1. In lectures, we derived the M-step updates for fitting Gaussian mixtures with EM algorithm, for the mixing proportions and for the cluster means, assuming the common covariance $\sigma^2 I$ is fixed and known.

(a) What happens to the algorithm if we set σ^2 to be very small? How does the resulting algorithm as $\sigma^2 \to 0$ relate to K-means?

(b) If σ^2 is in fact not known and is a parameter to be inferred as well, derive an M-step update for σ^2.

2. We are given a labelled dataset $\{(x_i, y_i)\}_{i=1}^n$ with $x_i \in \{0, 1\}^p$ and $y_i \in \{1, \ldots, K\}$ and the naïve Bayes classifier model which assumes that different dimensions/features in vector X_i are independent given the class label $Y_i = k$, resulting in the joint probability

$$p(x_i, y_i; \{\pi_k\}, \{\phi_{kj}\}) = \sum_{k=1}^K \left\{ \prod_{j=1}^p \left[(\phi_{kj})^{x_{ij}} (1 - \phi_{kj})^{1-x_{ij}} \right] \right\}.$$

where $\pi_k = P(Y_i = k)$ are the marginal class probabilities and ϕ_{kj} is the probability of feature j being present in the class k, i.e., of $x_{ij} = 1$ for an item x_i belonging to class k.

(a) Derive the maximum likelihood estimates for π_k and ϕ_{kj}.

(b) Assume that we are also given an additional set of unlabelled data items $\{x_i\}_{i=n+1}^{n+m}$. Using the same naïve Bayes model, and by treating missing labels as latent variables, describe an EM algorithm that makes use of this unlabelled dataset and give the E-step update for the variational distribution q and the M-step updates for parameters π_k and ϕ_{kj}. Discuss the difference of these results to those in part (a).

3. Verify that in the probabilistic PCA model from the lectures, E-step of the EM algorithm at iteration $t + 1$ can be written as

$$q^{(t+1)}(y_i) = \mathcal{N} \left(y_i; b_i^{(t)}, R^{(t)} \right)$$

where

$$b_i^{(t)} = \left((L^{(t)})^\top L^{(t)} + (\sigma^2)^{(t)} I \right)^{-1} (L^{(t)})^\top x_i,$$

$$R^{(t)} = (\sigma^2)^{(t)} \left((L^{(t)})^\top L^{(t)} + (\sigma^2)^{(t)} I \right)^{-1}.$$

4. Consider a collaborative filtering model with “implicit feedback” observations y_{ij} which indicate not the rating but some form of frequency of interaction of user j with item i (for example, a user may watch a TV series every week, but that does not necessarily mean that she would rate it higher than a film she has seen only once). We convert the implicit feedback into binary $b_{ij} = 1 \{y_{ij} > 0\}$ and also introduce confidence measures $c_{ij} = 1 + \alpha y_{ij}$ for $\alpha > 0$ (note that we do not treat $y_{ij} = 0$ as missing - we simply have a lower confidence in those observations). For user j, we are then solving the weighted least squares problem:

$$\min_{\psi_j} \sum_{i=1}^{n_1} c_{ij} (b_{ij} - \phi_i^\top \psi_j)^2 + \lambda_\psi \|\psi_j\|^2_2, \quad j = 1, \ldots, n_2.$$

By expressing the criterion in matrix form, derive a closed form solution of ψ_j.

5. Consider a collaborative filtering model on binary ratings -1 and $+1$ with a probit likelihood

\[p(y_{ij} = 1|a_i, b_j) = \Phi(a_i \top b_j) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{a_i \top b_j} \exp(-t^2/2) \, dt, \tag{4} \]

where y_{ij} is the rating of item i by user j, $a_i \in \mathbb{R}^k$ is the feature vector of item i, b_j is the preference vector of user j and Φ is the standard normal cdf.

Consider an alternative model with additional latent variables z_{ij}, given by

\[z_{ij}|a_i, b_j \sim \mathcal{N}(a_i \top b_j, 1), \quad p(y_{ij} = 1|z_{ij}) = 1_{\{z_{ij} > 0\}}. \]

(a) Show that these two models are equivalent, i.e. that $p(y_{ij} = 1|a_i, b_j)$ still takes the form in (4).

(b) Derive $p(z_{ij}|a_i, b_j, y_{ij} = \pm 1)$.

(c) Now consider the model that treats feature vectors and preference vectors as model parameters $\theta = (\{a_i\}_{i=1}^{n_1}, \{b_j\}_{j=1}^{n_2})$ with latents $Z = (\{z_{ij}\}_{i,j=1}^{n_1 n_2})$. Describe the resulting EM algorithm.

6. Consider the model $p(r|\lambda) = e^{-\lambda r} r^{\lambda-1}$ with $\lambda > 0$ and the improper prior $p(\lambda) \propto \frac{1}{\lambda}$. Derive the Laplace approximation to the posterior $p(\lambda|r)$. Then change the parametrisation to $\theta = \log \lambda$, so that the prior is $p(\theta) \propto 1$, and find the Laplace approximation to the posterior $p(\theta|r)$. Which version of the Laplace approximation is better?

7. Suppose we have a model $p(X, z|\theta)$ where X is the observed dataset and z are the latent variables. We would like to take a Bayesian approach to learning, treating the parameter θ to be a random variable as well, with some prior $p(\theta)$.

(a) Suppose that $q(z, \theta)$ is a distribution over both z and θ. Explain why the following is a lower bound on $p(X)$:

\[\mathcal{F}(q) = \mathbb{E}_q[\log p(X, z, \theta) - \log q(z, \theta)] \]

(b) Show that the optimal $q(z, \theta)$ is simply the posterior $p(z, \theta|X)$.

(c) Typically the posterior is intractable. Consider a factorised distribution $q(z, \theta) = q_x(z)q_\theta(\theta)$. In other words we assume that z and θ are independent. Derive the optimal q_x given a q_θ, and hence describe an algorithm to optimise $\mathcal{F}(q)$ subject to assumption of independence between z and q.

8. Verify steps (2) and (3) in the CAVI updates for the Latent Dirichlet Allocation model.