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Directed graphs
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Centrality for directed graphs
Some special directed graphs
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Definition of a graph

A graph G comprises a set V of vertices and a set E of edges

Each edge in E is a pair (a,b) of vertices in V
If (a,b) is an edge in E, we connect a and b in the graph drawing of G

Example: V={1,2,3,4,5,6,7}
E={(1,2),(1,3),(2,4).

1 (4,5),(3,5),(4,5),
2             3 (5,6),(6,7)}

4              5 

6        7 
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Size and order

The size of G is the number n of vertices in V

The order of G is the number L of edges in E

Minimum possible order is 0 (empty graph)
Maximum possible order is n(n-1)/2 (complete graph)

Size = 7, Order = 8
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Adjacency matrix for a graph

The adjacency matrix x =[xab] for G is a matrix with n rows and n colums and 
entries given by:

xab = 1 if (a,b) is an edge in G
0 otherwise

Example:                graph                                     adjaceny matrix
1 0110000

1001000
2               3 1000100

0100100       symmetric
4               5 0011011

0000101
6        7 0000110
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Density

The density of G is the ratio of edges in G to the maximum possible 
number of edges

2L
Density  =    --------

n(n-1)

Density = 2×8/(7×6) = 8/21
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Degrees and degree sequence

The degree da of vertex a is the number of vertices to which a is linked by an 
edge
The minimum possible degree is 0 
The maximum possible degree is n-1

The degree sequence for a graph is the vector (d1, d2,…, dn)

1 
2             3

4              5 

6           7 
Degree sequence = (2,2,2,2,4,2,2)
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Degree distribution

The degree distribution for the graph is (k0, k1,…, kn-1), 
where kj = the number of nodes with degree j

frequency

2    4                  degree

©Department of Psychology, University of Melbourne

Subgraphs

A subgraph of G=G(V,E) is a subset W of the vertex set V together with 
all of the edges that connect pairs of vertices in W

Eg if W={4,5,6,7}, the subgraph of 

1 
2             3

4              5 is 4           5

6        7 6            7
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Subgraph counts: the dyad census

The graph G has n(n-1)/2 subgraphs of size 2

Each subgraph of size 2 comprises a pair of vertices, and the edge 
between them is either present or absent:

subgraph count

D0 = n(n-1)/2 – L

D1 = L

Dyad census = (D0,D1) count of the no. of each type of dyad subgraph
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Subgraph counts: the triad census

The graph G has n(n-1)(n-2)/6 subgraphs of size 3

Each subgraph of size 3 comprises a triple of vertices, and the possible forms are:

subgraphcount

T0 = (1/6)∑i,j,k (1-xij)(1-xik )(1- xjk)

T1 = (1/6)∑i,j,k (1-xij)(1-xik )xjk

T2 = (1/6) ∑ i,j,k(1-xij)xikxjk

T3 = (1/6) ∑ i,j,k xijxikxjk

Triad census = (T0,T1 ,T2,T3) 
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Paths

A path from vertex a to vertex b is an ordered sequence 
a=v0, v1, …, vm=b

of distinct vertices in which each adjacent pair (vj-1,vj) is linked by an edge.  The 
length of the path is m

There is:     
1 

2               3 a path of length 1 from 1 to 2
a path of length 2 from 1 to 4

4               5 a path of length 3 from 1 to 4 
a path of length 3 from 1 to 6

6        7 
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Reachability and connectedness

If there is a path from vertex a to vertex b, a is reachable from b

If each vertex in G is reachable from each other vertex, then G is 
connected

A component of G is a maximal connected subgraph (ie a connected 
subgraph with vertex set W for which no larger set Z containing W is 
connected)

A graph with 3 components
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Geodesics

A geodesic from a to b is a path of minimum length
The geodesic distance dab between a and b is the length of the geodesic
If there is no path from a to b, the geodesic distance is infinite

For the graph

The geodesic distances are:
dAB = 1, dAC = 1, dAD = 1, dBC = 1, dBD = 2, dCD = 2 
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Cycles

A cycle is an ordered sequence 
a=v0, v1, …, vm=a

of vertices in which each adjacent pair (vj-1,vj) of vertices is linked by an 
edge, and v0, v1, …, vm-1 are distinct .  The length of the cycle is m

Cycles of length
3 4 5
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Some special graphs: 
trivial, empty and complete graphs

The empty graph on 5 vertices (Z5)

The complete graph on 5 vertices (K5)
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Star and cyclic graphs

A star graph on 6 vertices

A cyclic graph on 5 vertices (C5)
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Trees and forests

A tree (a connected acyclic graph)

A forest (a graph with tree components)
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Bipartite graphs

A bipartite graph (vertex set can be partitioned into 2 subsets, and there 
are no edges linking vertices in the same set)

A complete bipartite graph (all possible edges are present)
K1,5 K3,2
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Cutpoints

A vertex is a cutpoint if its removal increases the number of components 
in the graph

the vertex marked by the
red arrow is a cutpoint

the vertex marked by
the blue arrow is not

©Department of Psychology, University of Melbourne

Bridges

An edge is a bridge if its removal increases the number of components in 
the graph

the edge marked by the
red arrow is a bridge

This graph has no bridges
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Connectivity

The connectivity κ(G) of a connected graph G is the minimum number of 
vertices that need to be removed to disconnect the graph (or make it 
empty)

A graph with more than one component has connectivity 0

Graph

Connectivity 0                     1                     2       4

A graph with connectivity k is termed k-connected
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Edge-connectivity

The edge-connectivity λ(G) of a connected graph G is the minimum 
number of edges that need to be removed to disconnect the graph

A graph with more than one component has edge-connectivity 0

Graph

Edge-
Connectivity 1                     2                     2       4

Connectivity 1                     2                     1           4
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Independent and edge-independent paths

Two paths from a to b are independent if they have no nodes in common 
apart from a and b e.g. paths 1-2-4-5 and 1-3-5

1 

2               3

4               5

6        7 

Two paths from a to b are edge-independent if they have no edges in 
common e.g. paths 1-2-4-5-6 and 1-3-5-7-6
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Several theorems about connectivity

Whitney’s theorem
For any graph G, κ(G) ≤ λ(G) ≤ δ(G), where δ(G) is the minimum degree 

of any vertex in G

Menger’s theorem
A graph G is k-connected if and only if any pair of vertices in G are linked 

by at least k independent paths 

Menger’s theorem
A graph G is k-edge-connected if and only if any pair of vertices in G are 

linked by at least k edge-independent paths 

For application, see Harary & White (2001)
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Degree Centrality

Freeman (1979) described three measures of vertex centrality:

Degree centrality (communication potential)

Degree centrality of node a: CD(a) = da degree of node a

Normalised degree centrality of node a:  da/(n-1) x

Example
Node x: degree centrality = 4

normalised degree centrality = 4/6 = 0.67

©Department of Psychology, University of Melbourne

A political network (Doreian, 1988)



14

©Department of Psychology, University of Melbourne

Degree centrality 
in Doreian’s (1988) political network

Degree    NrmDegree Share
------------ ------------ ------------

4  Council 1         6.000       46.154        0.107
12    Fr Pres         6.000       46.154        0.107
3    Sheriff         5.000       38.462        0.089
8  President         5.000       38.462        0.089
6  Council 3         5.000       38.462        0.089
13 City Mayor         5.000       38.462        0.089
2    Auditor         4.000       30.769        0.071
1  Executive         4.000       30.769        0.071
9  Council 5         4.000       30.769        0.071
10  Council 6         4.000       30.769        0.071
7  Council 4         3.000       23.077        0.054
14 Prosecutor         2.000       15.385        0.036
5  Council 2         2.000       15.385        0.036
11 Fr Council         1.000        7.692        0.018
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Closeness Centrality

Closeness centrality (potential for independent communication)

Closeness centrality of node a: CD(a) = 1/∑bdab inverse sum of 
distances to other 
nodes b

Normalised closeness centrality of node a:  (n-1)/∑bdab x

Example
Node x: closeness centrality = 1/[1+1+1+1+2+2]=1/8 = 0.125

normalised closeness centrality = 6/8=0.75
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Closeness centrality in 
Doreian’s political network

Farness   nCloseness
------------ ------------

12    Fr Pres        20.000       65.000
4  Council 1        22.000       59.091
6  Council 3        23.000       56.522
13 City Mayor        23.000       56.522
1  Executive        24.000       54.167
8  President        25.000       52.000
3    Sheriff        26.000       50.000
2    Auditor        27.000       48.148
7  Council 4        28.000       46.429
9  Council 5        31.000       41.935
10  Council 6        31.000       41.935
11 Fr Council        32.000       40.625
5  Council 2        32.000       40.625
14 Prosecutor        32.000       40.625
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Betweeness centrality

Betweeness centrality (Potential for control of communication)

Betweenness centrality of node a: CD(a) =  ∑b<c[gbc(a)/gbc]

Where gbc is the number of geodesics between b and c, and gbc(a) is the number of 
geodesics between b and c that contain a

sum over all pairs (b,c) of the proportion of geodesics linking
the pair that contain node a

Normalised betweeness centrality of node a:   x
2∑b<c[gbc(a)/gbc]/[n2 –3n +2]

Example
Node x: betweeness centrality = 14

normalised betweeness centrality = 14/[49-21+2]=7/15
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Betweeness centrality 
in Doreian’s political network

Betweenness nBetweenness
------------ ------------

12    Fr Pres        33.198       42.561
13 City Mayor        14.490       18.578
4  Council 1        13.843       17.747
6  Council 3        13.024       16.697
1  Executive         9.452       12.118
3    Sheriff         4.500        5.769
8  President         4.021        5.156
2    Auditor         3.571        4.579
9  Council 5         0.450        0.577
10  Council 6         0.450        0.577
11 Fr Council         0.000        0.000
5  Council 2         0.000        0.000
7  Council 4         0.000        0.000
14 Prosecutor         0.000        0.000
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Maximum centrality

Centrality is at a maximum on all measures for the central node in a star
configuration:

Normalised measures
Degree centrality: 1
Closeness centrality: 1
Betweeness centrality: 1
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Centralisation

Graph-level measure of centralisation:

Degree to which the centrality of the most central vertex exceeds the 
centrality of all other vertices, compared to the maximum possible 
discrepancy

Index has the form:

Sum over nodes a of (max centrality in G – centrality of node a) 
------------------------------------------------------------------------------
Max value of the sum in all graphs on the same number of vertices

Can be used with any centrality measure
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Eigenvector centrality (Bonacich, 1972)

The eigenvector centrality of vertex a is the sum of its connections to 
other nodes, weighted by their centrality

It is hence given by the solution for ca of the equation
ca = (1/λ) ∑b xabcb where λ is a constant

[Mathematical note: this is equivalent to:
λc = xc

where x is the adjacency matrix and c is the vector of centrality measures; 
hence c is an eigenvector of x, usually taken to be the one associated 
with the largest eigenvalue λ]

Use with connected graphs only
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Eigenvector centrality for Doreian network

Eigenvec nEigenvec
--------- ---------

1  Executive      0.249    35.207
2    Auditor      0.287    40.585
3    Sheriff      0.257    36.368
4  Council 1      0.328    46.358
5  Council 2      0.134    18.887
6  Council 3      0.270    38.154
7  Council 4      0.186    26.357
8  President      0.350    49.435
9  Council 5      0.282    39.854
10  Council 6      0.282    39.854
11 Fr Council      0.083    11.723
12    Fr Pres      0.371    52.454
13 City Mayor      0.343    48.453
14 Prosecutor      0.118    16.655
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Directed graph

A directed graph G comprises a set V of vertices and a set E of arcs

Each arc in E is an ordered pair (a,b) of vertices in V
If (a,b) is an arc in E, we draw an arc from a to b in the 
graph drawing of G

Example: V={1,2,3,4}
E={(1,2),(2,1),(2,4),(1,3),(4,2)}

1       2

3              4
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Adjacency matrix for a directed graph

The adjacency matrix x =[xab] for G is a matrix with n rows and n colums
and entries given by:

xab = 1 if (a,b) is an arc in G
0 otherwise

Example
adjacency matrix

1       2 0110
1001        not

3              4                       0000 necessarily
0100 symmetric
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Density for a directed graph

The density of G is the ratio of arcs in G to the maximum possible number of arcs

L
Density  =    --------

n(n-1)

Example
1       2

density = 5/12

3            4                       
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Indegrees and outdegrees

The indegree ia of vertex a is the number of vertices to which a is linked 
by an arc

The outdegree oa of vertex a is the number of vertices linked to a by an 
arc

The minimum possible indegree (or outdegree) is 0 
The maximum possible indegree(or outdegree) is n-1
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Directed subgraphs

A subgraph of G=G(V,E) is a subset W of the vertex set V together with 
all of the arcs that connect pairs of vertices in W

Eg if W={1,2,3}, the subgraph of 

1          2 1          2 
is

3             4                       3
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Directed subgraph counts: the dyad census

The directed graph G has n(n-1)/2 subgraphs of size 2

Each subgraph of size 2 comprises a pair of vertices, and there are either 
0, 1 or 2 arcs linking them:

subgraph count

N = number of null dyads
A = number of asymmetric arcs
M = number of mutual arcs

Dyad census = (M,A,N) count of the no. of each type of dyadic subgraph
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Directed subgraph counts: the triad census

The graph G has n(n-1)(n-2)/6 subgraphs of size 3

Each subgraph of size 3 comprises a triple of vertices, and there are 16 possible 
forms:

subgraphs

Triad census:  counts of each of the 16 forms across all subgraphs of G  
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Paths and semipaths

A path from vertex a to vertex b is an ordered sequence 
a=v0, v1, …, vm=b

of distinct vertices in which each adjacent pair (vj-1,vj) is linked by an arc.  The 
length of the path is m

A semipath from vertex a to vertex b is an ordered sequence 
a=v0, v1, …, vm=b

of distinct vertices in which either (vj-1,vj) and/or (vj,vj-1) is linked by an arc.  The 
length of the semipath is m

e.g.          1          2 there is a path from 2 to 3 of length 2
there is no path from 3 to 4

3             4 there s a semipath from 3 to 4 of length 3
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Strong and weak connectedness; 
strong and weak components

If there is a path from vertex a to vertex b, b is reachable from a

If each vertex in G is reachable from each other vertex, then G is strongly 
connected

If there is a semipath from each vertex in G to each other vertex, then G is 
weakly connected

A strong (weak) component of G is a maximal strongly (weakly) 
connected subgraph (ie a strongly (weakly) connected subgraph with 
vertex set W for which no larger set Z containing W is strongly 
(weakly) connected)
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Geodesics

A geodesic from a to b is a path of minimum length
The geodesic distance dab between a and b is the length of the geodesic
If there is no path from a to b, the geodesic distance is infinite

For the directed graph

1          2

3                4

The geodesic distances are:
d12 = 1, d13 = 1, d14 = 2, d21 = 2 d23 = 2, d24 = 1, 
d31 = infinite, d32 = infinite, d34 = infinite, d41 = 2,  d42 = 1, d43 = 3
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Centrality in directed graphs

As for graphs, but note that:

Indegree and outdegree centrality replace degree centrality

Eigenvector centrality is only computed by UCINET for graphs
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Some special directed graphs

Empty and complete directed graphs

Cycle

Acyclic directed graph: a directed graph with no cycles

Transitive directed graph: every two path is 
accompanied by a direct path


