(Xs; — X ;) + B2 X j + Uy; + E;; 6.973 0.991

Explained variance at level 1:

, 6.973 + 0.991
Rl =1 — =
8.694 + 2.271

0.27.
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8. Heteroscedasticity 119-120

8. Heteroscedasticity
The multilevel model allows to formulate heteroscedastic models where residual
variance depends on observed variables.
E.g., random part at level one = Ry;; + Riij €145 -
Then the level-1 variance is a quadratic function of X:
Ro:.: Rii:x::) = o 2 y 2 .2
Var( 027 + 12j ng) — 0 + 001 L1ij + g4 mlij .
For 0'% — 0, this is a linear function:
2
var(Roi;; + Ruiijxij) = o5 + 2001 15 -
This is possible as a variance function, without random effects interpretation.

Different statistical programs have implemented
various different variance functions.
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8. Heteroscedasticity

121

8.1 Homoscedastic and heteroscedastic models.

Model 1 Model 2
Fixed Effect Coefficient S.E. Coefficient S.E.
Intercept 40.426  0.265  40.435 0.266
1Q 2.249  0.062 2.245 0.062
SES 0.171 0.011 0.171 0.011
1Q x SES -0.020 0.005  -0.019 0.005
Gender 2.407  0.201 2.404 0.201
1Q 0.769  0.293 0.749 0.292
SES -0.093  0.042  -0.091 0.042
1Q x SES -0.105  0.033  -0.107 0.033
Random Part Parameters S.E. Parameters S.E.
Level-two random part:
Intercept variance 8.321 1.036 8.264 1.030
|Q slope variance 0.146  0.065 0.146 0.065
Intercept - 1Q slope covariance -0.898 0.197  -0.906 0.197
Level-one variance:
od constant term 35.9095 0.874  37.851 1.280
o001 gender effect —-1.887 0.871
Deviance 24486.8 24482.2
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8. Heteroscedasticity 121

This shows that there is significant evidence for heteroscedasticity:
X% = 4.6, p < 0.05.

The estimated residual (level-1) variance is

37.85 for boys and 37.85 — 2% 1.89 = 34.07 for girls.

The following models show, however, that the heteroscedasticity as a function of
|Q is more important.
First look only at Model 3.
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8. Heteroscedasticity

122

8.2 Heteroscedastic models depending on 1Q.

Model 3 Model 4
Fixed Effect Coefficient S.E. Coefficient S.E.
Intercept 40.51 0.26 40.51 0.27
IQ 2.200 0.058 3.046 0.125
SES 0.175 0.011 0.168 0.011
IQ x SES —0.022  0.005 —0.016  0.005
Gender 2.311 0.198 2.252 0.196
1Q 0.685 0.289 0.800 0.284
SES -0.087 0.041  -0.083 0.041
1Q x SES —0.107 0.033 —0.089 0.032
1Q? 0.193 0.038
Q% -0.260  0.033
Random Part Parameter S.E. Parameter S.E.
Level-two random effects:
Intercept variance 8.208 1.029 7.989 1.002
|Q slope variance 0.108 0.057 0.044 0.048
Intercept - IQ slope covariance -0.733 0.187 -0.678 0.171
Level-one variance parameters:
0'3 constant term 36.382 0.894 36.139 0.887
oo1 1Q effect -1.689 0.200 -1.769 0.191
Deviance 24430.2 24369.0
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8. Heteroscedasticity

122-123

The level-1 variance function for Model 3 is 36.38 — 3.381Q .

Maybe further differentiation is possible between low-1Q pupils?
Model 4 uses

(1Q2% if | 0
Q2 = )@ Q<

0 iflQ >0,

>

0 if | 0

Q2 iflIQ > 0.

Y
8k
4k

1 ) 2 4 IQ
4l
—81L

Effect of IQ on language test as estimated by Model 4.
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8. Heteroscedasticity

127-128

Heteroscedasticity can be very important for the researcher
(although mostly she/he doesn't know it yet).

Bryk & Raudenbush: Correlates of diversity.
Explain not only means, but also variances!

Heteroscedasticity also possible for level-2 random effects:
give a random slope at level 2 to a level-2 variable.
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10. Assumptions of the hierarchical linear model 152-153

10. Assumptions of the Hierarchical Linear Model

T p
Yij = + Z’Yhil?hz'j + Uoj + ZUhj Thi; + Rij .

h=1 h=1
Questions:
1. Does the fixed part contain the right variables (now X3 to X;.)?
2. Does the random part contain the right variables (now X3 to X,)?
3. Are the level-one residuals normally distributed?
4. Do the level-one residuals have constant variance?
5. Are the level-two random coefficients normally distributed with mean 07

6. Do the level-two random coefficients have a constant covariance matrix?
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10. Assumptions of the hierarchical linear model 154-156; also 56—-59

Follow the logic of the HLM
1. Include contextual effects
For every level-1 variable X}, check the fixed effect of the group mean Xj,.

Econometricians’ wisdom: “the Up; must not be correlated with the Xj;;.
Therefore test this correlation by testing the effect of X} ('"Hausman test')
Use a fixed effects model if this effect is significant”.

Different approach to the same assumption:

Include the fixed effect of X}, if it is significant,

and continue to use a random effects model.

(Also check effects of variables Xh,j Z ; for cross-level interactions involving X}!)

Also the random slopes Uy ; must not be correlated with the Xj;;.
This can be checked by testing the fixed effect of X’k,j Xhij -

This procedure widens the scope of random coefficient models beyond what is
allowed by the conventional rules of econometricians.
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Within- and between-group regressions 154-156; also 5659

Assumption that level-2 random effects U; have zero means.

What kind of bias can occur if this assumption is made but does not hold?

For a misspecified model,
suppose that we are considering a random intercept model:

Zj =1
where the expected value of U; is not 0 but
EU;j = 225 Y«

for 1 X 7 vectors z2; and an unknown regression coefficient v,. Then

~

Uj = 22 Y T Uj
with

EU, =0.
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Within- and between-group regressions 154-156; also 5659

Write X; = Xj + Xj, where Xj =1, (1;1j)_11; X are the group means.
Then the data generating mechanism is
Y, = ]'y—l— J'y—|—1z2]'y*—|—1 i + R,

where EU- =0.
There will be a bias in the estimation of ~

if the matrices X X -+ X and 1; U are not orthogonal.
By construction, X and 1; U are orthogonal so the difficulty is with X

The solution is to give X; and Xj separate effects:

Y X371—|— 372+1U—|—R
Now -2 has the role of the old ~:

‘the estimation is done using only within-group information’.

Often, there are substantive interpretations of the difference between the
within-group effects ~5 and the between-group effects ;.
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Within- and between-group regressions 155-161

2. Check random effects of level-1 variables.

See Chapter 5.

4. Check heteroscedasticity.
See Chapter 8.

3,4. Level-1 residual analysis
5,6. Level-2 residual analysis

For residuals in multilevel models, more information is in Chapter 3 of
Handbook of Multilevel Analysis (eds. De Leeuw and Meijer, Springer 2008)
(preprint at course website).
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Residuals 161-165

L evel-one residuals

OLS within-group residuals can be written as
Rj= (L, - P, Y,

where we define design matrices Xj comprising X as well as Z;
(to the extent that Z; is not already included in X) and

P; = X;(X;X;)7'X] .
Model definition implies
R; = (I, — P;) R;

these level-1 residuals are not confounded by Uj.
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Residuals 161-165

Use of level-1 residuals :

Test the fixed part of the level-1 model using OLS level-1 residuals,
calculated per group separately.

Test the random part of the level-1 model using
squared standardized OLS residuals.

In other words, the level-1 specification can be studied
by disaggregation to the within-group level
(comparable to a “fixed effects analysis”).

The construction of the OLS within-group residuals implies
that this tests only the level-one specification,
independent of the correctness of the level-two specification.

The examples of Chapter 8 are taken up again.
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Residuals 164

Example: model with effects of 1Q, SES, sex.

r
r
2 4
e } _ 21 -
Al i i
e } o0, %] % % + } I o %
| °
—2- | |
—2
e N T R R
_ —10 0 10 20 SES
Mean level-one OLS residuals Mean level-one OLS residuals
(bars ~ twice standard error of the mean) as function of SES.

as function of 1Q.

This suggest a curvilinear effect of Q.
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Residuals 164

Model with effects also of Q% and IQi .

r’?

e

Mean level-one OLS residuals
as function of 1Q.

Mean level-one OLS residuals as function of SES.

This looks pretty random.
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Residuals 165

Are the within-group residuals normally distributed?

observed

7/

_3. 7/

2 910 1 2 3 expected

Figure 10.3 Normal probability plot of standardized level-one OLS residuals.

Left tail is a bit heavy, but this is not serious.
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Residuals 165-167 and 62-67

Level-two residuals

Empirical Bayes (EB) level-two residuals defined as conditional means
U, = E{U; | Y1,...,Yn}
(using parameter estimates 4, é, é)

=QZ; V7 (Y~ X)) = QZ; V7 (Z;Uj + Rj — X;(3 — 7))

V;=CovY; = Z;QZ, + %5, V; = Z,QZ, + 3,
with = Q(€) and ; = 3,(9).

You don't need to worry about the formulae.
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Residuals 165-167 and 62-67

‘Diagnostic variances’, used for assessing distributional properties of Uj;:
CovU; = QZ/V, ' Z;Q2,

‘Comparative variances’, used for comparing ‘true values’ U; of groups:
Cov (U; — U;) = Q- QZ}V ' 2,00

Note that
Cov (UJ) = Cov (Uj — 03) —|— Cov (ﬁj) .

Standardization (by diagnostic variances) :

\/ﬁ;{EO\V (U;)}~1U; (with the sign reinstated)
Is the standardized EB residual.
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Residuals 165-167 and 62-67

However,
2 — 2 2 2 / A — A —1 > OLS
U'{Cov (U)}'U; = U (02(Z;Zj) 1y Q) e

where U™ = (Z}Z;) 7' Z} (Y; — X;4;)
is the OLS estimate of U}, estimated from level-1 residuals Y; — X ;4;.

This shows that standardization by diagnostic variances

takes away the difference between OLS and EB residuals.
Therefore, in checking standardized level-two residuals,

the distinctoin between OLS and EB residuals loses its meaning.

Test the fixed part of the level-2 model using non-standardized EB residuals.

Test the random part of the level-2 model
using squared EB residuals standardized by diagnostic variance.
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Residuals 166

U, L Uo;
4 e 4
01, mwww“‘ "" . 0 0
—4 —4-
| | | ) | mean | | ' ) | | mean
—2 0 2 1Q —10 0 10 SES

Figure 10.4 Posterior intercepts as function of (left) average IQ and (right)
average SES per school. Smooth lowess approximations are indicated by ..

The slight deviations do not lead to concerns.

65



Residuals 166
UlJ Ulj
0.5/ R 0.5
0 TR e 0
—0.5 . —0.5 .
- __ mean - | mean
—2 0 2 1Q —10 10 SES

Figure 10.5 Posterior I1Q slopes as function of (left) average IQ and (right)

average SES per school. Smooth lowess approximations are indicated by ..

Again, the slight deviations do not lead to concerns.
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Residuals

169-170

Multivariate residuals

The multivariate residual is defined, for level-two unit 7, as
Y; — X7

The standardized multivariate residual is defined as
M? = (Y; — X; ;) Vi (Y — X; %) -

If all variables with fixed effects also have random effects, then
M} = (n; —t;) s? + Uj {Cov (U} U;

where

1 A A
2
Sj = ﬁRg Rj ) tj = rank(Xj) .
J J

This indicates how well the model fits to group 3.
Note the confounding with level-1 residuals.

If an ill-fitting group does not have a strong effect on the parameter estimates,

then it is not so serious.
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Residuals 169-170

Deletion residuals

The deletion standardized multivariate residual can be used to assess the fit of
group 7, but takes out the effect of this group on the parameter estimates:

M( -j) — (Y X5 Y- J)) V( -) (Y X5 Y- .7))
where
Vi) = Zi Q) 25 + Xy 5
(-j) Meaning that group j is deleted from the data for estimating this parameter.

Full computation of deletion estimates may be computing-intensive,
which is unattractive for diagnostic checks.

Approximations have been proposed:

Lesaffre & Verbeke: Taylor series; Snijders & Bosker: one-step estimates.
However, with fast computers

full computation of deletion estimates now also is feasible.

The approximate distribution of multivariate residuals, if the model fits well and
sample sizes are large, is x?, d.f. = ;.
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Residuals

169-170

Influence diagnostics of higher-level units

The influence of the groups can be assessed by statistics
analogous to Cook’s distance:
how large is the influence of this group on the parameter estimates?

Standardized measures of influence of unit 3 on fixed parameter estimates :
1, S
” (¥ — %) F(-5) (¥ — )

where S is covariance matrix of fixed parameter estimates, and (_j) means
that group 7 is deleted from the data for estimating this parameter.

F _
C;, =

on random part parameters :

1 A ~ o — A ~
Cft = = (1 =) Sy (0 = i)

combined :

C’j:rip(rC’f—l—pCJR).
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Residuals

169-170

Values of C; larger than 1 indicate strong outliers.

Values larger than 4/IN may merit inspection.

Table 10.1 the 20 largest influence statistics, and p-values for multivariate

residuals,

of the 211 schools; Model 4 of Chapter 8 but without heteroscedasticity.

School m;

C;

pj

182
107
229
14
218
52
213
170
67
18

9
17

9
21
24
21
19
27
26
24

0.053
0.032
0.028
0.027
0.026
0.025
0.025
0.021
0.017
0.016

0.293
0.014
0.115
0.272
0.774
0.024
0.194
0.194
0.139
0.003
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School

n;

C;

Dj

117
153
187
230

15
256
122

50
101
214

27
22
26
21

8
10
23
24
23
21

0.014
0.013
0.013
0.012
0.012
0.012
0.012
0.011
0.011
0.011

0.987
0.845
0.022
0.363
0.00018
0.299
0.005
0.313
0.082
0.546




Residuals 169-170

School 15 does not survive Bonferroni correction: 211 X 0.00018 = 0.038.
Therefore now add the heteroscedasticity of Model 4 in Chapter 8.

Table 10.2 the 20 largest influence statistics, and p-values for multivariate
residuals,
of the 211 schools; Model 4 of Chapter 8 with heteroscedasticity.

School n; C;  pj School n; Cj Dj
213 19 0.094 0.010 18 24 0.015 0.003
182 9 0.049 0.352 230 21 0.015 0.391
107 17 0.041 0.006 169 30 0.014 0.390
187 26 0.035 0.009 170 27 0.013 0.289
52 21 0.028 0.028 144 16 0.013 0.046
218 24 0.025 0.523 117 27 0.013 0.988
14 21 0.024 0.147 40 25 0.012 0.040
229 9 0.016 0.175 153 22 0.012 0.788
67 26 0.016 0.141 15 8 0.011 0.00049

122 23 0.016 0.004 202 14 0.010 0.511
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Residuals 169-170

School 15 now does survive the Bonferroni correction: 211 X 0.00049 = 0.103.
Therefore now add the heteroscedasticity of Model 4 in Chapter 8.

Another school (108) does have poor fit p = 0.00008, but small influence
(C; = 0.008).

Leaving out ill-fitting schools does not lead to appreciable differences in results.

The book gives further details.

72



11. Designing Multilevel Studies 176-179

11. Designing Multilevel Studies

Note: each level corresponds to a sample from a population.
For each level, the total sample size counts.

E.g., in a 3-level design:

15 municipalities;

in each municipality, 200 households;
in each household, 2-4 individuals.

Total sample sizes are 15 (level 3), 3000 (level 2), = 9000 (level 1).
Much information about individuals and households, but little about municipalities.
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11. Designing Multilevel Studies 176-179

Power and standard errors

Consider testing a parameter 3 , based on a t-ratio

A

/8 .
s.e.(B)

For significance level ¢ and power =y

P
s.e.(B)

where z1_4 , 24 and z;1_, are values for standard normal distribution.

~ (zl_a —+ Z»y) = (Zl—a — Zl—’y) ’

E.g., fora = .05, v = .80, effect size 3 = .20, sample size must be such that

.20
standard error < = 0.081.
— 1.64 + 0.84

The following discussion is mainly in terms of standard errors,

always for two-level designs,
with two-stage samples of IN clusters each with n units.
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11. Designing Multilevel Studies 179-180

Design effect for estimation of a mean
Empty model:
Yii=n+U; + R;.

with var(U;) = 72, var(R;;) = o>
Parameter to be estimated is p.

1 N n
A= Nn 2 2 Yo
71=1 =1
A 7_2 0.2
var = — — .
)=~ *~n

The sample mean of a simple random sample of N1 elements from this
population has variance

7-2 _|_ 02

Nn
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11. Designing Multilevel Studies 179-180

The relative efficiency of simple random sample w.r.t. two-stage sample
is the design effect (cf. Kish, Cochran)

nt? + o2
T2—|—0'2:1+(n_1)p|’ (1)
where
2
P =
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11. Designing Multilevel Studies

Effect of a level-two variable

Two-level regression with random intercept model
Yij = Bo + Biz; + U; + E;j.
When var(X) = s%,
72 + (0%/n)
N s% .
For a simple random sample from the same population,
T2 4 g2
Nns%

Relative efficiency again equal to (1).

var(B1) =

Var(lédlisaggregated) —

77



11. Designing Multilevel Studies

Effect of a level-one variable

Now suppose X is a pure level-one variable,
i.e., X the same in each cluster, p, = —1/(n — 1).
Assume var(X) = s% within each cluster.

E.g.: time effect in longitudinal design; within-cluster randomization.
Again

Yij = Bo + Bxi; + U; + E;j.
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11. Designing Multilevel Studies

Now

X 1 N2

Br = Nns? Z %ij Yis
X j=1 i=1

1 N n

— 61 + —22 £Lij Eij

Nns%k =i

with variance

Var(Bl) —

2

2
Nns%

For a simple random sample from the same population,

o’ + 72

2
Nmns%

Var(léiisaggregated) —
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11. Designing Multilevel Studies

The design effect now is

0.2

T2 + o2

Note the efficiency due to blocking on clusters!

:]__p|.
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11. Designing Multilevel Studies

For random intercept models,
design effect < 1 for level-one variables,
and > 1 for level-two variables.

Conclusion: for a comparison of randomly assigned treatments
with costs depending on Nn,

randomising within clusters is more efficient than between clusters

(Moerbeek, van Breukelen, and Berger, JEBS 2000.)

But not necessarily for variables with a random slope!
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11. Designing Multilevel Studies

Level-one variable with random slope

Assume a random slope for X:
Yii = Bo + BGixij + Uo; + Urjxij + Eij.
The variance of (2) now is
’I’LTl SX + o2

var(B1) = .

Nns%

The marginal residual variance of Y is
o’ + TO + 7'1 sX
so the design effect now is

’n’T18X + o2

—|—1'13X—|—0'2
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11. Designing Multilevel Studies

A two-stage sample (like the "within-subject design” in psychology)
‘neutralizes’ variability due to random intercept, not due to random slope of X.

In practice:

if there is a random slope for X then the fixed effect does not tell the whole story
and it is relevant to choose a design in which the slope variance can be estimated.
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11. Designing Multilevel Studies

Optimal sample size for estimating a regression coefficient

Estimation variance of regression parameters =~

2 2
91 4, 92
N ' Nn

2
2 "

for suitable 0'%, o
Total cost is usually not a function of total sample size N, but of the form
ciN + ecaNn .

Minimizing the variance under the constraint of a given total budget
leads to the optimum

clo'g

nopt — c 0_2
201

(which still must be rounded).
Optimal IN depends on available budget.
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11. Designing Multilevel Studies

For level-one variables with constant cluster means,
2 __
o; =20
so that n,,, = 0o: the single-level design.

For level-two variables,

) 2 , o2
o] — 0y = —
Sx Sx

so that

610'2
Nope — o2 .
2

Cf. Cochran (1977),

Snijders and Bosker (JEBS 1993),

Raudenbush (Psych. Meth. 1997, p. 177),

Chapter Snijders in Leyland & Goldstein (eds., 2001),
Moerbeek, van Breukelen, and Berger (JEBS 2000),
Moerbeek, van Breukelen, and Berger (The Statistician, 2001).
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11. Designing Multilevel Studies

How much power is gained by using covariates?

In single-level regression:
' d lained vari by f 1 — p?
covariate reauces unexplained variance by tactor p° .

Assume random intercept models:

Yii = Bo + Bixi; + U; + R;;
Y:ii = Bo + Bixzij + B2zij + U; + R;;
Zi; = v + Ugz;j + Rgz;j.

Also assume that Z is uncorrelated with X within and between groups
(regression coefficient (31 not affected by control for Z).
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11. Designing Multilevel Studies

Denote the population residual within-group correlation between Y and Z by
pw = p(Rij, Rzij),

and the population residual between-group correlation by
ps = p(Uj, Ugzj) .

The reduction in variance parameters is given by

&2 (1 T p%}[/) 0-2 ’

7= (1—pg) 7.

In formulae for standard errors, control for Z
leads to replacement of o2 and 72 by 62 and 72.

Therefore:

for pure within-group variables, only within-group correlation counts;

for level-two variables, both correlations count,

but between-group correlations play the major role unless 7 is rather small.
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11. Designing Multilevel Studies 180-186

Estimating fixed effects in general
The assumptions in the preceding treatment are very stringent.

Approximate expressions for standard errors were given by Snijders and Bosker
(JEBS 1993)

and implemented in computer program PinT (‘Power in Two-level designs’)
available from

http://www.stats.ox.ac.uk/~snijders/multilevel.htm

Raudenbush (Psych. Meth. 1997) gives more detailed formulae
for some special cases.

Main difficulty in the practical application is the necessity
to specify parameter values:

means,

covariance matrices of explanatory variables,

random part parameters.
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11. Designing Multilevel Studies 180-186

Example:
sample sizes for therapy effectiveness study.

Outcome variable Y, unit variance, depends on
X1 (0-1) course for therapists: study variable,
X5 therapists' professional training,

X3 pretest.

Suppose pre-thinking leads to the following guesstimates:

Means: p1 = 0.4, pus = ug = 0.

Variances between groups:

var(X;) = 0.24 (because py = 0.4)

var(X3) = var(X3) = 1 (standardization)

p (X3) = 0.19 (prior knowledge)

p(X1, X2) = —0.4 (conditional randomization)

p(X1, X3 | X2) = 0 (randomization) = p(X;, X3) = 0.2
p(X2, X3) = 0.5 (prior knowledge).
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11. Designing Multilevel Studies 180-186

This yields chg(w) =1—0.19 = 0.81 and

0.24 —0.20 0.04
0.04 0.22 0.19
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11. Designing Multilevel Studies 180-186

Parameters of the random part:

Var(}fij) — fdi(w) + B,ZX(B)/8 + 7'02 + o’
(cf. Section 7.2 of Snijders and Bosker, 2012).
Therefore total level-one variance of Y is

5%UX(W) + o’

and total level-two variance is

B'Exm0+ 7.

Suppose that p; (Y) = 0.2 and that the available explanatory variables together
explain 0.25 of the level-one variance and 0.5 of the level-two variance.

Then 0% = 0.6 and T02 = 0.10.

Budget structure:

assume c¢; = 20, co = 1, kK = 1000.
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11. Designing Multilevel Studies 180-186

With this information, PinT can run. Results:

S.E.(B1)
0.26- co
o0
0.20. M
ootk
0.17- M
0.14-
5 10 20 30 40

Figure 1 Standard errors for estimating 31 ,

for 20N + Nn < 1,000;
* for 02 = 0.6, 7¢ = 0.1,
o for % = 0.5, ’T(? = 0.2.
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11. Designing Multilevel Studies 180-186

For these parameters, 7 < m < 17 acceptable.

Sensitivity analysis: also calculate for 2 = 0.5, 7'02 = 0.2.

(Residual intraclass correlation twice as big.)
Now 5 < nn < 12 acceptable.
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11. Designing Multilevel Studies 188-190

Estimating intraclass correlation

Donner (ISR 1986):

SE(p)=@1—p )

X (1+(m—1)p )\/n(n—li(N—l).

Budget constraint:
substitute N = k/(cy 4+ con) and plot as a function of n for various p; .

E.g., suppose 20 N + Nn <1000
and 0.1 < p, <0.2.
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11. Designing Multilevel Studies

188-190

SEE.(p)
0.151 %

0.125-
0.101 @

0
0.0751 =%

4 R mmeoooopoaooooooooooooooo - o = 0.20
0.05 %WMW p = 0.10

0.025-

2 10 20 30 40 M
Figure 2 Standard error for estimating
intraclass correlation coefficient for

budget constraint 20N + Nn < 1000
with p, = 0.1 and 0.2.

Clusters sizes between 16 and 27 are acceptable.
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11. Designing Multilevel Studies

190-191

Variance parameters

Approximate formulae for random intercept model
(Longford, 1993)

S.E.(6%) =~ o? \/N (nz_ 0

and
2 1 2 T2 nti
SE(#2) ~ 02— -9 0,
(TO) UNn\/n—1+ o2 + o4
Standard errors for estimated standard deviations:
S.E.(62
SE.(6) = (") :
20

and similarly for S.E.(79).

Same procedure:

substitute N = k/(c1 4+ can) and plot as function of n.

Example in Cohen (J. Off. Stat., 1998).
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12.2 Sandwich Estimator for Standard Errors 197-201

12.2 Sandwich estimators

Cluster-robust standard errors for fixed effects can be used to account for
clustering (a nested dependence structure) in the data, even when the fixed effects
are estimated by a model without the proper dependence assumptions.

(This estimation method is called GEE = Generalized Estimating Equations.)

These are also affectionately called sandwich estimator because of their sandwich

form
var(9) = (X’WX)_lX’VX(X’WX)_1 .
Here X is the design matrix for the fixed effects, W is the inverse of the assumed

covariance matrix in the clusters, and V' is an estimate of the within-cluster

residual variances.

This way of calculating standard errors does not rely on a particular random effects
specification, nor on normality of the residuals.

This works well for 30 or more groups if the groups are similar in size

and in the structure of the covariates.
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12.2 Sandwich Estimator for Standard Errors 197-201

The advantage is robustness; the disadvantage is non-optimal efficiency.

Another issue is that the model is incompletely specified: the random part of the
model is ignored.

Considerations about whether or not to do this:
1. Can the research question be answered with the incompletely specified model?

(Cf. the nuisance-interest contrast.)
Are only the fixed parameters of interest?

2. Is the model specification of the random part adequate?

3. Are sample sizes etc. sufficient to make the sandwich estimator a reliable
estimator of variance?

4. Is the loss of efficiency acceptable?
For the latter two questions, the degree of imbalance between the clusters will
be an issue.
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13. Imperfect Hierarchies

205-206

13. Imperfect Hierarchies

So far we had perfect nesting of lower in higher level units

Non-nested structures:

1. Cross-classified
2. Multiple membership

3. Multiple membership & multiple classification
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13.1 Cross-classified models 206

Cross-classification

Individuals are simultaneously members of several social units
(such as neighborhood and schools)

This leads to crossed factors (random effects)

Individuals uniquely belong to a combination of both factors

school 1 school 2 school 3 school 4 school 5

W T LT T

1234567 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25

neighborhood 1

neighborhood 2 neighborhood 3 neighborhood 4

Figure 13.1 Example of pupils nested in schools and neighborhoods
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207

Adapted notation

Level 1 unit (say, pupils) indicated by ¢, simultaneously nested in

e Level 2a (schools) indexed by 7 and
e Level 2b (neighborhoods) indexed by k

Indicate the neighborhood of a pupil 2 in school 5 as k(z, 7)

HLM for a non-nested model:
p
Yij = v + i'?’h Thij + Uoj + ZUhj Thij + Rij
h=1 h=1
Add neighborhood random effect Wy, assuming
Wor ~ N (O, 7‘24,)
and

COV(ng, RZJ) = 0, COV(WOk, U()j) =0
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13.1 Cross-classified models 207, 209

HLM with neighborhood random effect W,:

q b
Yigr = %0 + D Wm@nij + Uoj + 3 Unj@nij + Wor + Ry
h=1 h=1

Intra-class correlations:

1. Units ¢ within same 7, different k
.

2 2
7'W—|—7'0—|—0'2

2. Units 2 within same k, different 3

2
To

2
7'5‘,——|—7'0—|—0'2

3. Units ¢ within same 7, same k
mh, + 7

2 2
TW—I—TO—|—0'2
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13.1 Cross-classified models 208

Example: Decomposing complex school effects

Secondary school examination scores of cohort study of Dutch pupils
3,658 pupils in 185 secondary schools coming from 1,292 primary schools

Are primary school effects persistent?

Models:

1. secondary school effects only

2. crossed primary and secondary effects

103



13.1 Cross-classified models 208

Results for models with and without cross-classified random effects

Model 1 Model 2
Fixed effect Coeff. S.E. Coeff. S.E.
Yo Intercept 6.36 0.03 6.36 0.03
Random part Var. comp. S.E. Var. comp. S.E.
Crossed random effect:
T4, = var(Wqy) primary school 0.006  0.005

Level-two random effect:

7'02 = var(Uy;) secondary school 0.067 0.014 0.066 0.014

L evel-one variance:

o? = var(R;;) 0.400 0.010 0395  0.010
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Three intra-class correlations

1. Correlation between examination grades of pupils who attended the same
primary school but went to a different secondary school

Tvzv 0.006
5 5 2 = " — 0.013;
Tw+To +O 0.467

2. Correlation between grades of pupils who attended the same secondary school
but came from different primary schools

7'02 0.066
5 5 2 = " aam — 0.141;
Tw+ T +O 0.467

3. Correlation between grades of pupils who attended both the same primary and
the same secondary school

T‘%V -+ 7'02 _ 0.072 0154
5 + T4 + o2 0.467
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209-210

Model with added fixed effects

Model 2 Model 3

Fixed effect Coeff. S.E. Coeff. S.E.
~o Intercept 6.36 0.03 6.39 0.02

~1 Pretest 0.032  0.002
2 SES 0.068  0.011
~3 Advice 0.0564  0.009
~4 Ethnicity —0.071  0.028
Random part Var. comp. S.E. Var. comp. S.E.
T4, = var(Wyy) primary school ~ 0.006  0.005  0.003  0.003
1¢ = var(Up;) secondary school ~ 0.066  0.014  0.034  0.008
o? = var(R;;) 0.395 0.010 0330 0.008
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Multiple memberships

Individuals are/have been members of several social units
(such as several different secondary schools)

Only one random factor at level two
(as opposed to two or more factors in cross-classified models)

Individuals belong to multiple levels of that factor

school 1 school 2 school 3 school 4 school 5
1 2 34 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Figure 13.2 Example of pupils nested within multiple schools.
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Membership weights

We weight membership by importance
(such as duration of stay in particular school)

Weights w;;, for each pupil 2 in school h, with Zflvzl w;p = 1
Example:

1. Pupil 1: only in school 1

2. Pupil 2: equal time in schools 1 and 3

3. Pupil 3: equal time in schools 1, 2, 3

School
Pupil 1 2 3
1 1 0 0
2 0.5 0 0.5

3 033 033 0.33
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Multilevel model for multiple memberships

Denote by Y;¢;y an individual who might have multiple memberships
Write HLM with level two residuals Uy, weighted by w;p,
N
Yigiy = 7Y + Zwih Uon + Rigjy
h=1

For example, pupil 2 will have
1 Usi + 1 I
o 01 o 03

To include a fixed effect for membership trajectory define
1

Do wizh

which is 0 for pupil 1 (with one membership) and positive for others with multiple

W; 1

memberships
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13.3 Multiple membership models 213

Example: Decomposition of school effects with multiple memberships

Continuation of previous example
94% of pupils never changed schools

Remaining 6%
e 215 attend two schools (w; vary between 0.2 and 0.8)

e 5 attend three (w; vary between 0.2 and 0.25)
Models:

1. Level 2: only first secondary school

2. Level 2: multiple membership model
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213

Results from models without and with multiple membership

Model 4 (ML)  Model 5 (MM)

Fixed effect Coeff. S.E. Coeff.
Yo Intercept 6.36 0.03 6.36
Random part Var. comp. S.E. Var. comp.

Level-two random effect:
14 = var(Up;) secondary school ~ 0.062  0.013  0.064

L evel-one variance:

o2 = var(R;;) 0.402  0.010  0.401
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213

Plot of school level residuals from ML and MM

level-2 residuals from multiple membership model

-0.5 -0.3 0.0 0.3 05 0.8 10

level-2 residuals from multi-level model

Note: Correlation is 0.86
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13.4 Multiple membership multiple classification models 213-214

Multiple membership multiple classification models

Combining cross-classified random effects with multiple membership weights

school 1 school 2 school 3 school 4 school 5

NS
AN /1]

neighborhood 1 neighborhood 4

neighborhood 2 neighborhood 3

Figure 13.4 Example of pupils nested within multiple schools crossed with
neighborhoods
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Model 7 Model 8
Fixed effect Coeff. S.E. Coeff. S.E.
~o Intercept 6.36 0.03 6.40 0.02
~1 Pretest 0.031  0.002
v2 SES 0.068  0.011
~3 Advice 0.053  0.010
~4 Ethnicity —0.073 0.028
Random part Var. comp. S.E. Var. comp. S.E.

Crossed random effect:

T‘%V = var(Wpyg) primary school 0.006 0.005 0.003 0.003
Level-two random MM effect:
7'02 = var(Uy;) secondary school 0.065 0.014 0.033 0.007

L evel-one variance:

o2 = var(R;;) 0.395 0.010 0.331  0.008
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14. Survey weights 216

14. Survey weights

Surveys often are organized using a design in which the sample
is not totally random: e.g., a stratified and/or multi-stage sample.

A major issue is the possibility that at some or all levels,
units are represented with non-constant probabilities.
Reasons can be the efficient organization of data collection,
or the wish to over-represent some interesting subgroups.

This is expressed by sampling weights (proportional to sampling probabilities).

Non-constant sampling weights imply that the sample cannot be
regarded as a ‘mini-population’ — it is not directly representative.

What to do with these weights?
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14. Survey weights 217

What is the purpose of the statistical inference:

1. Descriptive
e.g., estimate mean or proportion in a specific population.

2. Analytic
how do variables of interest depend on other variables?
Here often there is a wish to generalize to a larger population.
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Connected to this, but a distinct issue is the fact that the use of a probability
model can be founded on different bases:

1. Design-based
This uses the probability distribution that is implied by the sampling design.
This usually is for a sample from a finite population.
The probabilities are under control of the researcher,
except for non-response and other sampling errors.

2. Model-based
The researcher assumes that data can be regarded
as outcomes of a probability model with some unknown parameters.
This usually assumes a hypothetical infinite population,
e.g., with normal distributions.
Assumptions are made about independence etc.
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14. Survey weights 218-219

Most of quantitative social science research is about analytic inference.

If the model is true (or a good approximation),

and a survey design is used for which

the sample is drawn independently of the residuals in the statistical model,

then the design is irrelevant and taking it into account leads to a loss of efficiency.

But one can hardly ever (or never) be certain that a model is true
and design-based estimators can give protection against
distortions caused by incorrect model assumptions.

If the design is potentially relevant,
then the contrast nuisance <> interesting phenomenon occurs again:
the design may tell is something interesting about the social world.

The approach followed here is that we favor a model-based approach,
taking account of the design when this is called for, or when this is interesting.
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14. Survey weights 219-222

Two kinds of weights

In statistical modeling, two kind of weights are used.

1. Sampling weights, used in complex surveys, which are the inverses of the
probabilities of including an element in the sample;
I.e., population elements that are undersampled
get a higher weight to correct for the undersampling.
Purpose: unbiased estimation, correct for non-uniform sampling.

2. Precision weights, expressing that some data points are associated with more
precision than others, and therefore get a stronger effect on the results.
Example: multiplicity weights (representing number of cases).

Purpose: lower estimation variance, i.e., increased precision.
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14. Survey weights 219-222

These kinds of weight differ in their implications for the standard errors.

A survey sample with a few cases with very high weights can lead to high standard
errors, because the results are dominated by these high-weight cases.

The effective sample size, for a sample with weights w;, is
2
(i)
PIECH

(applicable for estimating a mean, not for regression).

Ner —

This is equal to the number of sample elements if w; is constant,
and else it is smaller: loss of efficiency.

The design effect is the ratio of effective sample size
to number of sample elements.
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14. Survey weights 222

When can sampling weights be ignored?

A sample design will depend on a number of design variables,
used for stratification, to define primary sampling units, etc.
The survey weights are a function of the design variables.

If the model is specified correctly given all the design variables , i.e.,
the residuals in the model are independent of the design variables,
then the sample design can be ignored in the analysis.

Therefore, the sample design is important for analytic inference
mainly if we are working with a misspecified model.

121



14. Survey weights 222

As an example, consider a study of pupils in schools, Y = language achievement,
with SES as an explanatory variable, and ethnic composition as an omitted

variable.
(ethnic comp.)

A

Y

SES - Y

Suppose that the inclusion probability of schools is associated with the ethnic
composition, but no data about this are available.

Then the analysis effectively uses a SES variable that also represents the
unobserved ethnic composition;

if the analysis is unweighted and sampling is not uniform,

the regression coefficient of SES will average over ethn. comp.

in proportions according to the sample, differring from those in the population.
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We argue for aiming, when possible, for a model-based analysis,
with the analysis being informed by the design variables.

Arguments:

1. The focus of analysis should be on getting a good model.

2. Most social science researchers are more acquainted with model-based

inference, and have less risk of making mistakes there than in design-based
inference.

3. Methods for design-based inference for multilevel data structures
still have strong limitations.

Thus, the design is used to try and make the model more interesting and

appropriate; a design-based analysis is followed only if the model-based analysis
seems unreliable.
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14. Survey weights 223-230

How to use design variables in a model-based analysis?

1. Check the variability of weights at each level.

If weights are almost constant, then they may be ignored;
if weights are strongly variable, then using them is risky.

2. Add design variables to the model of interest.

If possible, this is the golden way.
Design variables should be considered also for the random part and in interactions.
Design variables are, however, not always available for the researcher.

3. Apply the hierarchical linear model separately to different parts of the survey.

These parts may depend on stratification variables, on design weights, etc.

Grouping according to design weights is important here,
because the assumption for a model-based analysis is that
the model does not depend on the design weights.
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14. Survey weights 223-230

4. Add weight variables to the model of interest.

This is an option if the design variables themselves are not available.

If the weight variables themselves do not have a clear interpretation,

the purpose of this is mainly the hope that including the weight variables does not
affect the results for the other variables, which would be an argument for pursuing
a model-based analysis without the weight variables.

5. Carry out model-based and design-based elements within each level-2 unit,
and compare the results.

For a two-level design, this leads to single-level within-group analyses.
The differences between the two kinds of analyses can be inspected and tested.

Again, this is done with the hope of being able to choose for a model-based
approach; if this is not justified, then inspection of the differences can give insight
into how the design is associated with the variables of interest.
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6. Test differences between the model-based and design based results.

Equation (4.17) gives Asparouhov's (2006) measure for the informativeness of the
sample design, based on such a comparison:

the difference between the estimates,
expressed in units relative to the model-based standard error.
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14. Survey weights 231-236

Example: Metacognitive strategies in PISA 2009 for USA

PISA is a large international OECD study about school achievement.

We consider the PISA 2009 data for the USA,
with the dependent variable ‘'METASUM’, a measure of awareness of appropriate

strategies for summarizing information.

Sampling design: stratified two-stage sample
Stratification by school type {private, public} X region {MW, NE, S, W}.
Schools are sampled within strata with probabilities proportional to enrollment.

Numbers of sampled schools (left) and sampled pupils (right) per stratum,
for PISA data, USA, 2009.

Midwest Northeast South West

Public schools 38 1,264 26 732 55 1,776 35 1,116
Private schools 2 71 2 46 4 108 3 120
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There are too few private schools to say much specifically about them.

Level-one weights all are between .95 and 1.00: can be disregarded.

Level-two design effects for PISA data (USA 2009).

Midwest Northeast South West
Public schools  0.49 0.74 0.16 0.17

For South and West, this is reason for concern.
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Example of a descriptive analysis

Suppose we wish to estimate the proportions of schools in the South located in

villages, towns, and cities.

Note that villages tend to have smaller, and cities larger schools.

Design-based and model-based estimates for three proportions,
for public schools in the South.

Parameter Probability-weighted Unweighted
Proportion of schools situated in a (3? S.EP y S.E.(9)
Village 0.18 0.09 0.11 0.04
Town 0.65 0.13 0.56 0.07
City 0.17 0.07 0.33 0.06

The unweighted results are seriously biased for villages and cities,
and unweighted standard errors are unreliable.
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Analysis of metacognitive competences
Suppose we wish to study how metacognitive competences depend on the
following variables.
e Gender; female = 0, male = 1.
e Grade, originally ranging from 8 to 12; centered at 10, new range -2 to +2.
e Age, between 15 and 17 years, centered at 16 years.

e ESCS, the PISA index of economic, social and cultural status of students: in
this data set this has mean 0.15 and standard deviation 0.92.

e Immigration status, recoded to:
0, at least one parent born in the USA;
1, second generation (born in the USA, both parents born elsewhere);
2: first generation (born outside the USA, parents likewise).
This ordinal variable is treated as having a linear effect.

e Public versus private schools.
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To explore the consequences of the design,
first we analyze the data set in five separate parts:

private schools;
schools in the four quartiles of the level-two weights.
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231-236

Estimates for model for metacognitive competence for five parts of the data set:

fixed effects.

Private Weight 1 Weight 2 Weight 3 Weight 4

N (schools) 11 38 39 38 39

Fixed effects Par. S.E. Par. S.E. Par. SE. Par. SE. Par. S.E.
Intercept -0.72 048 -0.12 0.10 -0.15 0.10 -0.17 0.06 -0.18 0.07
Male —0.27 0.12 -0.34 0.06 -0.33 0.06 -0.28 0.06 -0.35 0.06
Age -0.05 0.23 -0.05 0.12 -0.18 0.12 -0.26 0.11 -0.01 0.12
Grade 0.25 0.12 0.20 0.06 0.24 0.07 0.28 0.06 0.18 0.07
Immigrant -0.13 0.09 0.01 0.04 0.05 0.05 -0.03 0.06 0.06 0.09
ESCS 0.04 0.08 0.10 0.04 0.14 0.04 0.08 0.04 0.11 0.04
Sch-imm 0.51 0.37 0.04 0.14 0.14 0.16 0.10 0.16 -0.29 0.36
Sch-ESCS 0.74 0.40 0.16 0.12 0.11 0.12 0.25 0.13 0.10 0.13
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Estimates for model for metacognitive competence for five parts of the data set:
variance parameters.

Private Weight 1 Weight 2 Weight 3 Weight 4

N (schools) 11 38 39 38 39

Variances Var. Var. Var. Var. Var.

School lev. 0.14 0.04 0.06 0.02 0.05
Student lev. 0.85 0.93 0.97 0.95 0.95
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Conclusions:

Private schools differ strongly from public schools;
the four weight groups differ w.r.t. school-level variables.

Which other school variables are available
that might explain these differences?

A major difference between the weight groups is urbanization.

Next page:

Estimates for model for metacognitive competence, including urbanization, for five
parts of the data set: fixed effects.

Reference category for urbanization is ‘city’.
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Private Weight 1 Weight 2 Weight 3 Weight 4

NN schools 11 38 39 38 39

Fixed effects Par. S.E. Par. S.E. Par. SE. Par. SE. Par. S.E.

Intercept -0.90 040 -0.16 0.12 0.03 0.13 0.01 0.13 -0.01 0.23

Male -0.27 0.11 -0.33 0.06 -0.33 0.06 -0.28 0.06 -0.35 0.06
Age -0.07 0.23 -0.04 0.12 -0.19 0.12 -0.27 0.11 -0.01 0.12
Grade 0.26 0.12 0.20 0.06 0.25 0.0/ 0.28 0.06 0.18 0.07
Immigrant -0.13 0.09 0.01 0.04 0.05 0.05 -0.03 0.06 0.06 0.09
ESCS 0.03 0.08 0.10 0.04 0.14 0.04 0.08 0.04 0.11 0.04
Sch-imm 085 033 0.11 0.15 -0.00 0.18 0.11 0.17 0.12 0.43

Sch-ESCS 1.06 033 0.19 0.13 0.14 0.13 0.21 0.14 0.15 0.14
Large city -0.80 0.26 -0.10 0.12 0.01 0.17 -0.32 0.18 -0.51 0.34
Town -0.36 0.24 0.12 0.12 -0.17 0.13 -0.20 0.13 -0.38 0.26
Small town — 0.02 0.21 -0.42 0.17 -0.22 0.13 -0.24 0.25
Village — — — -0.23 0.17 -0.12 0.24
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Estimates for model for metacognitive competence, including urbanization,
for five parts of the data set: variance parameters.

Private Weight 1 Weight 2 Weight 3 Weight 4

N schools 11 38 39 38 39

Variances Var. Var. Var. Var. Var.

School lev. 0.05 0.04 0.05 0.02 0.05
Student lev. 0.85 0.93 0.97 0.95 0.95
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Conclusion

Differences between weights groups are very small now.

Let us at this stage compare the model-based and design-based estimates.

Next page:

Design-based and model-based estimates for model for metacognitive competence,

entire data set: fixed effects.

I, is Asparouhov’s (2006) informativeness measure.
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240-243

Design-based  Model-based
Fixed effects  Par. S.E. Par. S.E. I,
Intercept —0.077 0.089 -0.075 0.058 0.03
Male -0.350 0.040 -0.321 0.029 1.00
Age -0.134 0.102 -0.121 0.055 0.24
Grade 0.192 0.043 0.224 0.031 1.03
Immigrant  -0.014 0.031 0.008 0.027 0.81
ESCS 0.075 0.035 0.107 0.019 1.68
Sch-imm 0.240 0.104 0.094 0.068 2.41
Sch-ESCS 0426 0.119 0.189 0.049 4.84
Private -0.211 0.179 -0.008 0.118 1.72
Large city -0.406 0.121 -0.152 0.081 3.14
Town -0.390 0.111 0.093 0.057 8.47
Small town -0.382 0.108 0.172 0.072 7.69
Village -0.203 0.110 -0.087 0.073 1.59
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Design-based and model-based estimates for model for metacognitive competence,
entire data set: variance parameters.

Design-based Model-based

Variances Var. Var.

School lev.  0.031 0.007 0.040 0.009
Student lev. 0.893 0.083 0.941 0.018
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Conclusion:
Differences remain, mainly with respect to school-level variables.

A residual analysis showed that there is one outlier:
a school with 6,694 pupils enrolled,
while other schools range between 100 and 3,592.

This school and all private schools were excluded,
and square root of school size included as control variable.

Next page:

Design-based and model-based estimates for model for metacognitive competence,
public schools without outlier: fixed effects.

I, is Asparouhov’s (2006) informativeness measure.
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Design-based  Model-based

Fixed effects Par. S.E. Par. SE. I,
Intercept —0.050 0.068 -0.122 0.061 1.18
Male -0.359 0.046 -0.318 0.032 1.28
Age 0.011 0.080 -0.117 0.059 2.17
Grade 0.162 0.040 0.215 0.032 1.66
Immigrant 0.019 0.034 0.017 0.030 0.07
ESCS 0.090 0.032 0.111 0.019 1.11
Sch-imm 0.114 0.092 0.068 0.078 0.59
Sch-ESCS 0.204 0.081 0.143 0.054 1.13

V/school size — 35 0.004 0.005  0.004 0.003 0.00

Large city -0.193 0.091 -0.094 0.0/8 1.27
Town -0.094 0.059 -0.032 0.060 1.03
Small town -0.128 0.088 -0.100 0.080 0.35

Village 0.034 0.102 0.023 0.088 0.13
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Design-based and model-based estimates for model for metacognitive competence,
public schools without outlier: variance parameters.

Design-based Model-based

Variances Var. Var.

School lev.  0.035 0.010 0.038 0.009
Student lev. 0.939 0.085 0.940 0.018

Conclusion:

Only the coefficient of age still differs between the two types of analysis.
This suggests that age effects depend on the design variables.
This could be, e.g., school enrollment or urbanization.
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Next page:

Design-based and model-based estimates for model for metacognitive competence,
public schools without outlier, with more extensive controls: fixed effects.

I, is Asparouhov’s (2006) informativeness measure.
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240-243

Design-based  Model-based
Fixed effects Par. S.E. Par. SE. I,
Intercept -0.067 0.065 -0.120 0.061 0.87
Male -0.357 0.045 -0.319 0.032 1.19
Age -0.083 0.065 -0.113 0.058 0.52
Grade 0.167 0.040 0.216 0.032 1.53
Immigrant 0.019 0.034 0.017 0.030 0.07
ESCS 0.090 0.032 0.111 0.019 1.11
Sch-imm 0.108 0.092 0.065 0.060 0.72
Sch-ESCS 0.203 0.081 0.143 0.054 1.11
V/school size — 35 0.002 0.005 0.003 0.003 0.33
Large city -0.194 0.091 -0.093 0.078 1.29
Town -0.096 0.060 —0.033 0.060 1.05
Small town -0.134 0.089 -0.101 0.080 0.41
Village 0.036 0.104 0.023 0.088 0.15
Age X (v/school size — 35) 0,011 0.005 -0.004 0.004 1.75
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Design-based and model-based estimates for model for metacognitive competence,
public schools without outlier, with more extensive controls: variance parameters.

Design-based Model-based

Variances Var. Var.

School lev.  0.036 0.010 0.038 0.009
Student lev. 0.937 0.084 0.940 0.018

Conclusion:

It seems that now we arrived at a good model.
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Overview: how was the analysis modified by the design variables

1.

Public schools differ from private schools,
but the data contains too few private schools to say much about them.

. One very large school seemed to differ from the rest.

. Urbanization has an effect on metacognitive competences.

Age (controlling for grade!) has an effect,
and interacts with urbanization and/or school size;
it is hard to say which of these, because of correlated effects.

. For the student-level variables, the final model-based results differ hardly from

the model-based results for the entire data set, controlling for urbanization.
There is a difference w.r.t. the school-level variable ‘proportion of immigrants’,
which may be due to the difference between private and public schools.

Here again there is an issue of correlated effects.

. The refinement of excluding the very large school and using school size as a

control variable did not importantly modify the other results.
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15. Longitudinal data

Level two: ‘subjects’;
level one: ‘measurements’ made at certain time points.

Multilevel (‘random coefficients’) approach: flexible model specification,
easy treatment of unbalanced data sets (variable n per subject).

1. Fixed occasions :
All subjects measured at the same time points.

2. Variable occasions
time points can be different; also number of measurements may differ.
(Then there are few alternative approaches.)

An advantage in both cases is the interpretability of the parameters
in terms of rate of increase, etc.

Notation: Y3; is measurement at time ¢ for individual 2.
t indicates level 1, 2 indicates level 2.
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15.1 Fixed Occasions

Simplest case: random intercept model.
This is also called the ‘compound symmetry’ model.

Y = pyg (+ further fixed part) + Uy + Ry;-

The subjects differ only with respect to their constant mean deviations Ul;,
the time points could have arbitrary means p; .
The residuals are independent.

The intraclass correlation here compares individual differences to
over-time fluctuations, and will be much larger than
the .05—-.25 range that is usual for data sets of individuals nested in groups.

Arbitrary differences between time points can be represented
by defining dummy variables for all measurement occasions:

Z pndni; + Up; + Ry where dpy; = 1 for h = t, 0 otherwise
h

(or all minus one, if a constant term — intercept — is included).
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15. Longitudinal data

250-251

Example: Life Satisfaction of German 55-60 year olds

1236 respondents, panel data with yearly waves;

Fixed occasions: t = 1, 2, 3,4, 5, 6 representing ages 55, 56, . ..

The first model has a constant mean over time,
the second an age-dependent mean.
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15. Longitudinal data

250-251

Table 12.1 Estimates for random intercept models

Model 1 Model 2
Fixed effect Coefficient S.E. Coefficient S.E.
p1 Mean at age 55 6.937 0.044  6.882  0.053
pt2 Mean at age 56 6.937 0.044 6956  0.054
ps3 Mean at age 57 6.937 0.044 7.021  0.056
pt4 Mean at age 58 6.937 0.044 6.907  0.057
ps Mean at age 59 6.937 0.044 6.894  0.059
e Mean at age 60 6.937 0.044 6.985  0.060
Random effect Parameter S.E. Parameter S.E.
Level-two (i.e., individual) variance:
14 = var(Uy;) 1.994 0.095 1991 0.094
Level-one (i.e., occasion) variance:
o? = var(Ry;) 1.455 0.030 1.452  0.030
Deviance 21,791.34 21,780.70
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15. Longitudinal data 250-251

Model 2 is borderline significantly better than Model 2
(x? = 10.64, df = 5,p = 0.06),
but the mean differences are not important.

Estimated variances of observations are ?()2 + 62 = 1.994 + 1.455 = 3.449,
estimated within-subjects correlation is

) 1.994
pI p— - 0058 .
1.994 + 1.455

Note that these correlations are the same between all measurements of the same
subject, whether they are for adjacent waves or for waves spaced far apart.

If we wish to estimate a person’s long-term life satisfaction p + Uy,
then the reliability of measurement when using n repeated measurements is

np,
1+ (n—1)p
(see Sections 3.5 and 4.8); e.g., for n = 3 this is 0.81.
For this purpose again we can use the posterior means.

,I: p—
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15. Longitudinal data 253-254

Here again the assumptions of the random intercept model are quite restrictive.
It is likely that individual respondents differ not only in their mean value over time,
but also in rate of change and other aspects of time dependence.

This is modeled by including random slopes of time,
and of non-linear transformations of time.

Random slope of time:
Yy = pe + Uy + Ui (t —t9) + Ry s
with a covariate, e.g.,

Yii = e + az; +vzi(t —to) + Upy + Ui (t —to) + Ry -
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15. Longitudinal data 254

Here we use as covariates:
birth year (representing cohort & time) and interaction birth year X age.
Birth year date ranges 1929-1951, coded here as

birth year date — 1940
10

so that it ranges between —-1.1 and +1.1;
division by 10 to avoid very small coefficients.

Note that age is included non-linearly as a main effect (dummy variables)
and linearly in interaction with birth year.

Linear age (t — tg) ranges from 0 to 5.

The choice of variables implies that the intercept refers to individuals
born in 1940 and now aged 55 years.
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15. Longitudinal data

254

Model 3 Model 4
Fixed effect Coefficient S.E. Coefficient S.E.
p1 Effect of age 55 6.883  0.055 6.842  0.055
po Effect of age 56 6.955 0.055 6.914  0.055
w3 Effect of age 57 7.022 0.055 6.988  0.055
w4 Effect of age 58 6.912 0.056 6.886  0.057
ps Effect of age 59 6.906 0.058 6.892  0.060
pe Effect of age 60 7.004 0.060 7.005 0.064
a Main effect birth year -0.394  0.078
~ Interaction birth year X age 0.049  0.019
Random effect Parameter S.E. Parameter S.E.
Level-two variation:
7'02 Intercept variance 2.311 0.126 2.253 0.124
72 Slope variance age 0.025 0.005 0.025 0.005
To1 Intercept—slope covariance —-0.103 0.021 -0.097 0.021
Level-one (i.e., occasion) variance:
o2 Residual variance 1.372  0.031 1.371 0.031
Deviance 21,748.03 21,722.45
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15. Longitudinal data 254-255

Interpretation :

Random slope is significant: x? = 32.7, df = 2, p < 0.0001.

Birth year has effect —0.394: older cohorts tend to be happier;
its contribution for —1.1 < B.Y. < 1.1 ranges from 0.43 to —-0.43.

This is of medium effect size given the inter-individual s.d.(Uy;) = 7° = 1.5.

The interaction birth year X age has a somewhat smaller contribution,
ranging between (5 X 1.1 X 0.049) = £0.27.

Deviations from average pattern in rate of change

have standard error +/0.025 = 0.16.

Since age ranges from 0 to 5, this represents larger variations in rate of change
than those accounted for by birth year.

Negative intercept-slope covariance:
those who start higher (at 55 years) tend to go down
compared to those who start lower.
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15. Longitudinal data

254-255

(Y

R(Y?) =

( 3.67
2.16
2.06
1.96
1.87

K1.77

( 1.00
0.60
0.58
0.56
0.54
\ 0.51

2.16
3.50
2.01
1.94
1.87
1.80

0.60
1.00
0.58
0.57
0.55
0.53

2.06
2.01
3.38
1.92
1.87
1.82

and the correlation matrix is

0.58
0.58
1.00
0.57
0.56
0.54

1.96
1.94
1.92
3.31
1.87
1.85

0.56
0.57
0.57
1.00
0.57
0.56

1.87
1.87
1.87
1.87
3.29
1.88

0.54
0.55
0.56
0.57
1.00
0.57
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The covariance matrix implied by this model is

1.77 \
1.80
1.82
1.85
1.88

3.33 )

0.51 \
0.53
0.54
0.56
0.57

1.00 |



15. Longitudinal data 254-255

The variance does not change a lot with age,

and correlations attenuate slightly as age differences increase
(in the matrix, this means going away from the main diagonal);
they are close to the intra-subject correlation

estimated for the compound symmetry model as gy = 0.58.
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15. Longitudinal data 256-258

Multivariate model: unstructured general covariance matrix.

A further possibility available for fixed occasion data
(not in this way for variable occasion data) is the fully multivariate model, which
makes no restrictions on the covariance matrix.

The advantage is that there is less concern about failure of the assumptions.

In some software implementations (e.g., MLwiN), this can be achieved
by giving all dummy variables for measurement occasions random slopes at level 2,
and dropping the random part at level 1.
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15. Longitudinal data 256-258

Simplest case: incomplete bivariate data.

This is like the combination of a paired-samples -test
and an independent-samples t-test.

For the REML estimation method, this method reproduces

the paired-samples t-test if data are complete

and the independent-samples t-test if no respondent has both data points;
but still allowing for different variances at both time points.

The model fitted is

Yii = Yo + v1dii + Uy,

where the dummy variable d; indicates whether or not t = 1

159



15. Longitudinal data

256-258

Example: comparison of life satisfaction between ages 50 and 60,

for individuals born in 1930-1935 and alive in 1984.

Available respondents: 591; of these,

136 with measurements for both ages,

112 with a measurement only for age 50 (¢
343 with a measurement only for age 60 (%

0),
—1).

Null hypothesis of no age effects: ‘4 = 0.
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15. Longitudinal data 256-258

Estimates for incomplete paired data.

Fixed effect Coefficient S.E.

~o Constant term 7.132  0.125
1 Effect time 1 -0.053 0.141

Deviance 2,953

Estimated covariance matrix

ﬁ(Y°)— 4.039 1.062
| 1.062 3.210 | °

Age has no significant effect: 47 = —0.053 (t = —0.053/ .141 = 0.38).
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15. Longitudinal data

(not in the book)

Now we estimate Model 5,

which is Model 4 modified to have an unstructured covariance matrix.

Model 4 Model 5
Fixed effect Coefficient S.E. Coefficient S.E.
w1 Effect of age 55 6.842  0.055 6.842 0.055
po Effect of age 56 6.914  0.055 6.913 0.056
w3 Effect of age 57 6.988  0.055  6.987 0.055
p4 Effect of age 58 6.886  0.057  6.882 0.059
w5 Effect of age 59 6.892 0.060 6.886 0.060
pe Effect of age 60 7.005 0.064 7.001 0.060
a Main effect birth year -0.394  0.078 -0.395 0.078
~ Interaction birth year X age  0.049  0.019  0.043 0.019
Deviance 21,722.45 21,676.84
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15. Longitudinal data (not in the book)

The covariance matrices implied by Models 4 and 5 are

Model 4 Model 5
(3.67 2.16 2.06 1.96 1.87 1.77\ (3.61 2.11 1.92 1.92 1.84 1.60 \
2.16 3.50 2.01 1.94 1.87 1.80 2.11 3.60 2.15 1.95 1.90 1.80
2.06 2.01 3.38 1.92 1.87 1.82 and 1.92 2.15 3.26 1.96 1.73 1.73
1.96 1.94 1.92 3.31 1.87 1.85 1.92 1.95 1.96 3.49 1.85 1.85
1.87 1.87 1.87 1.87 3.29 1.88 1.84 1.90 1.97 2.07 3.29 1.87
\1.77 1.80 1.82 1.85 1.88 3.33) \1.60 1.80 1.73 1.85 1.87 2.88 )

Although Model 5 is significantly better than Model 4
(x? =45.6, df =15 —4 =11,p < 0.001),
the differences are not important.
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15. Longitudinal data 263-266

15.2 Variable occasions
This is a model of populations of curves.
Again, there are random slopes for time and non-linear functions of time.

If there are no variables representing individual X time interactions,
the fixed effects represent the population averages

and the random effects at level two represent

the between-individual differences in the curves.

Example : height of children with retarded growth, 5-10 years old.

1,886 measurements of a total of 336 children.
Height in cm, age in years, intercept at tg = 5 years.

The time variable is age; children were measured at quite varying ages.
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15. Longitudinal data 263-266

First a model of linear growth.

Table 15.7 Linear growth model for 5—10-year-old children with retarded growth.

Fixed Effect Coefficient S.E.

Yoo Intercept 06.32 0.285
Y10 Age 5.53 0.08

Random Effect Parameter S.E.
Level-two (i.e., individual) random effects:

7'02 Intercept variance 19.79 1.91

7£ Slope variance for age 1.65 0.16

To1 Intercept-slope covariance  -3.26 0.46

Level-one (i.e., occasion) variance:

o2 Residual variance 0.82 0.03

Deviance 7099.87

165



15. Longitudinal data 263-266

Note the small residual standard deviation, & = 0.9,
which includes measurement error and deviations from linearity.

It follows that growth in this age range is quite nearly linear,
with an average growth rate of 5.53 cmy,
and a between-individual standard deviation in growth rate of

To = VvV 1.65 = 1.3 cm/y.

Negative slope-intercept variance:
children who are taller at age 5 grow more rapidly (correlation = —0.63).

Correlation between heights at ages 5 and 10 years is

cov(Uy;, Uy; + 5U7;)

\/var(UOz-) X var(Up; + 5U1;)

19.79 — 5 X 3.26 3.49
—— = 0.65.

/19.79 X (19.79 — 10 X 3.26 + 25 X 1.65)  5.33
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15. Longitudinal data 263-266

The ‘predicted’ (postdicted?) curves for the children,
calculated by using empirical Bayes estimates of the parameters:

138+

Next to linear models, polynomial models and spline models can be considered.
Here a simple approach to splines: fixed nodes determined by trial and error.
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15. Longitudinal data

265-267

Table 15.8 Cubic growth model for 5-10-year-old children with retarded growth

Fixed Effect Coefficient S.E.
~oo Intercept 110.40 0.22

Y0 t— 7.5 523  0.12

Y20 (t — 7.5)2 —0.007 0.038
v30 (t — 7.5)3 0.009 0.020
Random Effect Variance S.E.
Level-two (i.e., individual) random effects:

7'02 Intercept variance 13.80 1.19

7{ Slope variance t — tg 2.97 0.32

75 Slope variance (t — to)? 0.255  0.032
15  Slope variance (t — t)* 0.066  0.009
Level-one (i.e., occasion) variance:

02 Residual variance 0.37 0.02

Deviance 06603.75
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15. Longitudinal data 265-267

Estimated correlation matrix for level-two random slopes (Uy;, Uy;, Us;i, Us;) -

/ 1.0 0.17 —0.27 0.04\
Bo—| 017 10 011 —0.s4

—0.27 0.11 1.0 —0.38
|\ 0.04 —0.84 —0.38 1.0 |

Again ‘predicted’ curves from empirical Bayes estimates — looks almost linear:

a2

T T T 1
5.0 6.3 76 8.9 10.2
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15. Longitudinal data 268-270

Another option is to fit piecewise linear function :
continuous functions of age that can have different slopes
for each interval between birthdays years ¢t and t + 1.
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15. Longitudinal data 268-270

Table 15.9 Piecewise linear growth model for 5-10-year-old children with retarded growth

Random Effect Variance S.E.
Level-two (i.e., individual) random effects:
: . 7¢ Intercept variance  13.91 1.20
Fixed Effect Coefficient S.E. 72 Slope variance 4 ror 08
. IjTte(r5ce6pt ears) 112.1718 8;21 75 Slope variance f 3.80 0.57
3:3 f; (6-7 zears) 559  0.18 732 >lope varance fs 364 050
30 f3 (7-8 years) 5 05 0.16 7'42 Slope var!ance fa 3.42 0.45
Yao f1 (8-9 years)  5.16 0.15 T; Slope variance fs 3.77 053
(

Y50 f5 (9-10 years)  5.50 0.16

Level-one (i.e., occasion) variance:
o? Residual variance 0.302 0.015

Deviance 0481.87
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15. Longitudinal data

268-270

Estimated correlation matrix of the level-two random effects (Uy;, ..., Us;)
and ‘predicted’ curves :

(1.0

0.22
0.31
0.14
—0.05

\ 0.09

0.22
1.0

0.01
0.01

0.18 —0.16 047 1.0 0.03

0.33

0.31  0.14 —0.05 0.09
0.23 0.01 0.18 0.33
1.0 0.12 —0.16 0.48
0.12 1.0  0.47 —0.23

0.48 —0.23 0.03 1.0)

138

83 I I I I
50 B3 Th 89 102
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15. Longitudinal data 270-276

The advantage of piecewise linear functions is that they are
less globally sensitive to local changes in the function values.

The disadvantage is their angular appearance, with kinks in the “knots”.

A further step is to use splines,
which are a flexible and smooth family of functions that are like polynomials,
but without the global sensitivity to local changes.

Spline functions are polynomials on intervals bounded by points called knots,
and smooth when passing the knots.

We mostly use quadratic or cubic splines.

When the knots have been found with a bit of trial and error,
using the spline function amounts to transforming the time variable
and then further on using linear models — see the book.
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15. Longitudinal data 270-276

For example, a cubic spline with one node, positioned at %,
is defined by the four functions

fi(t) = t—to (linear function)
f2(t) = (t — tg)? (quadratic function)
( (4 1+.\3
f3(t) = < (f) tO) Ez E zz; (cubic to the left of to)
0 (t < to) | .
fa(t) <\ (t—1)° (t> to) (cubic to the right of #)

Example: growth in the same population of children with retarded growth,
now 12-17 year olds. A total of 321 children with 1,941 measurements.

A good model was obtained for cubic splines with one knot at £ty = 15 years.
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15. Longitudinal data

270-276

Table 15.10 Cubic spline growth model for 12—17-year-old children with retarded growth

Fixed Effect Coefficient  S.E.
Yoo Intercept 150.00 0.42

Y10 f1 (linear) 6.43 0.19

Y20 f2 (quadratic) 0.25 0.13

Y30 f3 (cubic left of 15) —0.038 0.030
~s0 fa (cubic right of 15) —0.529  0.096
Random Effect Variance  S.E.
Level-two (i.e., individual) random effects:

7'02 Intercept variance 52.07 4.46

72 Slope variance f; 6.23  0.71

72 Slope variance f> 250  0.34

77 Slope variance f3 0.136  0.020
72 Slope variance f4 0.824  0.159
Level-one (i.e., occasion) variance:

02 Residual variance 0.288 0.014
Deviance 6999.06
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15. Longitudinal data

270-276

Estimated correlation matrix of the level-two random effects (Ug;y ...y Uy;)

( 1.0 0.26 —0.31
0.26 1.0
—0.31 0.45 1.0
0.32 —0.08 —0.89

0.01 —0.82 —0.71

0.40
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0.32 0.01\
0.45 —0.08 —0.82
—0.89 —0.71
1.0  0.40

1.0 )



15. Longitudinal data 274

length
170+
160+
150+
140+

130¢
120+

12 13 14 15 16 17
t (age in years)

Figure 15.1 Average growth curve () and 15 random growth curves for
12—-17-year-olds for cubic spline model.

Next: explain growth variability by gender and parents’ height (Table 15.11 ).
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15. Longitudinal data 275-276

Fixed Effect Coefficient  S.E.
Yoo Intercept 150.20 0.47
Y10 f1 (linear) 5.85 0.18
Y20 f2 (quadratic) 0.0563 0.124
~s0  fs (cubic left of 15)  —0.029  0.030
~Ya0 fa (cubic right of 15)  -0.553  0.094
~Yo1 Gender -0.385 0.426
~v11  Ji1 X gender —1.266 0.116
Y21 f2 X gender -0.362 0.037
Yoz Parents’ length 0.263  0.071
~Y12 J1 X parents’ length 0.0307 0.0152
Random Effect Variance S.E.
Level-two (i.e., individual) random effects:

¢  Intercept variance 49.71 4.31
72  Slope variance fy 4.52 0.52
77  Slope variance fo 237 033
72  Slope variance f3 0.132  0.020
72 Slope variance f4 0.860 0.156
Level-one (i.e., occasion) variance:

o? Residual variance 0.288 0.013
Deviance 6885.18
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15. Longitudinal data 275-276

Estimated correlation matrix of the level-two random effects (Ug;y ...y Uy;)

( 1.0 0.22 —0.38 0.35 0.07)
0.22 1.0 0.38 —0.05 —0.81
Ry=| —038 038 1.0 —0.91 —0.75
0.35 —0.05 —0.91 1.0  0.48
0.07 —0.81 —0.75 0.48 1.0 |

The correlation matrix is given only for completeness,
not because you can see a lot from it.
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17. Discrete dependent variables 292-293

17. Discrete dependent variables
Heterogeneous proportions.

Religious attendance at least once a week, 136,611 individuals in 60 countries.

’J_II_I_IIIIIIIII LLLIL !II 11 1 II‘I LI 11 1 ‘ 1 I‘ 1 1 ‘
0.0 0.2 0.4 0.6 0.8 1.0

Figure 17.1: Proportion of religious attendance.

Average proportion 0.238.

Difference between proportions: X? = 29,733,d.f. = 59,p < 0.0001.
7 = +/0.0404 = 0.201.
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17. Discrete dependent variables 294-295

The logarithm transforms a multiplicative to an

logit(p)
additive scale and transforms the set of
positive real numbers to the whole real line. 3
One of the most widely used transformations of )

probabilities is the log odds, defined by

logit(p) = In (L) , 1

1—p |
where In(a) denotes the natural logarithm ) P
of the number @. The logit function, of which —1F
graphs are shown here, is an increasing function
defined for numbers between 0 and 1, and its —2r
range is from minus infinity to plus infinity. _al
For example, p = 0.269 is transformed to logit(p) = —1

and p = 0.982 to logit(p) = 4. The logit of p = 0.5 is exactly 0.
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17. Discrete dependent variables 294-295

p
0.05 0.12 0.50 0.73 0.88 0.95
0 1 2 3 4
logit(p)

Correspondence between p and logit(p).
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17. Discrete dependent variables

295-297

Empty multilevel logistic regression model: logit(P;) = ~vo + Ub; -

Table 17.1 Estimates for empty multilevel logistic model

Fixed Effect Coefficient S.E.
“Yo = Intercept -1.447 0.180

Random effect Var. Comp. S.E.
Level two variance:

To = S.D.(Uyy) 1.377

Y N I A W N W11 IIIIRJIIIIIII[IJH‘ L1 |

5 —4 -3 —2 —1 0 1 2

logit(p)
Figure 17.5: Observed log-odds and estimated normal distribution

of population log-odds of religious attendance.
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17. Discrete dependent variables 297-299

The random intercept model for binary data:

logit(P;;) = Yo + Z’)’h Thij + Uoj -
h=1

There is no level-1 residual because P;; is not a random variable,
but itself a group-level random coefficient.
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17. Discrete dependent variables 297-299

Explanatory variables:

e Educational level, measured as the age at which people left school (14-21 years), minus 14.
This variable was centered within countries. The within-country deviation variable has mean 0,
standard deviation 2.48.

e Income, standardized within country; mean —0.03, standard deviation 0.99.
e Employment status, 1 for unemployed, 0 for employed; mean 0.19, standard deviation 0.39.
e Sex, 1 for female, 0 for male; mean 0.52, standard deviation 0.50.

e Marital status, 1 for single/divorced /widowed, 0 for married /cohabiting; mean 0.23, standard
deviation 0.42.

e Divorce status, 1 for divorced, 0 for other; mean 0.06, standard deviation 0.25.
o Widowed, 1 for widowed, 0 for other; mean 0.08, standard deviation 0.27.

e Urbanization, the logarithm of the number of inhabitants in the community or town of
residence, truncated between 1,000 and 1,000,000, minus 10; mean 0.09, standard deviation
2.18.
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17. Discrete dependent variables 297-299

Constructed level-2 variables:

e Average educational level: mean 0.82, standard deviation 0.94.
e Average unemployment: mean 0.19, standard deviation 0.08.
e Average divorce status: mean 0.06, standard deviation 0.03.

e Gini coefficient measuring income inequality, minus 35.
Mean 0.10, standard deviation 9.58.

Next page:
Table 17.2.

Logistic random intercept model for religious attendance in 59 countries.
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17. Discrete dependent variables

297-299

Fixed effect Coefficient  S.E.
~o Intercept —-2.069 0.646
~1 Education (within-country deviation) —-0.0290  0.0032
~2 Income —0.0638  0.0082
~3 Unemployed 0.017 0.020
~v4 Female 0.508 0.016
s Single —0.269 0.019
~e¢ Divorced —-0.489 0.036
~v7 Widowed 0.518 0.027
~s Urbanization —0.0665 0.0039
~9 Gini coefficient 0.035 0.017
~10 Country average education —0.330 0.135
~v11 Country average unemployment 6.033 2.116
~12 Country average divorce —7.120 4.975
Random effect S.D. S.E.
Random intercept:

70 = S.D.(Uy,) intercept standard deviation 1.08

Deviance 115,969.9
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17. Discrete dependent variables 302-303

Random slopes can be added in the usual way
to the multilevel logistic model.

The following is a model for the logit with one random slope:

logit(P;;) = Yo + Z’Wﬂhz’j + Uoj + Ui -
h=1
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17. Discrete dependent variables 302-303

Table 17.3.
Logistic random slope model for religious attendance in 59 countries.

Fixed effect Coefficient S.E.
Yo Intercept 3.792 2.476
~1  Education (within-country deviation) —-0.0388 0.0092
Y2 Income —-0.0738 0.0161
v3 Unemployed 0.019 0.020
~v4 Female 0.511 0.016
s Single —0.271 0.019
ve¢ Divorced —-0.493 0.036
vz Widowed 0.482 0.027
~s Urbanization —0.0650 0.0040
Yo Gini coefficient 0.028 0.017
v10 Country average education —0.333 0.132
~v11 Country average unemployment 5.44 2.06
~12 Country average divorce -6.43 4.84

(continued...)
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17. Discrete dependent variables

302-303

(... continuation)

Random part parameters S.D. / Corr.
70 = S.D.(Up;) Intercept standard deviation 1.09
71 = S.D.(Uy;) Income-slope standard deviation 0.096
7 = S.D.(Uz;) Education-slope standard deviation 0.063
po1 = p(Uyj, U1j) Intercept—income slope correlation 0.29
poz = p(Uoj, Uzj) Intercept—education slope correlation —0.07
p12 = p(Uij, Uz;) Income—education slopes correlation 0.27

For a data set with large groups like these country data,
a two-step approach (Section 3.7) might be preferable.
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17. Discrete dependent variables

307-309

Estimated level-two intercept variance may go up when level-1 variables are added

and always does when these have no between-group variance.

This can be understood by threshold model
which is equivalent to logistic regression:

0 fY<o

Y = y
1 ifYy>o0,

where Y is a latent continuous variable
r
Y= + Y nTni; + Uy + Ry
h=1

and R;; has a logistic distribution, with variance 71'2/3.

The fact that the latent level-1 variance is fixed implies that
explanation of level-1 variation by a new variable X,

will be reflected by increase of v, (0 < h < 7) and of var(Uy;).
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17. Discrete dependent variables 307-309

Measure of explained variance (‘R?’) for multilevel logistic regression can be based

on this threshold representation, as the
proportion of explained variance in the latent variable.

Because of the arbitrary fixation of a'%% to w2 /3,
these calculations must be based on one single model fit.
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17. Discrete dependent variables

307-309

Let

r
Yij = + Z’)’h Lhij
h=1
be the latent linear predictor; then

ng—ng + Uy + R;j .

Calculate Yj; (using estimated coefficients) and then
ok = var (V)

in the standard way from the data; then
var <lufm) — 0'12, + 7'02 -+ a'z

where 0%, = w%/3 = 3.29.
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17. Discrete dependent variables

305-307

The proportion of explained variance now is

2
2 _ OF

dicho 2 2 2

Op + To T OR

Of the unexplained variance, the fraction

2
To

7+ + ok
is at level 2, and the fraction

2

OR
2 2 2
Op + Ty + OR

is at level one.
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17. Discrete dependent variables

305-307

Table 17.4 Estimates for probability to take a science subject

Model 1
Fixed Effect Coefficient  S.E.
~o Intercept 2.487 0.110
~1 Gender -1.515 0.102
~2 Minority status —-0.727 0.195

Random Effect Var. Comp. S.E.
Level-two variance:

18 = var(Up;) 0.431 0.082
Deviance 3238.27

Linear predictor

Yij = 2.487 — 1.515 gender;; — 0.727 minority,;

. Ao 2 0.582 _
has variance 03 = 0.582. Therefore Rdicho = 0B 104817330 — 0.13.
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17. Discrete dependent variables 310-313

Multicategory ordinal logistic regression

‘Measurement model’:

(0 iy <6,

y )1 if 6, <}:f§01,
k ifOr_1 <Y <60, (k=2,...,c—2),
lc—1 iff., <Y.

‘Structural model’;

Yii =7 + Z’)’hwhij + Uo; + Ryj.
h=1
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17. Discrete dependent variables

313

Table 17.6 Multilevel 4-category logistic regression model number of science subjects

Model 1 Model 2
Threshold parameters Threshold S.E. Threshold S.E.
01 Threshold 1 -2 1.541 0.041 1.763 0.045
60> Threshold 2 - 3 2.784 0.046 3.211 0.054
Fixed Effects Coefficient S.E. Coefficient S.E.
Yo Intercept 1.370 0.057 2.591 0.079
~v1 Gender girls -1.680 0.066
v2 SES 0.117 0.037
3 Minority status -0.514 0.156
Level two random effect Parameter S.E. Parameter S.E.
7'02 Intercept variance  0.243 0.034 0.293 0.040

deviance 0308.8 8658.2
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17. Discrete dependent variables 314-319

Multilevel Poisson regression

In (E(Lij)) =y + Z’Yh Thij + Uoj -
h=1

L;; is a count variable.

For overdispersed counts, negative binomial models
may be more appropriate than Poisson models;
or a Poisson-type model with overdispersion parameter may be used.

Example next page:

Number of memberships of voluntary organizations of individuals in 40 regions in
The Netherlands (ESS data).

198



17. Discrete dependent variables

314-319

Table 17.7. Two Poisson models for number of memberships.

Model 1 Model 2

Fixed effect Coefficient S.E. Coefficient S.E.
Yo Intercept 0.846 0.026 0.860 0.032
~v1 Female —0.118 0.044
v2 (Age — 40)/10 0.198 0.028
~v3 (Age — 40)2/100 —0.061 0.014
~4 Protestant 0.296 0.041
~s Female X (Age — 40)/10 -0.097 0.030
Level-two random part S.D. S.D. / Corr.

To Intercept standard deviation 0.112 0.070

71 Slope S.D. Female 0.146

po1(T) Int.—slope correlation 0.168

Deviance 6,658.3 6,522.6

The total contribution of being female is —0.118 — 0.097(Age — 40)/10 + Uy,

which is 0 for age 28 if U;; = 0.
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17. Discrete dependent variables

314-319

Table 17.8. Two negative binomial models for number of memberships.

Model 3 Model 4
Fixed effect Coefficient  S.E. Coefficient ~ S.E.
~Yo Intercept 0.848 0.027 0.861 0.034
~v1 Female -0.116 0.046
v2 (Age — 40)/10 0.197 0.031
~v3 (Age — 40)%/100 —0.061 0.016
~4 Protestant 0.300 0.047
~s Female x (Age — 40)/10 —0.095 0.033
Level-two random part Parameter Parameter
To Intercept standard deviation 0.111 0.051
71 Slope S.D. Female 0.127
po1(T) Int.—slope correlation 0.497
a Negative binomial parameter 7.40 10.32
Deviance 6,588.6 6,483.3
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