STATISTICAL METHODS

Tom A. B. Snijders

http://www.stats.ox.ac.uk/~snijders/sm.htm

Lectures on Multilevel Analysis

Department of Statistics

University of Oxford
2012


http://www.stats.ox.ac.uk/~snijders/sm.htm

Foreword

This is a set of slides following Snijders & Bosker (2012).

The page headings give the chapter numbers and the page numbers in the book.

Literature:

Tom Snijders & Roel Bosker,

Multilevel Analysis: An Introduction to Basic and Applied Multilevel Analysis,
2"d edition. Sage, 2012.

Chapters 1-2, 4-6, 8, 10.

There is an associated website
http://www.stats.ox.ac.uk/~snijders/mlbook.htm
containing data sets and scripts for R and other software.

These slides are not self-contained, for understanding them it is necessary
also to study the corresponding parts of the book, and the R scripts at the website!


http://www.stats.ox.ac.uk/~snijders/mlbook.htm

Foreword

If you wish to see further literature, look at:

Andrew Gelman & Jennifer Hill,
Data Analysis Using Regression and Multilevel/Hierarchical Models. CUP, 2007.

For doing multilevel analysis using R, here are some R materials:

José Pinheiro & Douglas Bates,
Mixed-effects models in S and S-PLUS. Springer, 2000.

John Fox, Linear Mixed Models. Appendix to ‘An R and S-PLUS Companion to
Applied Regression’.

http://cran.r-project.org/doc/contrib/Fox-Companion/appendix-mixed-models.pdf

Douglas Bates, Examples from Multilevel Software Comparative Reviews.

http://finzi.psych.upenn.edu/R/library/mlmRev/doc/MlmSoftRev.pdf

For further R literature see Section 18.2.2 of Snijders & Bosker.


http://cran.r-project.org/doc/contrib/Fox-Companion/appendix-mixed-models.pdf
http://finzi.psych.upenn.edu/R/library/mlmRev/doc/MlmSoftRev.pdf

2. Multilevel data and multilevel analysis

2. Multilevel data and multilevel analysis

Multilevel Analysis using the hierarchical linear model :

random coefficient regression analysis for data with several nested levels.
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Figure 2.1: Multi-stage sample.

Each level is (potentially) a source of unexplained variability.
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2. Multilevel data and multilevel analysis

Some examples of units
at the macro and micro level:

macro-level micro-level
schools teachers
classes pupils
neighborhoods families
districts voters

firms departments
departments employees
families children
litters animals
doctors patients
interviewers respondents
judges suspects
subjects measurements
respondents = egos alters




2. Multilevel data and multilevel analysis 11-12

Multilevel analysis is a suitable approach to take into account the social contexts
as well as the individual respondents or subjects.

The hierarchical linear model is a type of regression analysis for multilevel data
where the dependent variable is at the lowest level.

Explanatory variables can be defined at any level
(including aggregates of level-one variables).

Z\ Z\ Z\
Yy r—Yy x——Y

Figure 2.5 The structure of macro—micro propositions.

Also longitudinal data can be regarded as a nested structure;
for such data the hierarchical linear model is likewise convenient.



2. Multilevel data and multilevel analysis

78

Two kinds of argument to choose for a multilevel analysis instead of an OLS

regression of disaggregated data:

1. Dependence as a nuisance
Standard errors and tests base on OLS regression are suspect
because the assumption of independent residuals is invalid.

2. Dependence as an interesting phenomenon
It is interesting in itself to disentangle variability at the various levels;
moreover, this can give insight in where further explanation may fruitfully be

sought.



4. The random intercept model

42

4. The random intercept model

Hierarchical Linear Model:

¢ indicates level-one unit (e.g., individual);
J indicates level-two unit (e.g., group).

Variables for individual 2 in group 7 :

Y;; dependent variable;
x;; explanatory variable at level one;

for group 7 :
z; explanatory variable at level two; 1 group size.

OLS regression model of Y on X ignoring groups :
Yii =00 + Bixij + Ry; .
Group-dependent regressions:

Yij = Boj + Bijxi; + Rij .



4. The random intercept model 42

Distinguish two kinds of fixed effects models:

1. models where group structure is ignored;

2. models with fixed effects for groups: Bg; are fixed parameters.

In the random intercept model, the intercepts By; are random variables
representing random differences between groups:

Yij = Boj + Bixzij + Rij .
where Bg; = average intercept oo plus group-dependent deviation Ul; :

Boj = Yoo + Uy; -

In this model, the regression coefficient (3; is common to all the groups.



4. The random intercept model

45

In the random intercept model, the constant regression coefficient 3¢ is

sometimes denoted ~1¢:

Substitution yields

Yii = Yoo + Ywoxij + Uoj + R;j .

In the hierarchical linear model, the Uy, are random variables
and the statistical parameter in the model is not their individual values, but their

variance

72 = var(Uy;).

10



4. The random intercept model

45

Y Y12 regression line group 2
R12{

regression line group 3
Bo2 A

regression line group 1
Bos A
Bo1 A

X

Figure 4.1 Different parallel regression lines.

The point y;2 is indicated with its residual Rqo .



4. The random intercept model 46-47

Arguments for choosing between fixed (F) and random (R) coefficient models for

the group dummies:

1.

If groups are unique entities and inference should focus on these groups: F .
This often is the case with a small number of groups.

. If groups are regarded as sample from a (perhaps hypothetical) population and

inference should focus on this population, then R .
This often is the case with a large number of groups.

. If level-two effects are to be tested, then R .

If group sizes are small and there are many groups, and it is reasonable to
assume exchangeability of group-level residuals, then R makes better use of the
data.

. If the researcher is interested only in within-group effects, and is suspicious

about the model for between-group differences, then F is more robust.

. If group effects Uy; (etc.) are not nearly normally distributed, R is risky

(or use more complicated multilevel models).

12



4. The random intercept model 49; also see 17-18

The empty model (random effects ANOVA) is a model

without explanatory variables:
Yij = Y0 + Uo; + R;; .

Variance decomposition:
var(Y;;) = var(Uy;) + var(Rij) =75 + o°.

Covariance between two individuals (¢ # ¢’ ) in the same group J
cov(Yyj, Yirj) = var(Uoj) = 75

and their correlation:

p(Yij, Yij) = pr(Y) =

2
To

(mf + %)

This is the intraclass correlation coefficient.

Often between .05 and .25 in social science research,
where the groups represent some kind of social grouping.

13



4. The random intercept model

Example: 3758 pupils in 211 schools , Y = language test.

Classrooms / schools are level-2 units.

Table 4.1 Estimates for empty model

Fixed Effect Coefficient S.E.
Yoo = Intercept 41.00 0.32
Random Part Variance Component S.E.
Level-two variance:

78 = var(Up;) 18.12 2.16
Level-one variance:

o? = var(R;;) 62.85 1.49

Deviance 26595.3

14



4. The random intercept model 50-51

Intraclass correlation
18.12

~ 18.12 + 62.85

P = 0.22

Total population of individual values Y;; has estimated mean 41.00 and standard
deviation 4/18.12 + 62.85 = 9.00 .

Population of class means Bgp; has estimated mean 41.00 and standard deviation

Vv18.12 = 4.3 .

The model becomes more interesting,
when also fixed effects of explanatory variables are included:

Yij =Yoo + Yioxi; + Uo; + Rij -

(Note the difference between fixed effects of explanatory variables
and fixed effects of group dummies!)

15



4. The random intercept model 52-53

Table 4.2 Estimates for random intercept model with effect for 1Q

Fixed Effect Coefficient S.E.
~Yoo = Intercept 41.06 0.24

~10 = Coefficient of IQ 2.507 0.054
Random Part Variance Component S.E.
Level-two variance:

78 = var(Up;) 9.85 1.21

Level-one variance:

o? = var(R;;) 40.47 0.96

Deviance 24912.2

There are two kinds of parameters:

1. fixed effects: regression coefficients « (just like in OLS regression);

2. random effects: variance components o2 and 7'02 .

16



4. The random intercept model 54-55

Table 4.3 Estimates for ordinary least squares regression

Fixed Effect Coefficient S.E.
~Yoo = Intercept 41.30 0.12

~10 = Coefficient of IQ 2.651 0.056
Random Part Variance Component S.E.
Level-one variance:

o? = var(R;;) 49.80 1.15

Deviance 25351.0

Multilevel model has more structure ( “dependence interesting” );

OLS has misleading standard error for intercept (“dependence nuisance”).

17



4. The random intercept model 54-55
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Figure 4.2 Fifteen randomly chosen regression lines according to the random intercept model of
Table 4.2.



4. The random intercept model 54-59

More explanatory variables:

Yij = Yo + Y015 + -+ + YpoTpi; + Yor 215 + .-+ + Yoq Zq;
+ Uo; + Rij .

Especially important:
difference between within-group and between-group regressions.

The within-group regression coefficient is the regression coefficient within each

group, assumed to be the same across the groups.

The between-group regression coefficient is defined as the regression coefficient for
the regression of the group means of Y on the group means of X.

This distinction is essential to avoid ecological fallacies (p. 15-17 in the book).

19



4. The random intercept model

54-59

between-group regression line

regression line
within group 2

regression line within group 3

regression line within group 1

X

Figure 4.3 Different between-group and within-group regression lines.

This is obtained by having separate fixed effects for the level-1 variable X
and its group mean X.

(Alternative:
use the within-group deviation variable X;; = (X — X)) instead of X.)

20



4. The random intercept model 54-59

Table 4.4 Estimates for random intercept model

with different within- and between-group regressions

Fixed Effect Coefficient S.E.
Yoo = Intercept 41.11 0.23

~10 = Coefficient of 1Q 2.454 0.055
~o1 = Coefficient of 1Q (group mean) 1.312 0.262
Random Part Variance Component S.E.
Level-two variance:

78 = var(Up;) 8.68 1.10

Level-one variance:

o? = var(R;;) 40.43 0.96

Deviance 24888.0
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4. The random intercept model 53-54

In the model with separate effects for the original variable x;; and the group mean

Yii =Yoo + Yioxij + Yorx.; + Uo; + R;j,

the within-group regression coefficient is 1 ,

between-group regression coefficient is y19 + Yo1.

This is convenient because the difference between within-group and between-group
coefficients can be tested by considering ~o1.

In the model with separate effects for group-centered variable x;;
and the group mean

Yii = Yoo + Y10Zij + Youx.; + Uo; + R;j
the within-group regression coefficient is 1¢ ,
the between-group regression coefficient is 1.

This is convenient because these coefficients are given immediately in the results,
with their standard errors.

Both models are equivalent, and have the same fit: 410 = Y10, Y01 = Y10 + Yo1-

22



4. The random intercept model 62-63

Estimation /prediction of random effects

The random effects Uy, are not statistical parameters and therefore they are not
estimated as part of the estimation routine.

However, it sometimes is desirable to ‘estimate’ them. This can be done by the
empirical Bayes method; these ‘estimates’ are also called the posterior means.

In statistical terminology, this is not called ‘estimation’ but ‘prediction’, the name
for the construction of likely values for unobserved random variables.

The posterior mean for group 7 is based on two kinds of information:

= sample information : the data in group 7;
=> population information : the value Uy, was drawn from a normal distribution

with mean 0 and variance 7'02 .

If the population information is reasonable, this gives on average
an improved prediction.

23



4. The random intercept model 62-63

The empirical Bayes estimate in the case of the empty model is a weighted average
of the group mean and the overall mean:

BS? = ;i Boj + (1 — X) 400 5
where the weight A; is the ‘reliability’ of the mean of group j
n%
™ + o?/n;

These ‘estimates’ are not unbiased for each specific group, but they are more

Aj =

precise when the mean squared errors are averaged over all groups.

For models with explanatory variables, the same principle can be applied:
the values that would be obtained as OLS estimates per group are
“shrunk towards the mean”.
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4. The random intercept model 64-66

There are two kinds of standard errors for empirical Bayes estimates:
comparative standard errors
“TEB\ __ “rEB )
S.E.comp (Uf2) = SE (U — Upy)

for comparing the random effects of different level-2 units
(use with caution — E.B. estimates are not unbiased!);

and diagnostic standard errors

S.Eding (Uf5) = SE. (UF)

used for model checking (e.g., checking normality of the level-two residuals).

25



4. The random intercept model 67
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The ordered added value scores for 211 schools with comparative posterior confidence intervals.

In this figure, the error bars extend 1.39 times the comparative standard errors
to either side, so that schools may be deemed to be significantly different
if the intervals do not overlap (no correction for multiple testing!).
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5. The hierarchical linear model

74-75

5. The hierarchical linear model

It is possible that not only the group average of Y,

but also the effect of X on Y is randomly dependent on the group.

In other words, in the equation
Yij = Boj + Bijzi; + Rij,

also the regression coefficient (3;; has a random part:

Boj = Yoo + Uy;
B1; = vio + Uyj .

Substitution leads to
Yij =Yoo + Ywoxi; + Uoj + Urjzi; + Rij .

Variable X now has a random slope.

27



5. The hierarchical linear model 74-75

Again the group-dependent coefficients Uy;, Uj; are not individual parameters in
the statistical sense, but only their variances, and covariance, are:

var(Uy;) = Too = 7'02 ;
var(Ulj) = T11 = 7'12 ]
COV(U()j, Ulj) = T01 -

Thus we have a linear model for the mean structure, and a parametrized
covariance matrix within groups with independence between groups.
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5. The hierarchical linear model 78

5.1 Estimates for random slope model

Fixed Effect Coefficient S.E.
Yoo = Intercept 41.127  0.234
Y10 = Coeff. 2480 0.064
~o1 = Coeff. of 1Q (group mean) 1.029  0.262
Random Part Parameters S.E.
Level-two random part:

78 = var(Uy,) 8.877  1.117
72 = var(Uy,) 0.195 0.076
701 = cov(Uyj, U1j) —0.835  0.217
Level-one variance:

o? = var(R;j) 39.685  0.964
Deviance 24864.9

IQ is defined as the group mean.

29

The equation for this table is

Y;; = 41.13 + 2.4801Q;;
+1.0291Q,
+Uo; + Uy 1Qi; + Ryj .

The slope 31 has
average 2.480
and

s.d. +/0.195 = 0.44.



5. The hierarchical linear model

78

Y
55

—4-3-2-10 1 2 3 4 X=IQ
Figure 5.2 Fifteen random regression lines according to the model of Table 5.1.

Note the heteroscedasticity: variance is larger for low X than for high X.
The lines fan in towards the right.

Intercept variance and intercept-slope covariance depend on the position of the
X = 0 value, because the intercept is defined by the X = 0 axis.
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5. The hierarchical linear model

80

The next step is to explain the random slopes:
Boj = Yoo + o1 2; + Upj
B1; = Y0 + Y1125 + Uyj -

Substitution then yields

Y, (700 + o1 2; + Uyj)
+ (710 + 71125 + Usj) zij + Ryj
= Yoo + Vo1 2Z; + Yi0Ti; + Y11 Zj Tij
+ Uo; + Usjxij + Rij .

The term 711 25 x5 is called the cross-level interaction effect.
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5. The hierarchical linear model

82

Table 5.2 Estimates for model with random slope

and cross-level interaction

Fixed Effect Coefficient S.E.
Yoo = Intercept 41.254  0.235
~10 = Coefficient of IQ 2.463 0.063
~o1 = Coefficient of 1Q 1.131  0.262
~11 = Coefficient of 1Q x 1Q —0.187 0.064
Random Part Parameters S.E.
Level-two random part:

7'02 = var(Uy;) 8.601  1.088
7'12 = var(Uy;) 0.163  0.072
701 = cov(Uyj, Us;) —0.833 0.210
Level-one variance:

o? = var(R;;) 39.758  0.965

Deviance 24856.8
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5. The hierarchical linear model 83-84

For two variables (IQ and SES) and two levels (student and school),
the main effects and interactions give rise to a lot of possible combinations:

Table 5.3 Estimates for model with random slopes and many effects

Fixed Effect Coefficient S.E.
Yoo = Intercept 41.632 0.255
~10 = Coefficient of 1Q 2.230 0.063
20 = Coefficient of SES 0.172 0.012
~30 = Interaction of 1Q and SES —0.019 0.006
~o1 = Coefficient of 1Q 0.816  0.308
~oz = Coefficient of SES -0.090 0.044
~o3 = Interaction of IQ and SES —0.134 0.037
~11 = Interaction of 1Q and 1Q —0.081 0.081
~12 = Interaction of IQ and SES 0.004 0.013
~21 = Interaction of SES and 1Q 0.023 0.018
~22 = Interaction of SES and SES 0.000 0.002

N—"

(continued next page....
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5. The hierarchical linear model

83-84

Random Part Parameters  S.E.
Level-two random part:

15 = var(Uy;) 8.344 1.407
7'12 = var(Uy;) 0.165 0.069
701 = cov(Upj, Uyj) —0.942 0.204
17 = var(Uz;) 0.0 0.0
To2 = cov(Uyp;, Uaj) 0.0 0.0
Level-one variance:

o? = var(R;;) 37.358 0.907
Deviance 24624.0

The non-significant parts of the model may be dropped:
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5. The hierarchical linear model

85-86

Table 5.4 Estimates for a more parsimonious model with a random slope and many effects

Fixed Effect Coefficient S.E.
~oo = Intercept 41.612  0.247
~10 = Coefficient of 1Q 2.231  0.063
~20 = Coefficient of SES 0.174  0.012
~30 = Interaction of 1Q and SES —0.017  0.005
~o1 = Coefficient of 1Q 0.760  0.296
~o2 = Coefficient of SES -0.089  0.042
~o3 = Interaction of IQ and SES —0.120  0.033
Random Part Parameters S.E.
Level-two random part:

7'02 = var(Uy;) 8.369  1.050
i = var(Uy;) 0.164  0.069
T01 = cov(Uyj, U;) -0.929 0.204
Level-one variance:

o? = var(R;;) 37.378  0.907

Deviance

24626.8
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Estimation for the hierarchical linear model

General formulation of the two-level model

As a link to the general statistical literature,
it may be noted that the two-level model can be expressed as follows:

Y; = Xjv + Z;U; + R,

o ]

and (R;,U;) L (R, Uy) forall 3 # £.

¥i(0) 0
D Q)

P

Standard specification X;(8) = o*I, ,
but other specifications are possible.
Mostly, 32,(8) is diagonal, but even this is not necessary (e.g. time series).
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Estimation for the hierarchical linear model

The model formulation yields

Y; NN(Xj% Z;(€)Z; + z33'(45’)) :

This is a special case of the mixed linear model
Y =X~+ZU + R,
with X [n, r], Z[n, p], and

(£) () ()

For estimation, the ML and REML methods are mostly used.

These can be implemented by various algorithms: Fisher scoring,
EM = Expectation—Maximization, IGLS = Iterative Generalized Least Squares.

See Section 4.7 and 5.4.
This is not examinable material.
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Estimation for the hierarchical linear model

Level-1 heteroscedasticity (see Chapter 8)

The following formulation allows for heteroscedasticity

depending linearly/quadratically on level-1 variables V':

R, =

where

with R;; = v;; Rg]

v;; isal X t variable,

R,?j isat X 1 random vector ,

R ~ N(0,5°(9)) .

This implies
Var R;; = vijEO(H)vgj :

38



Estimation for the hierarchical linear model

It does not matter if 3%(0) is not positive semi-definite, as long as
the resulting Var R;; is p.s.d.

E.g., linear variance function for

E0(‘9) — (Uhk(e))lgh,kgt
is obtained with with
on1(0) = o1n(0) =0, h=1,...,t

onk(0) = 0 min{h,k} > 2.

More generally, any quadratic variance function can be obtained.
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6. Testing

94-98

6. Testing
To test fixed effects, use the t-test with test statistic
Y
T(vn) = —
S.E.(Yn)

(Or the Wald test for testing several parameters simultaneously.)
For parameters in the random part, do not use %-tests.

Simplest test for any parameters (fixed and random parts)
is the deviance (likelihood ratio) test, which can be used

when comparing two model fits that have used the same set of cases:

subtract deviances, use chi-squared test
(d.f. = number of parameters tested).

Other tests for parameters in the random part have been developed
which are similar to F'-tests in ANOVA.
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6. Testing 94-98

6.1 Two models with different between- and within-group regressions

Model 1 Model 2
Fixed Effects Coefficient S.E. Coefficient S.E. Test for equality of within- and
Yoo = Intercept 4115 023 4115 023 between-group regressions
V1o = Coeff. of 1Q 2.265 0.065 is t-test for IQ in Model 1:
20 = Coeff. of IQ 2.265 0.065
30 = Coeff. of SES 0.161 0.011 0.161 0.011 t = 0'647/0'264 T 2'45’
~o1 = Coeff. of IQ 0.647 0.264 2912 0.262 p < 0.02.
Random Part Parameter S.E. Parameter S.E. Model 2 gives
Level-two parameters: within-group coefficient 2.265
7'02 = var(Uy;) 9.08 1.12 9.08 1.12 db ffici
72 = var(Uy;) 0.197 0074 0197 0.074 and between-group coeflicient
o1 = cov(Up;, Uy;) —0815 0214 —0815 0214 2.912 = 2.265 + 0.647.
L evel-one variance:
o? = var(R;;) 3742 091 3742 001
Deviance 24661.3 24661.3
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6. Testing 98-99

However, one special circumstance: variance parameters are necessarily positive.
Therefore, they may be tested one-sided.

E.g., in the random intercept model

under the null hypothesis that 7'02 = 0,

the asymptotic distribution of —2 times the log-likelihood ratio (deviance difference)
is a mixture of a point mass at 0 (with probability %)

and a x? distribution (also with probability %.)

The interpretation is that if the observed between-group variance
is less than expected under the null hypothesis

— which happens with probability % —

the estimate is 77 = 0 and the log-likelihood ratio is 0.

The test works as follows:
if deviance difference = 0, then no significance;
if deviance difference > 0, calculate p-value from x% and divide by 2.

42



6. Testing 98-99

For testing random slope variances,
if the number of tested parameters (variances & covariances) is p + 1,
the p-values can be obtained as
2 2 . . .
the average of the p-values for the X, and Xpi1 distributions.

(Apologies for the use of the letter p in two different meanings...)

See p. 99.

Sections 6.3 and 6.4 are not treated in these slides.

You are requested to study them so that you understand the reasoning.
Details will not be examined,

but it is expected that you can apply this type of arguments.
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8. Heteroscedasticity 119-120

8. Heteroscedasticity

The multilevel model allows to formulate heteroscedastic models where residual
variance depends on observed variables.

E.g., random part at level one = Ry;; + Riij €145 -
Then the level-1 variance is a quadratic function of X:

— 2 2.2
var(ROij + Rlz‘j mij) = 0 —+ 20‘01 L1ij5 -+ 0, mlij .
For 0'% — 0, this is a linear function:

2
var(Roi;; + Ruiijxij) = o5 + 2001 15 -

Possible as a variance function, without random effects interpretation.
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8. Heteroscedasticity

121

8.1 Homoscedastic and heteroscedastic models.

Model 1 Model 2
Fixed Effect Coefficient S.E. Coefficient S.E.
Intercept 40.426  0.265 40.435 0.266
1Q 2.249  0.062 2.245 0.062
SES 0.171 0.011 0.171 0.011
1Q x SES -0.020  0.005 —0.019 0.005
Gender 2.407  0.201 2.404 0.201
1Q 0.769  0.293 0.749 0.292
SES -0.093  0.042  -0.091 0.042
1Q x SES -0.105 0.033  -0.107 0.033
Random Part Parameters S.E. Parameters S.E.
Level-two random part:
Intercept variance 8.321 1.036 8.264 1.030
|Q slope variance 0.146  0.065 0.146 0.065
Intercept - 1Q slope covariance —0.898  0.197 —0.906 0.197
Level-one variance:
od constant term 35.995  0.874 37.851 1.280
o001 gender effect —-1.887 0.871
Deviance 24486.8 24482.2
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8. Heteroscedasticity 121

This shows that there is significant evidence for heteroscedasticity:
X% = 4.6, p < 0.05.

The estimated residual (level-1) variance is

37.85 for boys and 37.85 — 2% 1.89 = 34.07 for girls.

The following models show, however, that the heteroscedasticity as a function of
|Q is more important.
First look only at Model 3.
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8. Heteroscedasticity

122

8.2 Heteroscedastic models depending on 1Q.

Model 3 Model 4
Fixed Effect Coefficient S.E. Coefficient S.E.
Intercept 40.51 0.26 40.51 0.27
IQ 2.200 0.058 3.046 0.125
SES 0.175 0.011 0.168 0.011
IQ x SES —0.022  0.005 —0.016  0.005
Gender 2.311 0.198 2.252 0.196
1Q 0.685 0.289 0.800 0.284
SES -0.087 0.041  -0.083 0.041
1Q x SES —0.107 0.033 —0.089 0.032
1Q? 0.193 0.038
Q% —0.260  0.033
Random Part Parameter S.E. Parameter S.E.
Level-two random effects:
Intercept variance 8.208 1.029 7.989 1.002
|Q slope variance 0.108 0.057 0.044 0.048
Intercept - IQ slope covariance -0.733 0.187 -0.678 0.171
Level-one variance parameters:
0'3 constant term 36.382 0.894 36.139 0.887
oo1 1Q effect -1.689 0.200 -1.769 0.191
Deviance 24430.2 24369.0
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8. Heteroscedasticity

122-123

The level-1 variance function for Model 3 is 36.38 — 3.381Q .

Maybe further differentiation is possible between low-1Q pupils?
Model 4 uses

(1Q2% if | 0
Q2 = )@ Q<

0 iflQ >0,

>

0 if | 0

Q2 iflIQ > 0.

Y
8k
4k

1 ) 2 4 IQ
4l
—81L

Effect of IQ on language test as estimated by Model 4.
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8. Heteroscedasticity

127-128

Heteroscedasticity can be very important for the researcher
(although mostly she/he doesn't know it yet).

Bryk & Raudenbush: Correlates of diversity.
Explain not only means, but also variances!

Heteroscedasticity also possible for level-2 random effects:
give a random slope at level 2 to a level-2 variable.
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10. Assumptions of the hierarchical linear model 152-153

10. Assumptions of the Hierarchical Linear Model

T p
Yij = + Z’Yhil?hz'j + Uoj + ZUhj Thi; + Rij .

h=1 h=1
Questions:
1. Does the fixed part contain the right variables (now X3 to X;.)?
2. Does the random part contain the right variables (now X3 to X,)?
3. Are the level-one residuals normally distributed?
4. Do the level-one residuals have constant variance?
5. Are the level-two random coefficients normally distributed with mean 07

6. Do the level-two random coefficients have a constant covariance matrix?
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10. Assumptions of the hierarchical linear model 154-156; also 56—-59

Follow the logic of the HLM
1. Include contextual effects
For every level-1 variable X}, check the fixed effect of the group mean Xj,.

Econometricians’ wisdom: “the Up; must not be correlated with the Xj;;.
Therefore test this correlation by testing the effect of X} ('"Hausman test')
Use a fixed effects model if this effect is significant”.

Different approach to the same assumption:

Include the fixed effect of X}, if it is significant,

and continue to use a random effects model.

(Also check effects of variables Xh,j Z ; for cross-level interactions involving X}!)

Also the random slopes Uy ; must not be correlated with the Xj;;.
This can be checked by testing the fixed effect of X’k,j Xhij -

This procedure widens the scope of random coefficient models beyond what is
allowed by the conventional rules of econometricians.
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Within- and between-group regressions 154-156; also 5659

Assumption that level-2 random effects U; have zero means.

What kind of bias can occur if this assumption is made but does not hold?

For a misspecified model,
suppose that we are considering a random intercept model:

Zj =1
where the expected value of U; is not 0 but
EU;j = 225 Y«

for 1 X 7 vectors z2; and an unknown regression coefficient v,. Then

~

Uj = 22 Y T Uj
with

EU, =0.
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Within- and between-group regressions 154-156; also 5659

Write X; = Xj + Xj, where Xj =1, (1;1j)_11; X are the group means.
Then the data generating mechanism is
Y, = ]'y—l— J'y—|—1z2]'y*—|—1 i + R,

where EU- =0.
There will be a bias in the estimation of ~

if the matrices X X -+ X and 1; U are not orthogonal.
By construction, X and 1; U are orthogonal so the difficulty is with X

The solution is to give X; and Xj separate effects:

Y X371—|— 372+1U—|—R
Now -2 has the role of the old ~:

‘the estimation is done using only within-group information’.

Often, there are substantive interpretations of the difference between the
within-group effects ~5 and the between-group effects ;.
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Within- and between-group regressions 155-161

2. Check random effects of level-1 variables.

See Chapter 5.

4. Check heteroscedasticity.
See Chapter 8.

3,4. Level-1 residual analysis
5,6. Level-2 residual analysis

For residuals in multilevel models, more information is in Chapter 3 of
Handbook of Multilevel Analysis (eds. De Leeuw and Meijer, Springer 2008)
(preprint at course website).
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Residuals 161-165

L evel-one residuals

OLS within-group residuals can be written as
Rj= (L, - P, Y,

where we define design matrices Xj comprising X as well as Z;
(to the extent that Z; is not already included in X) and

P; = X;(X;X;)7'X] .
Model definition implies
R; = (I, — P;) R;

these level-1 residuals are not confounded by Uj.
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Residuals 161-165

Use of level-1 residuals

Test the fixed part of the level-1 model using OLS level-1 residuals,
calculated per group separately.

Test the random part of the level-1 model using

squared standardized OLS residuals.

In other words, the level-1 specification can be studied
by disaggregation to the within-group level
(comparable to a “fixed effects analysis”).

The examples of Chapter 8 are taken up again.
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Residuals 164

Example: model with effects of 1Q, SES, sex.

r
r
2 4
e } _ 21 -
Al i i
e } o0, %] % % + } I o %
| °
—2- | |
—2
e N T R R
_ —10 0 10 20 SES
Mean level-one OLS residuals Mean level-one OLS residuals
(bars ~ twice standard error of the mean) as function of SES.

as function of 1Q.

This suggest a curvilinear effect of Q.
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Residuals 164

Model with effects also of Q% and IQi .

r’?

e

Mean level-one OLS residuals
as function of 1Q.

Mean level-one OLS residuals as function of SES.

This looks pretty random.
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Residuals 165

Are the within-group residuals normally distributed?

observed

7/

_3. 7/

2 910 1 2 3 expected

Figure 10.3 Normal probability plot of standardized level-one OLS residuals.

Left tail is a bit heavy, but this is not serious.
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Residuals 165-167 and 62-67

Level-two residuals

Empirical Bayes (EB) level-two residuals defined as conditional means
U, = E{U; | Y1,...,Yn}
(using parameter estimates 4, é, é)

=QZ; V7 (Y~ X)) = QZ; V7 (Z;Uj + Rj — X;(3 — 7))

V;=CovY; = Z;QZ, + %5, V; = Z,QZ, + 3,
with = Q(€) and ; = 3,(9).

You don't need to worry about the formulae.
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Residuals 165-167 and 62-67

‘Diagnostic variances’, used for assessing distributional properties of Uj;:
CovU; = QZ/V, ' Z;Q2,

‘Comparative variances’, used for comparing ‘true values’ U; of groups:
Cov (U; — U;) = Q- QZ}V ' 2,00

Note that
Cov (UJ) = Cov (Uj — 03) —|— Cov (ﬁj) .

Standardization (by diagnostic variances) :

\/ﬁ;{EO\V (U;)}~1U; (with the sign reinstated)
Is the standardized EB residual.
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Residuals 165-167 and 62-67

However,
2 — 2 2 2 / A — A —1 > OLS
U'{Cov (U)}'U; = U (02(Z;Zj) 1y Q) e

where U™ = (Z}Z;) 7' Z} (Y; — X;4;)
is the OLS estimate of U}, estimated from level-1 residuals Y; — X ;4;.

This shows that standardization by diagnostic variances

takes away the difference between OLS and EB residuals.
Therefore, in checking standardized level-two residuals,

the distinctoin between OLS and EB residuals loses its meaning.

Test the fixed part of the level-2 model using non-standardized EB residuals.

Test the random part of the level-2 model
using squared EB residuals standardized by diagnostic variance.
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Residuals 166

U, L Uo;
4 e 4
01, mwww“‘ "" . 0 0
—4 —4-
| | | ) | mean | | ' ) | | mean
—2 0 2 1Q —10 0 10 SES

Figure 10.4 Posterior intercepts as function of (left) average IQ and (right)
average SES per school. Smooth lowess approximations are indicated by ..

The slight deviations do not lead to concerns.
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Residuals 166
UlJ Ulj
0.5/ R 0.5
0 TR e 0
—0.5 . —0.5 .
- __ mean - | mean
—2 0 2 1Q —10 10 SES

Figure 10.5 Posterior I1Q slopes as function of (left) average IQ and (right)

average SES per school. Smooth lowess approximations are indicated by ..

Again, the slight deviations do not lead to concerns.
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Residuals

169-170

Multivariate residuals

The multivariate residual is defined, for level-two unit 7, as
Y; — X7

The standardized multivariate residual is defined as
M? = (Y; — X; ;) Vi (Y — X; %) -

If all variables with fixed effects also have random effects, then
M} = (n; —t;) s? + Uj {Cov (U} U;

where

1 A A
2
Sj = ﬁRg Rj ) tj = rank(Xj) .
J J

This indicates how well the model fits to group 3.
Note the confounding with level-1 residuals.

If an ill-fitting group does not have a strong effect on the parameter estimates,

then it is not so serious.

65



Residuals 169-170

Deletion residuals

The deletion standardized multivariate residual can be used to assess the fit of
group 7, but takes out the effect of this group on the parameter estimates:

M = (Y; — X;40) Vo (Y — X5 4)
where
Vi = 2 Qi Z; + Sy s
(-j) meaning that group j is deleted from the data for estimating this parameter.

Full computation of deletion estimates may be computing-intensive,
which is unattractive for diagnostic checks.

Approximations have been proposed:
Lesaffre & Verbeke: Taylor series; Snijders & Bosker: one-step estimates.

The approximate distribution of multivariate residuals, if the model fits well and

sample sizes are large, is x?, d.f. = n; .
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Residuals

169-170

Influence diagnostics of higher-level units

The influence of the groups can be assessed by statistics
analogous to Cook’s distance:
how large is the influence of this group on the parameter estimates?

Standardized measures of influence of unit 3 on fixed parameter estimates :
1, S
” (¥ — %) F(-5) (¥ — )

where S is covariance matrix of fixed parameter estimates, and (_j) means
that group 7 is deleted from the data for estimating this parameter.

F _
C;, =

on random part parameters :

1 A ~ o — A ~
Cft = = (1 =) Sy (0 = i)

combined :

C’j:rip(rC’f—l—pCJR).
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Residuals

169-170

Values of C; larger than 1 indicate strong outliers.

Values larger than 4/IN may merit inspection.

Table 10.1 the 20 largest influence statistics, and p-values for multivariate

residuals,

of the 211 schools; Model 4 of Chapter 8 but without heteroscedasticity.

School m;

C;

pj

182
107
229
14
218
52
213
170
67
18

9
17

9
21
24
21
19
27
26
24

0.053
0.032
0.028
0.027
0.026
0.025
0.025
0.021
0.017
0.016

0.293
0.014
0.115
0.272
0.774
0.024
0.194
0.194
0.139
0.003
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School

n;

C;

Dj

117
153
187
230

15
256
122

50
101
214

27
22
26
21

8
10
23
24
23
21

0.014
0.013
0.013
0.012
0.012
0.012
0.012
0.011
0.011
0.011

0.987
0.845
0.022
0.363
0.00018
0.299
0.005
0.313
0.082
0.546




Residuals 169-170

School 15 does not survive Bonferroni correction: 211 X 0.00018 = 0.038.
Therefore now add the heteroscedasticity of Model 4 in Chapter 8.

Table 10.2 the 20 largest influence statistics, and p-values for multivariate
residuals,
of the 211 schools; Model 4 of Chapter 8 with heteroscedasticity.

School n; C;  pj School n; Cj Dj
213 19 0.094 0.010 18 24 0.015 0.003
182 9 0.049 0.352 230 21 0.015 0.391
107 17 0.041 0.006 169 30 0.014 0.390
187 26 0.035 0.009 170 27 0.013 0.289
52 21 0.028 0.028 144 16 0.013 0.046
218 24 0.025 0.523 117 27 0.013 0.988
14 21 0.024 0.147 40 25 0.012 0.040
229 9 0.016 0.175 153 22 0.012 0.788
67 26 0.016 0.141 15 8 0.011 0.00049

122 23 0.016 0.004 202 14 0.010 0.511
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Residuals 169-170

School 15 now does survive the Bonferroni correction: 211 X 0.00049 = 0.103.
Therefore now add the heteroscedasticity of Model 4 in Chapter 8.

Another school (108) does have poor fit p = 0.00008, but small influence
(C; = 0.008).

Leaving out ill-fitting schools does not lead to appreciable differences in results.

The book gives further details.
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