Variational Bayes

Dino Sejdinovic
Department of Statistics
Oxford

Slides and other materials available at:
http://www.stats.ox.ac.uk/~sejdinov/atsml/
The main idea of variational Bayes is to turn posterior inference in intractable Bayesian models into optimization.

The key quantity is ELBO

$$\mathcal{F}(q) = \mathbb{E}_q [\log p(X, z, \theta)] + H(q)$$

which is a lower bound on log-evidence $\log p(X)$.

It equals log-evidence iff $q(z, \theta) = p(z, \theta|X)$.
Variational families

VB minimises the divergence $\text{KL} \left(q(z, \theta) \| p(z, \theta | X) \right)$ over some variational family Q or, equivalently, maximises the ELBO, i.e., finds the tightest lower bound on the log-evidence.

If Q consists of variational distributions which factorise across the latents and the parameters: $q(z, \theta) = q_Z(z) q_\Theta(\theta)$, we obtain the alternating Bayesian EM updates

$$q_Z(z) \propto \exp \left(\int \log p(X, z, \theta) q_\Theta(\theta) \ d\theta \right),$$

$$q_\Theta(\theta) \propto \exp \left(\int \log p(X, z, \theta) q_Z(z) \ dz \right).$$

The distinction between parameters θ and latent variables z disappears in Bayesian modelling, so we will drop θ from the notation and collect all unobserved quantities into z.
In **mean-field variational family** \mathcal{Q}, variational distribution fully factorizes:

$$q(z) = \prod_{j=1}^{m} q_j(z_j),$$

Unable to capture posterior correlations between the latent variables z_j and $z_{j'}$ for $j \neq j'$; the best we can hope for is a rich representations of the posterior marginals.
Doing sequential updates for each individual factor z_j, we obtain **Coordinate Ascent Variational Inference (CAVI)** algorithm

Input: a model $p(z, x)$, dataset x

Output: a variational posterior $q(z)$

while the ELBO has not converged do

- for $j = 1, \ldots, m$
 - $q_j(z_j) \propto \exp \left[\mathbb{E}_{z_{-j} \sim q} \log p(z_j | z_{-j}, x) \right]$
 - $\text{ELBO}(q) = \mathbb{E}_{z \sim q} \left[\log p(x, z) \right] + H(q)$

return $q(z) = \prod_{j=1}^{m} q_j(z_j)$
CAVI in exponential families

When the complete conditionals \(p(z_j|z_{-j}, x) \) belong to an exponential family

\[
p(z_j|z_{-j}, x) = h(z_j) \exp \left[\eta_j (z_{-j}, x)^\top z_j - A(\eta_j (z_{-j}, x)) \right],
\]

\(q_j \) belongs to the same family and CAVI simplifies to updating natural parameters

\[
q_j(z_j) \propto \exp \left[\mathbb{E}_{-j} \log p(z_j|z_{-j}, x) \right]
= \exp \left[\log h(z_j) + \left\{ \mathbb{E}_{-j} \eta_j (z_{-j}, x) \right\}^\top z_j - \mathbb{E}_{-j} A(\eta_j (z_{-j}, x)) \right]
\propto h(z_j) \exp \left[\left\{ \mathbb{E}_{-j} \eta_j (z_{-j}, x) \right\}^\top z_j \right]
\]
Latent Dirichlet Allocation

Used for topic modelling in a collection of documents: each text document typically blends multiple topics.
- each document is a probability distribution over topics
- each topic is a probability distribution over words

Goal is to find the posterior

\[p(\text{topics, proportions, assignments} | \text{observed words}) \]
Latent Dirichlet Allocation

D: the number of documents, K: the number of topics, V: the size of the vocabulary.

1. For each topic in $k = 1, \ldots, K$,
 1. Draw a distribution over V words $\beta_k \sim \text{Dir}_V(\eta)$
2. For each document in $d = 1, \ldots, D$,
 1. Draw a vector of topic proportions $\theta_d \sim \text{Dir}_K(\alpha)$
 2. For each word in $n = 1, \ldots, N_d$,
 1. Draw a topic assignment $z_{dn} \sim \text{Discrete}(\theta_d)$, i.e. $p(z_{dn} = k | \theta_d) = \theta_{dk}$
 2. Draw a word $w_{dn} \sim \text{Discrete}(\beta_{z_{dn}})$, i.e. $p(w_{dn} = v | \beta, z) = \beta_{z_{dn} v}$

Figure: Graphical model representation of LDA. Plates represent replication, for example there are D documents each having a topic proportion vector θ_d
Latent Dirichlet Allocation

Mean-field family:

\[q(\beta, \theta, z) = \prod_{k=1}^{K} q(\beta_k; \lambda_k) \prod_{d=1}^{D} \left\{ q(\theta_d; \gamma_d) \prod_{n=1}^{N_d} q(z_{dn}; \phi_{dn}) \right\}. \]

1. Complete conditional on the topic assignment is a multinomial

\[p(z_{dn} = k|\theta_d, \beta, w_d) \propto \theta_d^k \beta_{k,w_{dn}} = \exp(\log \theta_d^k + \log \beta_{k,w_{dn}}). \]

2. Complete conditional on the topic proportions is a Dirichlet

\[p(\theta_d|z_d) = \text{Dir}_K \left(\theta_d; \alpha + \sum_{n=1}^{N_d} z_{dn} [\cdot] \right). \]

3. Complete conditional on the topics is another Dirichlet

\[p(\beta_k|z, w) = \text{Dir}_V \left(\beta_k; \eta + \sum_{d=1}^{D} \sum_{n=1}^{N_d} z_{dn} [k] w_{dn} [\cdot] \right). \]