SC4/SM8 Advanced Topics in Statistical Machine Learning

Support Vector Machines

Dino Sejdinovic
Department of Statistics
Oxford

Slides and other materials available at:
http://www.stats.ox.ac.uk/~sejdinov/atsml/
Support Vector Machines

These slides are based on Arthur Gretton’s UCL course on Advanced Topics in Machine Learning
Optimization and the Lagrangian

Optimization problem on \(x \in \mathbb{R}^d \) / primal,

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \leq 0 \quad i = 1, \ldots, m \\
& \quad h_j(x) = 0 \quad j = 1, \ldots, r.
\end{align*}
\]

- domain \(\mathcal{D} := \bigcap_{i=0}^m \text{dom}f_i \cap \bigcap_{j=1}^r \text{dom}h_j \) (nonempty).
- \(p^* \): the (primal) optimal value

Ideally we would want an unconstrained problem

\[
\begin{align*}
\text{minimize} & \quad f_0(x) + \sum_{i=1}^{m} I_-(f_i(x)) + \sum_{j=1}^{r} I_0(h_j(x)),
\end{align*}
\]

where \(I_-(u) = \begin{cases} 0, & u \leq 0 \\ \infty, & u > 0 \end{cases} \) and \(I_0(u) = \begin{cases} 0, & u = 0 \\ \infty, & u \neq 0 \end{cases} \).
Lower bound interpretation of Lagrangian

The **Lagrangian** $L : \mathbb{R}^d \times \mathbb{R}^m \times \mathbb{R}^r \rightarrow \mathbb{R}$ is an (easier to optimize) lower bound on the original problem:

$$L(x, \lambda, \nu) := f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{j=1}^{r} \nu_j h_j(x),$$

The vectors λ and ν are called **Lagrange multipliers** or **dual variables**. To ensure a lower bound, we require $\lambda \succeq 0$.

![Diagram showing Lagrangian functions and constraints](image-url)
Lower bound interpretation of Lagrangian

Simplest example: minimize over x the function $L(x, \lambda) = f_0(x) + \lambda f_1(x)$

Reminders:
- f_0 is function to be minimized.
- $f_1 \leq 0$ is inequality constraint
- $\lambda \geq 0$ is Lagrange multiplier
- p^* is minimum f_0 in constraint set
Lower bound interpretation of Lagrangian

Simplest example: minimize over x the function $L(x, \lambda) = f_0(x) + \lambda f_1(x)$

Reminders:
- f_0 is function to be minimized.
- $f_1 \leq 0$ is inequality constraint
- $\lambda \geq 0$ is Lagrange multiplier
- p^* is minimum f_0 in constraint set
Lower bound interpretation of Lagrangian

Simplest example: minimize over x the function $L(x, \lambda) = f_0(x) + \lambda f_1(x)$

Reminders:
- f_0 is function to be minimized.
- $f_1 \leq 0$ is inequality constraint.
- $\lambda \geq 0$ is Lagrange multiplier.
- p^* is minimum f_0 in constraint set.
Lagrange dual: lower bound on optimum p^*

The **Lagrange dual function**: minimize Lagrangian When $\lambda \succeq 0$ and $f_i(x) \leq 0$, Lagrange dual function is

$$g(\lambda, \nu) := \min_{x \in D} L(x, \lambda, \nu).$$

A **dual feasible** pair (λ, ν) is a pair for which $\lambda \succeq 0$ and $(\lambda, \nu) \in \text{dom}(g)$.

We will show: for any $\lambda \succeq 0$ and ν,

$$g(\lambda, \nu) \leq f_0(x)$$

wherever

$$f_i(x) \leq 0$$
$$h_j(x) = 0$$

(including at optimal point $f_0(x^*) = p^*$).
Lagrange dual is a lower bound on p^*

Assume \tilde{x} is feasible, i.e. $f_i(\tilde{x}) \leq 0$, $h_i(\tilde{x}) = 0$, $\tilde{x} \in D$, $\lambda \succeq 0$. Then

$$\sum_{i=1}^{m} \lambda_i f_i(\tilde{x}) + \sum_{i=1}^{r} \nu_i h_i(\tilde{x}) \leq 0$$

Thus

$$g(\lambda, \nu) := \min_{x \in D} \left(f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{r} \nu_i h_i(x) \right)$$

$$\leq f_0(\tilde{x}) + \sum_{i=1}^{m} \lambda_i f_i(\tilde{x}) + \sum_{i=1}^{r} \nu_i h_i(\tilde{x})$$

$$\leq f_0(\tilde{x}).$$

This holds for every feasible \tilde{x}, hence lower bound holds.
Best lower bound: maximize the dual

Best lower bound $g(\lambda, \nu)$ on the optimal solution p^* of original problem:

Lagrange dual problem

$$
\begin{align*}
\text{maximize} & \quad g(\lambda, \nu) \\
\text{subject to} & \quad \lambda \succeq 0.
\end{align*}
$$

Dual feasible: (λ, ν) with $\lambda \succeq 0$ and $g(\lambda, \nu) > -\infty$.

Dual optimal: solutions (λ^*, ν^*) to the dual problem, d^* is optimal value.

Weak duality always holds:

$$
\max_{\lambda \succeq 0, \nu} \min_{x \in \mathcal{D}} L(x, \lambda, \nu) = d^* \leq p^* = \min_{x \in \mathcal{D}} \max_{\lambda \succeq 0, \nu} L(x, \lambda, \nu) = g(\lambda, \nu) = \begin{cases}
 f_0(x) & \text{if constraints satisfied}, \\
 \infty & \text{otherwise}.
\end{cases}
$$

Strong duality: (does not always hold, conditions given later):

$$
d^* = p^*.
$$

If strong duality holds: can solve the dual problem to find p^*.
How do we know if strong duality holds?

Conditions under which strong duality holds are called **constraint qualifications** (they are sufficient, but not necessary)

(Probably) best known sufficient condition: Strong duality holds if

- **Primal problem is convex**, i.e. of the form

 \[
 \begin{align*}
 \text{minimize} & \quad f_0(x) \\
 \text{subject to} & \quad f_i(x) \leq 0, \quad i = 1, \ldots, n \\
 & \quad Ax = b
 \end{align*}
 \]

 for convex \(f_0, \ldots, f_m \), and

- **Slater’s condition**: there exists a strictly feasible point \(\tilde{x} \), such that \(f_i(\tilde{x}) < 0, \ i = 1, \ldots, n \) (reduces to the existence of any feasible point when inequality constraints are affine, i.e., \(Cx \preceq d \)).
A consequence of strong duality...

Assume primal is equal to the dual. What are the consequences?

- x^* solution of original problem (minimum of f_0 under constraints),
- (λ^*, ν^*) solutions to dual

\[
\begin{align*}
 f_0(x^*) & = (\text{assumed}) \quad g(\lambda^*, \nu^*) \\
 & = (\text{g definition}) \quad \min_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^{m} \lambda_i^* f_i(x) + \sum_{i=1}^{p} \nu_i^* h_i(x) \right) \\
 & \leq (\text{inf definition}) \quad f_0(x^*) + \sum_{i=1}^{m} \lambda_i^* f_i(x^*) + \sum_{i=1}^{p} \nu_i^* h_i(x^*) \\
 \leq (4) \quad f_0(x^*),
\end{align*}
\]

(4): (x^*, λ^*, ν^*) satisfies $\lambda^* \succeq 0$, $f_i(x^*) \leq 0$, and $h_i(x^*) = 0$.

Department of Statistics, Oxford
...is complementary slackness

From previous slide,

\[\sum_{i=1}^{m} \lambda_i^* f_i(x^*) = 0, \]

which is the condition of complementary slackness. This means

\[\lambda_i^* > 0 \implies f_i(x^*) = 0, \]
\[f_i(x^*) < 0 \implies \lambda_i^* = 0. \]

From \(\lambda_i \), read off which inequality constraints are strict.
Linearily separable points

Classify two clouds of points, where there exists a hyperplane which linearly separates one cloud from the other without error.

Data given by \(\{x_i, y_i\}_{i=1}^n \), \(x_i \in \mathbb{R}^p \), \(y_i \in \{-1, +1\} \)
Linearily separable points

Classify two clouds of points, where there exists a hyperplane which linearly separates one cloud from the other without error.

Hyperplane equation $w^\top x + b = 0$. Linear discriminant given by

$$\hat{y}(x) = \text{sign}(w^\top x + b)$$
Linearly separable points

Classify two clouds of points, where there exists a hyperplane which linearly separates one cloud from the other without error.

For a datapoint close to the decision boundary, a small change leads to a change in classification. Can we make the classifier more robust?
Linearly separable points

Classify two clouds of points, where there exists a hyperplane which linearly separates one cloud from the other without error.

![Diagram showing linearly separable points with a separating hyperplane and margin](diagram)

Smallest distance from each class to the *separating hyperplane* $w^T x + b$ is called the **margin**.
Maximum margin classifier, linearly separable case

This problem can be expressed as follows:

\[
\max_{w,b} \text{ (margin) } = \max_{w,b} \left(\frac{1}{\|w\|} \right)
\]

subject to

\[
\begin{align*}
 w^\top x_i + b &\geq 1 & i : y_i = +1, \\
 w^\top x_i + b &\leq -1 & i : y_i = -1.
\end{align*}
\]

The resulting classifier is

\[
\hat{y}(x) = \text{sign}(w^\top x + b),
\]

We can rewrite to obtain a **quadratic program**:

\[
\min_{w,b} \frac{1}{2} \|w\|^2
\]

subject to

\[
y_i(w^\top x_i + b) \geq 1.
\]
Maximum margin classifier: with errors allowed

Allow “errors”: points within the margin, or even on the wrong side of the decision boundary. Ideally:

$$\min_{w,b} \left(\frac{1}{2} \|w\|^2 + C \sum_{i=1}^{n} \mathbb{I}[y_i (w^\top x_i + b) < 0] \right),$$

where C controls the tradeoff between maximum margin and loss. Replace with **convex upper bound**:

$$\min_{w,b} \left(\frac{1}{2} \|w\|^2 + C \sum_{i=1}^{n} h (y_i (w^\top x_i + b)) \right).$$

with hinge loss,

$$h(\alpha) = (1 - \alpha)_+ = \begin{cases} 1 - \alpha, & 1 - \alpha > 0 \\ 0, & \text{otherwise}. \end{cases}$$
Hinge loss

Hinge loss:

\[h(\alpha) = (1 - \alpha)_+ = \begin{cases}
1 - \alpha, & \text{if } 1 - \alpha > 0 \\
0, & \text{otherwise.}
\end{cases} \]
Support vector classification

Substituting in the hinge loss, we get a standard regularised empirical risk minimisation problem - where regularisation naturally arises from the margin penalty.

$$\min_{w, b} \left(\frac{1}{2} \|w\|^2 + C \sum_{i=1}^{n} h \left(y_i \left(w^\top x_i + b \right) \right) \right).$$

Using substitution $\xi_i = h \left(y_i \left(w^\top x_i + b \right) \right)$, we obtain an equivalent formulation (standard C-SVM):

$$\min_{w, b, \xi} \left(\frac{1}{2} \|w\|^2 + C \sum_{i=1}^{n} \xi_i \right)$$

subject to

$$\xi_i \geq 0 \quad y_i \left(w^\top x_i + b \right) \geq 1 - \xi_i$$
Support vector classification

\[y_i = +1 \]

\[y_i = -1 \]

\[\frac{\xi}{\|w\|} \]

\[2/\|w\| \]
Duality

As a convex constrained optimization problem with affine constraints in \(w, b, \xi \), strong duality holds.

\[
\begin{align*}
\text{minimize} & \quad f_0(w, b, \xi) := \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{n} \xi_i \\
\text{subject to} & \quad f_i(w, b, \xi) := 1 - \xi_i - y_i (w^\top x_i + b) \leq 0, \quad i = 1, \ldots, n \\
& \quad f_{n+i}(w, b, \xi) := -\xi_i \leq 0, \quad i = 1, \ldots, n.
\end{align*}
\]
Support vector classification: Lagrangian

The Lagrangian:

\[L(w, b, \xi, \alpha, \lambda) = \]

\[\frac{1}{2} \|w\|^2 + C \sum_{i=1}^{n} \xi_i + \sum_{i=1}^{n} \alpha_i \left(1 - \xi_i - y_i (w^\top x_i + b)\right) + \sum_{i=1}^{n} \lambda_i (-\xi_i) \]

with dual variable constraints

\[\alpha_i \geq 0, \quad \lambda_i \geq 0. \]

Minimize wrt the primal variables \(w, b, \) and \(\xi. \)

Derivative wrt \(w: \)

\[\frac{\partial L}{\partial w} = w - \sum_{i=1}^{n} \alpha_i y_i x_i = 0 \quad w = \sum_{i=1}^{n} \alpha_i y_i x_i. \]

Derivative wrt \(b: \)

\[\frac{\partial L}{\partial b} = \sum_{i} y_i \alpha_i = 0. \]
Support vector classification: Lagrangian

Derivative wrt ξ_i:

$$\frac{\partial L}{\partial \xi_i} = C - \alpha_i - \lambda_i = 0 \quad \alpha_i = C - \lambda_i.$$

Since $\lambda_i \geq 0$,

$$\alpha_i \leq C.$$

Now use complementary slackness:

Non-margin SVs (margin errors): $\alpha_i = C > 0$:

1. We immediately have $y_i (w^\top x_i + b) = 1 - \xi_i$.
2. Also, from condition $\alpha_i = C - \lambda_i$, we have $\lambda_i = 0$, so $\xi_i \geq 0$

Margin SVs: $0 < \alpha_i < C$:

1. We again have $y_i (w^\top x_i + b) = 1 - \xi_i$.
2. This time, from $\alpha_i = C - \lambda_i$, we have $\lambda_i > 0$, hence $\xi_i = 0$.

Non-SVs (on the correct side of the margin): $\alpha_i = 0$:

1. From $\alpha_i = C - \lambda_i$, we have $\lambda_i > 0$, hence $\xi_i = 0$.
2. Thus, $y_i (w^\top x_i + b) \geq 1$
The support vectors

We observe:

1. The solution is sparse: points which are neither on the margin nor “margin errors” have $\alpha_i = 0$

2. **The support vectors**: only those points on the decision boundary, or which are margin errors, contribute.

3. Influence of the non-margin SVs is bounded, since their weight cannot exceed C.
Support vector classification: dual function

Thus, our goal is to maximize the dual,

\[
g(\alpha, \lambda) = \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{n} \xi_i + \sum_{i=1}^{n} \alpha_i \left(1 - y_i \left(w^\top x_i + b\right) - \xi_i\right) \\
+ \sum_{i=1}^{n} \lambda_i (-\xi_i) \\
= \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^\top x_j + C \sum_{i=1}^{n} \xi_i - \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^\top x_j \\
- b \sum_{i=1}^{n} \alpha_i y_i + \sum_{i=1}^{n} \alpha_i - \sum_{i=1}^{n} \alpha_i \xi_i - \sum_{i=1}^{n} (C - \alpha_i) \xi_i \\
\underbrace{0}_{\text{0}} \\
= \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^\top x_j.
\]
Dual C-SVM

$$\text{maximize } \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^\top x_j,$$

subject to the constraints

$$0 \leq \alpha_i \leq C, \quad \sum_{i=1}^{n} y_i \alpha_i = 0$$

This is a quadratic program. From α, obtain the hyperplane with

$$w = \sum_{i=1}^{n} \alpha_i y_i x_i$$

(follows from complementary slackness in the derivation of the dual). Offset b can be obtained from any of the margin SVs (for which $\alpha_i \in (0, C)$):

$$1 = y_i \left(w^\top x_i + b \right).$$
Solution depends on data through inner products only

Dual program

\[
\max_{\alpha} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^\top x_j \quad \text{subject to} \quad \begin{cases} \sum_{i=1}^{n} \alpha_i y_i = 0 \\ 0 \leq \alpha_i \leq C \end{cases}
\]

only depends on inputs \(x_i\) through their inner products (similarities) with other inputs.

Decision function

\[
\hat{y}(x) = \text{sign}(w^\top x + b) = \text{sign}(\sum_{i=1}^{n} \alpha_i y_i x_i^\top x + b)
\]

also depends only on the similarity of a test point \(x\) to the training points \(x_i\).

Thus, we do not need explicit inputs - just their pairwise similarities.

Key property: even if \(p > n\), it is still the case that \(w \in \text{span} \{x_i : i = 1, \ldots, n\}\) (normal vector of the hyperplane lives in the subspace spanned by the datapoints).
No linear classifier separates red from blue.

Linear separation after mapping to a higher dimensional feature space:

\[\mathbb{R}^2 \ni (x^{(1)} \ x^{(2)})^\top = x \ \mapsto \ \varphi(x) = (x^{(1)} \ x^{(2)} \ x^{(1)}x^{(2)})^\top \in \mathbb{R}^3 \]
Non-Linear SVM

- Consider the dual C-SVM with explicit non-linear transformation \(x \mapsto \varphi(x) \):

\[
\max_{\alpha} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j \varphi(x_i)^\top \varphi(x_j) \quad \text{subject to} \quad \begin{cases}
\sum_{i=1}^{n} \alpha_i y_i = 0 \\
0 \leq \alpha \leq C
\end{cases}
\]

- Suppose \(p = 2 \), and we would like to introduce quadratic non-linearities,

\[
\varphi(x) = \left(1, \sqrt{2}x^{(1)}, \sqrt{2}x^{(2)}, \sqrt{2}x^{(1)}x^{(2)}, \left(x^{(1)}\right)^2, \left(x^{(2)}\right)^2 \right)^\top.
\]

Then

\[
\varphi(x_i)^\top \varphi(x_j) = 1 + 2x_i^{(1)}x_j^{(1)} + 2x_i^{(2)}x_j^{(2)} + 2x_i^{(1)}x_i^{(2)}x_j^{(1)}x_j^{(2)} + \left(x_i^{(1)}\right)^2 \left(x_j^{(1)}\right)^2 + \left(x_i^{(2)}\right)^2 \left(x_j^{(2)}\right)^2 = (1 + x_i^\top x_j)^2.
\]

- Since only inner products are needed, non-linear transform need not be computed explicitly - inner product between features can be a simple function (kernel) of \(x_i \) and \(x_j \):

\[
k(x_i, x_j) = \varphi(x_i)^\top \varphi(x_j) = (1 + x_i^\top x_j)^2.
\]

- \(d \)-order interactions can be implemented by \(k(x_i, x_j) = (1 + x_i^\top x_j)^d \) (polynomial kernel). Never need to compute explicit feature expansion of dimension \(\binom{p+d}{d} \) where this inner product happens!
Kernel SVM: Kernel trick

- Kernel SVM with $k(x_i, x_j)$. Non-linear transformation $x \mapsto \varphi(x)$ still present, but \textbf{implicit} (coordinates of the vector $\varphi(x)$ are never computed).

 $$\max_{\alpha} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j k(x_i, x_j) \quad \text{subject to} \quad \left\{ \begin{array}{l} \sum_{i=1}^{n} \alpha_i y_i = 0 \\ 0 \leq \alpha \leq C \end{array} \right.$$

- \textbf{Prediction?} $\hat{y}(x) = \text{sign}(w^\top \varphi(x) + b)$, where $w = \sum_{i=1}^{n} \alpha_i y_i \varphi(x_i)$ and offset b obtained from a margin support vector x_j with $\alpha_j \in (0, C)$.
 - No need to compute w either! Just need

 $$w^\top \varphi(x) = \sum_{i=1}^{n} \alpha_i y_i \varphi(x_i)^\top \varphi(x) = \sum_{i=1}^{n} \alpha_i y_i k(x_i, x).$$

- Get offset from

 $$b = y_j - w^\top \varphi(x_j) = y_j - \sum_{i=1}^{n} \alpha_i y_i k(x_i, x_j)$$

 for any margin support-vector x_j ($\alpha_j \in (0, C)$).

- Fitted a separating hyperplane in a high-dimensional feature space without ever mapping explicitly to that space.