1. Consider modelling the mean function m of the Gaussian process prior $f \sim \mathcal{GP}(m, k_\theta)$ with another GP: $m \sim \mathcal{GP}(0, k_\eta)$.

(a) Show that this is equivalent to a zero-mean GP prior on f and find its covariance function.

(b) Consider constraining the mean functions such that they follow a particular type of functions:
(i) constant $m(x) \equiv b$, with $b \sim \mathcal{N}(0, \sigma_b^2)$
(ii) linear $m(x) = w^T x + b$, with $w \sim \mathcal{N}(0, \sigma_w^2 I)$ and $b \sim \mathcal{N}(0, \sigma_b^2)$ independent. Find the appropriate covariance functions k_η.

2. Consider a GP regression model with $f \sim \mathcal{GP}(0, k)$ and $y_i \sim \mathcal{N}(f(x_i), \sigma^2)$. For training inputs $x = \{x_i\}_{i=1}^n$ and outputs $y = [y_1, \ldots, y_n]^T$ we denote the vector of evaluations of f by $f = [f(x_1), \ldots, f(x_n)]^T \in \mathbb{R}^n$. We also have test inputs $x_* = \{x_{*j}\}_{j=1}^m$ and denote the corresponding evaluations of f by $f_* = [f(x_{*1}), \ldots, f(x_{*m})]^T \in \mathbb{R}^m$.

(a) Write down the joint distribution of
\[
\begin{bmatrix}
 f \\
 y
\end{bmatrix}
\]
and thus compute $p(f|y)$, $p(f_*|f)$ and $p(f_*|y)$.

(b) Verify that $p(f_*|y) = \int p(f_*|f)p(f|y)df$.
[Hint: $\int \mathcal{N}(a|Bc, D)\mathcal{N}(c|e, F)dc = \mathcal{N}(a|Be, D + BF B^T)$]

3. Consider a GP regression model in which the response variable y is d-dimensional, i.e. $y \in \mathbb{R}^d$. Assuming that the individual response dimensions $y^{(1)}, \ldots, y^{(d)}$ are conditionally independent given the input vector x with

\[
y^{(j)}|x \sim \mathcal{N}(f^{(j)}(x), \lambda),
\]
with independent priors $f^{(j)} \sim \mathcal{GP}(0, k_\theta)$. Derive the posterior predictive distribution

\[
p(y_*|x_*, \{x_i, y_i\}_{i=1}^n),
\]
for a test input vector x_* and the training set $\{x_i, y_i\}_{i=1}^n$.

Comment on the difference between this model and d independent Gaussian process regressions.

4. We observe $\{(x_i, y_i)\}_{i=1}^n$, with $x_i \in \mathbb{R}^p$ and $y_i \in \{0, 1, 2, \ldots\}$. Consider a Gaussian process model with a Poisson link. Denoting $f = [f(x_1), \ldots, f(x_n)]$, we have a prior $f \sim \mathcal{N}(0, K)$ and the likelihood

\[
p(y_i = r|f(x_i)) = \frac{e^{rf(x_i)}\exp(-e^{f(x_i)})}{r!}, \quad i = 1, \ldots, n,
\]
i.e. given $f(x_i)$, y_i follows a Poisson distribution with rate $\lambda(x_i) = e^{f(x_i)}$. We will assume that K is invertible.

(a) Compute the log-posterior $\log p(f|y)$ up to an additive constant and its gradient.

(b) Compute the Hessian and verify that it is negative definite. Briefly describe how you would find a posterior mode f_{MAP} of f.

(c) Construct a Laplace approximation to the posterior $p(f|y)$ and compute the resulting approximation to the posterior predictive $p(f(x_*)|y)$ for a new input x_*. Compare it to the prediction $p(f(x_*)|f_{\text{MAP}})$, based on the point estimate f_{MAP} of f. [Hint: you may find the following version of Woodbury identity useful: $(A^{-1} + D)^{-1} = A - A(A + D^{-1})^{-1}A$ for invertible matrices A and D]
5. Suppose you have some frequencies \(\omega_1, \ldots, \omega_m \sim \lambda \) to approximate a translation invariant kernel \(k(x,x') = \kappa \left(\frac{x-x'}{\gamma} \right) = \int \exp \left(i \omega^\top (x-x') \right) \lambda(\omega) d\omega \) with random Fourier features

\[
\varphi_{\omega}(x) = \frac{1}{\sqrt{m}} \left[\exp(i\omega_1^\top x), \ldots, \exp(i\omega_m^\top x) \right]
\]

Assume you wish to double the lengthscale parameter \(\gamma \). How would you modify the feature representation?

You also have frequencies \(\eta_1, \ldots, \eta_m \sim \nu \) for another kernel \(l(x,x') = \int \exp \left(i \eta^\top (x-x') \right) \nu(\eta) d\eta \).

Describe two ways to construct a feature map approximation of the product kernel \(k(x,x')l(x,x') \).

6. In lecture notes on Bayesian optimization, we derived the probability of improvement and expected improvement acquisition function which ignore the noise in \(\tilde{y} \). Derive the corrected versions.

7. Consider the variational approach to GP regression, used not because of non-conjugacy but in order to reduce the computational cost. We have a zero-mean GP prior with covariance \(k \) on \(f \) and its evaluations on of training inputs \(\{x_i\}_{i=1}^n \), given by vector \(f = [f(x_1), \ldots, f(x_n)]^\top \in \mathbb{R}^n \).

We take a small set of inducing inputs \(\{z_j\}_{j=1}^m \) and the evaluations of \(f \) at these inputs, giving the vector \(u = [f(z_1), \ldots, f(z_m)]^\top \in \mathbb{R}^m \). We then place a variational distribution \(q(u) = \mathcal{N}(u|\mu, \Sigma) \), which serves as an approximation to the posterior \(p(u|y) \) at these inducing points.

On the augmented space \((u, f) \), we use a variational distribution

\[
q(u, f) = q(u) p(f|u),
\]

with the true conditional \(p(f|u) = \mathcal{N} \left(f|K_{xz}K_{zz}^{-1}u, K_{xx} - Q_{xx} \right) \), where \(Q_{xx} := K_{xz}K_{zz}^{-1}K_{zx} \).

(a) Derive the resulting variational approximation to the posterior \(p(f|y) \) at the training points.

(b) Prove that

\[
\int p(f|u) \log p(y|f) df = \log \mathcal{N} \left(y|K_{xz}K_{zz}^{-1}u, \sigma^2 I \right) - \frac{1}{2\sigma^2} \text{Tr} \left(K_{xx} - Q_{xx} \right) .
\]

(c) Insert the expression derived in (b) into ELBO, and show that ELBO is maximized for \(q(u) \propto \mathcal{N} \left(y|K_{xz}K_{zz}^{-1}u, \sigma^2 I \right) p(u) \). Find the value of ELBO for this choice of \(q(u) \).

(d) Compare the derived expression to the exact marginal log-likelihood in the approximate kernel model, which uses the low-rank Nyström approximation \(Q_{xx} = K_{xz}K_{zz}^{-1}K_{zx} \) of \(K_{xx} \).