1. For a given loss function L, the risk R of real-valued $f : \mathcal{X} \to \mathbb{R}$ is given by the expected loss

$$R(f) = \mathbb{E}[L(Y, f(X))].$$

Derive the optimal regression functions (which minimize the true risk) for the following losses:

(a) The squared error loss

$$L(Y, f(X)) = (Y - f(X))^2$$

(b) The τ-pinball loss, for general $\tau \in (0, 1)$, given by

$$L(Y, f(X)) = 2 \max\{\tau(Y - f(X)), (\tau - 1)(Y - f(X))\}.$$

What happens in the case $\tau = 1/2$?

2. The figure below shows a binary classification dataset and the optimal the decision boundary and margins of a soft-margin C-SVM for some value C.

(a) Which of the points a, \ldots, k are support vectors? Which ones are margin support vectors?

(b) For points a, b and d what are the range of possible values for the corresponding dual variables?

3. Parameter C in C-SVM can sometimes be hard to interpret. An alternative parametrization is given by ν-SVM:

$$\min_{w, b, \rho, \xi} \left(\frac{1}{2} \|w\|^2 - \nu \rho + \frac{1}{n} \sum_{i=1}^{n} \xi_i \right)$$
subject to
\[
\begin{align*}
\rho & \geq 0, \\
\xi_i & \geq 0, \\
y_i (w^\top x_i + b) & \geq \rho - \xi_i.
\end{align*}
\]
(note that we now directly adjust the constraint threshold \(\rho\)).

Using complementary slackness, show that \(\nu\) is an upper bound on the proportion of non-margin support vectors (margin errors) and a lower bound on the proportion of all support vectors with non-zero weight (both those on the margin and margin errors). You can assume that \(\rho > 0\) at the optimum (non-zero margin).

4. Consider the regression problem to the real-valued output \(y \in \mathbb{R}\). Let \(\epsilon > 0\) and define the \(\epsilon\)-insensitive loss function \(L_\epsilon\) as
\[
L_\epsilon(y, f(x)) = \begin{cases}
0 & \text{if } |y - f(x)| < \epsilon, \\
|y - f(x)| - \epsilon & \text{otherwise},
\end{cases}
\]
and the regularized empirical risk objective defined as
\[
J(w, b) = C \sum_{i=1}^{n} L_\epsilon(y_i, f(x_i)) + \frac{1}{2} \|w\|_2^2,
\]
where we used a linear model \(f(x) = w^\top x + b\) for regression functions.

(a) Introduce the slack variables \(\xi_i^+ = \max\{y_i - f(x_i) - \epsilon, 0\}\) and \(\xi_i^- = \max\{f(x_i) - y_i - \epsilon, 0\}\). Verify that \(L_\epsilon(y_i, f(x_i)) = \xi_i^+ + \xi_i^-\).

(b) Re-express the regularized empirical risk objective \(J(w, b)\) as a constrained optimization problem over \(w, b, \xi^+\) and \(\xi^-\). Write down Lagrangian and show that the dual problem can be written as
\[
\max_{\alpha^+, \alpha^-} \left\{-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} (\alpha_i^+ - \alpha_i^-)(\alpha_j^+ - \alpha_j^-)x_i^\top x_j + \sum_{i=1}^{n} (\alpha_i^+ - \alpha_i^-)y_i - \epsilon \sum_{i=1}^{n} (\alpha_i^+ + \alpha_i^-)\right\},
\]
subject to
\[
\sum_{i=1}^{n} (\alpha_i^+ - \alpha_i^-) = 0, \quad \alpha_i^+ \in [0, C], \quad \alpha_i^- \in [0, C], \quad i = 1, \ldots, n.
\]

(c) Considering derivatives of the Lagrangian and complementary slackness, express the weight vector \(w\) using dual coefficients \(\alpha_i^+\) and \(\alpha_i^-\). Show that those examples \((x_i, y_i)\) which lie outside of the \(\epsilon\)-insensitive tube around \(f\), must have corresponding \(\alpha_i^+ = C\) or \(\alpha_i^- = C\) and that those examples \((x_i, y_i)\) for which \(|f(x_i) - y_i| < \epsilon\) (they lie strictly inside the \(\epsilon\)-tube), must have \(\alpha_i^+ = \alpha_i^- = 0\). How can you compute \(b\) using the dual solution?

5. (Kernel Ridge Regression) Let \((x_i, y_i)_{i=1}^{n}\) be our dataset, with \(x_i \in \mathbb{R}^p\) and \(y_i \in \mathbb{R}\). Classical linear regression can be formulated as empirical risk minimization, where the model is to predict \(y\) using a class of functions \(f(x) = w^\top x\), parametrized by vector \(w \in \mathbb{R}^p\) using the squared loss, i.e. we minimize
\[
\hat{R}(w) = \frac{1}{n} \sum_{i=1}^{n} (y_i - w^\top x_i)^2.
\]
(a) Show that the optimal parameter vector is
\[\hat{w} = (X^\top X)^{-1} X^\top y \]
where \(X \) is a \(n \times p \) matrix with \(i \)-th row given by \(x_i^\top \), and \(y \) is a \(n \times 1 \) column vector with \(i \)-th entry \(y_i \).

(b) Consider regularizing our empirical risk by incorporating an \(L_2 \) regularizer. That is, find \(w \) minimizing
\[\frac{1}{n} \sum_{i=1}^{n} (y_i - w^\top x_i)^2 + \frac{\lambda}{n} \|w\|_2^2 \]
Show that the optimal parameter is given by the ridge regression estimator
\[\hat{w} = (X^\top X + \lambda I)^{-1} X^\top y \]

(c) Suppose that we now wish to introduce nonlinearities into the model, by transforming \(x \mapsto \varphi(x) \). Let \(\Phi \) be a matrix with \(i \)-th row given by \(\varphi(x_i)^\top \). The optimal parameters \(\hat{w} \) would then be given by (previous part):
\[\hat{w} = (\Phi^\top \Phi + \lambda I)^{-1} \Phi^\top y. \]

Can we make predictions without computing \(\hat{w} \)?
First, express the predicted \(y \) values on the training set, \(\Phi \hat{w} \), only in terms of \(y \) and the Gram matrix \(K = \Phi \Phi^\top \), with \(K_{ij} = \varphi(x_i)^\top \varphi(x_j) = k(x_i, x_j) \) where \(k \) is some kernel function.
Then, compute an expression for the value of \(y_* \) predicted by the model at an unseen test vector \(x_* \).

[Hint: You will find the Woodbury matrix inversion formula useful:]
\[(A + UBV)^{-1} = A^{-1} - A^{-1}U(B^{-1} + VA^{-1}U)^{-1}VA^{-1} \]
where \(A \) and \(B \) are square invertible matrices of size \(n \times n \) and \(p \times p \) respectively, and \(U \) and \(V \) are \(n \times p \) and \(p \times n \) rectangular matrices.]

6. Denote \(\sigma(t) = 1/(1 + e^{-t}) \). Verify that the ERM corresponding to the logistic loss over the functions of the form \(f(x) = w^\top \varphi(x) \) can be written as
\[\min_w \sum_{i=1}^{n} - \log \sigma(y_i w^\top \varphi(x_i)) + \lambda \|w\|_2^2 \] (1)
and is a convex optimisation problem in \(w \). Assume that you can write \(w = \sum_{i=1}^{n} \alpha_i \varphi(x_i) \).
Show that the criterion in (1) is also convex in the so called dual coefficients \(\alpha \in \mathbb{R}^n \). [Hint: \(\sigma'(t) = \sigma(t)\sigma(-t) \)]