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Wald, Score and Likelihood Ratio tests

Consider a scalar or vector parameterθ indexing a family of distributions and hence log-
likelihood L(θ) . The (log-)likelihood-ratio test (LRT) ofθ = θ0 against unrestrictedθ ∈ Θ
is L(θ̂) − L(θ0) where θ̂ is the MLE. Under regularity conditions (which include thatθ0 is
not a boundary value inΘ ), the twice the LRT is asymptotically distributed asχ2

q , whereq
is the number of restrictions imposed. (Hereθ0 can either be some fixed value or the MLE in
Θ0 ⊂ Θ .)

The LRT requires us to maximize the log-likelihood and also to evaluate it atθ0 . If we wish
to consider many possible restrictions (for example to test if many individual parameters are
zero) the latter can be inconvenient and avoided by using Wald’s approximation, which is to
replace the log-likelihoodL by a quadratic approximationLW which agrees withL and its
first and second derivatives at̂θ . Since θ̂ is the MLE, the first derivative will be zero, and
hence

LW (θ) = L(θ̂) +
1

2
(θ − θ̂)T H(θ̂)(θ − θ̂)

where H is the Hessian1 of L . This is the same log-likelihood we would obtain if we as-
sumed that̂θ ∼ N(θ, J−1) whereJ = −H is theobserved information matrix. Further, we
approximateJ by I(θ̂) , the Fisher information at the MLE: this is what is most commonly
known as the Wald test. (OccasionallyI(θ0) is used.)

We can use a Wald test either by assuming thatθ̂ ∼ N
(
θ, I(θ̂)−1

)
or via using one of the

approximations as if it were the actual log-likelihood. For example, to test if a single parameter
is zero via assuming thet -ratio is N(0, 1) is an application of a Wald test.

Alternatively, we might want to consider many extensions to a model, for example adding
one out of many new explanatory variables. In that case we may wish to avoid maximizing
L under each extended model. This is what Rao’s score tests do, by approximating the log-
likelihood from its shape atθ0 . The usual form is to consider the scoreU , the derivative of
L with respect toθ at θ0 : if θ0 were the MLE this would be zero. To see how non-zero
it is we compare it to a reference normal distribution, and under the null hypothesis this has
covariance matrix the Fisher informationI(θ0) . Thus the score statistic isUT I(θ0)

−1U .

Score tests can also be derived by approximatingL by fitting the quadratic which agrees with
L and its first two derivatives atθ0 , that is

LS(θ) = L(θ0) + (θ − θ0)
T L′(θ0) +

1

2
(θ − θ0)

T H(θ0))(θ − θ0)

and expandingL′(θ) ∼ L′(θ̂) + H(θ)(θ − θ̂) if we replaceH(θ0) by −I(θ0) .

For regression with knownσ2 the log-likelihood is quadratic and has known curvature (the
Hessian is constant in bothθ and the data), so all these methods agree exactly. Under standard
large-sample theory all these tests have an asymptoticχ2

q distribution, but in small-sample
situations they can differ considerably (and theχ2

q distribution can be an poor approximation).

1the matrix of second derivatives.



As a simple example, consider the Poisson(µ ) family, and a test ofµ = 1 with a single
observationY = 4 : see figure 1. (This is an unusually large observation, but is not extreme
having probability 1.5%.)
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Figure 1: Tests forµ = 1 in a Poisson family with observationY = 4 . The exact log-likelihood and
the two quadratic approximations are shown.

Note that whereas the LRT is invariant to a change in parametrization, the most of the ap-
proximations are not. It is natural to consider log-linear models for a Poisson family, so let us
repeat the example forlog µ : see figure 2. In this case the approximations are much better.
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Figure 2: Tests forµ = 1 in a Poisson family with observationY = 4 , parameterized byθ = log µ .
Other details as figure 1.
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Deviance and Chi-squared tests

Now suppose we havek Poisson-distributed countsOi with meansµi which are functions
of the parameter(s)θ . The log-likelihood is

L(θ) =
∑

i

Oi log µi(θ)− µi(θ)− log Oi!

and since the saturated model hasµ̂i = Oi , the deviance is

G2 = 2
∑

i

[
Oi log{Oi/µi(θ̂)}+ (µ̂i(θ)−Oi)

]
and for most models (including all log-linear model with an intercept)∑

i

(µ̂i(θ)−Oi) = 0

so theG2 test as normally considered ignores this term. It is conventional to callµ(θi) the
expected valueEi .

Now consider the test of the parametrized means within the general model of freely-specified
means. Then

L(µ) =
∑

i

Oi log µi − µi − log Oi!

and so
L(µ)− L(E) =

∑
i

Oi log(µi/Ei)

provided
∑

µi =
∑

Ei . The MLE is µ̂i = Oi and the LRT is

G2 = 2L(µ̂)− 2L(E) = 2
∑

i

Oi log(Oi/Ei)

If we expand this aboutOi we get

G2 = −2
∑

i

Oi log(Ei/Oi) ≈ 2
∑

i

Oi
(Oi − Ei)

2

2O2
i

=
∑

i

(Oi − Ei)
2

Oi

Here the Hessian ofL is −diag(Oi/µ
2
i ) so the Fisher information matrix is diag(1/µi) which

when evaluated at the MLE is the same as the observed information matrix. So the two forms
of the Wald approximation agree and give a variation on the Chi-squared test.

For the score test, we first find the first and second derivatives:

∂L

∂µi

= Oi/µi − 1,
∂2L

∂µi∂µj

= −δijOi/µ
2
i , I(µ) = diag(1/µi)

Thus the score statistic is

UT I(E)−1U = [Oi/Ei−1]T I(E)−1[Oi/Ei−1] =
∑

i

(
Oi

Ei

−1)
1

Ei

(
Oi

Ei

−1) =
∑

i

(Oi − Ei)
2

Ei

the Chi-squared statistic.
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The Mantel–Haenszel test

The Mantel–Haenszel test of conditional independence in multiple2× 2 tables is a score test
approximation to the LRT in a logistic regression. Suppose we have a2 × 2 ×K table with
countsnijk . and with variablesX , Y andZ , and we are interested in whether

πik = P (Y = 2 |X = i, Z = k)

depends oni . The Mantel–Haenszel test statistic is

MH =
∑
k

[n22k − µ22k]
2

var(n22k)

The full logit model is

logit πik = α + βxi + γk, for j = 1, 2 andk = 1, . . . , K

wherex1 = 0 and x2 = 1 , say. The null hypothesis of conditional independence ofX and
Y given Z corresponds toβ = 0 . Writing out the details of the score test (Day and Byar,
Biometrics, 1979) ofβ = 0 leads toMH .

Code

For interest, figure 1 was computed in R (to allow mathematics in the labels) by

xx <- seq(0, 8, len = 500)
f <- function(mu) log(dpois(4, mu)/dpois(4,1))
plot(xx, f(xx), type = "l", ylim = c(-1, 3), xaxs = "i",

xlab = expression(mu), ylab = expression(L(mu)) )
abline(h = 0, col = "gray50")
abline(v = 1, col = "gray50")
arrows(4, 0, 4, f(4), length = 0.1, code = 3)
text(4.1, 1.5, "LRT", adj = 0)

fW <- function(mu) f(4) - (mu-4)^2/8
lines(xx, fW(xx), lty = 3)
arrows(3.95, fW(1), 3.95, f(4), length = 0.1, code = 3)
text(3.9, 2, "Wald", adj = 1)

fS <- function(mu) 3*(mu-1) - 2*(mu-1)^2
lines(xx, fS(xx), lty = 2)
arrows(1.75, 0, 1.75, fS(1.75), length = 0.1, code = 3)
text(1.8, 0.7, "score", adj = 0)

legend(6, 3, c("LRT", "score", "Wald"), lty = 1:3)
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