
Statistical Methods MT2005

Simulation

Simulationmeans (here) the use of computer-generated data from specified stochastic mech-
anisms: an earlier term wasMonte Carlo methods. This is often done to try things out, for
example to find out if the approximate (asymptotic?) distribution of a test statistic or the cover-
age property of a confidence interval procedure holds for a realistic simulation of the problem
of interest. The advantage of a simulation is that you do know1 the true stochastic mechanism
which generated the data.

Random Numbers

The fundamental building block from stochastic simulations israndom numbers, meaning the
generation of independent identically-distributedU(0, 1) random variates.

Occasionally genuine random numbers are used, from physical sources (e.g. electronic noise).
In 1955 RAND published a book of106 random digits and105 normally-distributed random
numbers, and in the 1980’s Marsaglia distributed a CD-ROM of random numbers. However,
physical random numbers have drawbacks:

1. They can be far too slow to generate or read in.

2. If generated on the fly the simulation is not repeatable.

3. You rely on the physical mechanism being implemented perfectly, which in the case of
the RAND tables was not the case.

As a result, the vast majority of random numbers used arepseudo-random2, generated from a
seedby a deterministic algorithm which makes a new number out of the fine details of the last
number (or the last few numbers).

Not so long ago, users needed to know how this was done3 as it was usually done insufficiently
well. Nowadays you can probably assume that the PRNG in a major statistical system is good
enough, although you should be aware that all PRNGs have some systematic departures from
randomness, and it is a good idea in critical studies to compare results from more than one
PRNG. (This is not easily possible inS-PLUS, but it is inR, for example.)

To get pseudo-random numbers inS-PLUS, call the functionrunif. S-PLUS saves theseed
as variable.Random.seed in the workspace, so each session starts using the pseudo-random
number stream where the last one left off. If you want reproducible results, it is recommended
to call the functionset.seed(i) with 1 ≤ i ≤ 1000 to choose one of a thousand pre-selected

1unless you or someone else made a mistake in the implementation!
2as distinct fromquasi-random, which is a different concept.
3the references will tell you if you are interested, and forS-PLUS see the appendix.

1

seeds. Then if you want to re-run the results (for example to collect more details or to use a
different analysis), just callset.seed(i) again for the samei.

Other Random Variables

You will probably find that the system you are using has functions to generate random variable
from the common non-uniform distributions:S-PLUS hasrnorm, rpois However, it is
helpful to understand the basic principles, as they are the same as are needed to simulate from
more complex problem.

The basic task is to turn a stream(Ui, i = 1, 2, . . .) of random numbers into samples from
the specified stochastic mechanism. This should be done fast enough4 and without undue
sensitivity to the fine details of the random numbers5.

Perhaps the simplest way to specify a univariate random variable is via its CDFF . Then if
X ∼ F andF is continuous,F (X) ∼ U(0, 1). Inverting this shows thatF−1(U) has CDFF
if U ∼ U(0, 1). For a discrete distribution this still holds if we define

F−1(x) = min{x |F (x) ≥ u}

This is known asinversion, and is often a good general method ifF−1 is known6 or a fast ap-
proximation is available. For example, the exponential distribution hasF (x) = 1− exp−λx,
so F−1(U) = −(1/λ) log(1 − U), which can be simplified slightly as1 − U andU have
the same distribution. For a discrete distribution inversion amounts to searching a table of
cumulative probabilities.

A great deal of ingenuity has been expended using stochastic mechanisms to get a desired
distribution. For example, counting events in a Poisson process gives a Poisson-distributed
random variable, and a Poisson process can easily be simulated by adding up exponential
random variables7, at least provided the Poisson mean is not very large. Another ingenious
idea is due to Box & Muller (1958):

1. GenerateU1 ∼ U(0, 1) and setΘ = 2πU1.

2. GenerateU2 ∼ U(0, 1) and setE = − log U2, R =
√

2E.

3. ReturnX = R cos Θ, Y = R sin Θ.

ThenX, Y are independent standard normal variates: if we only want one we can throwY
away or keep it in our pocket for next time we are asked.

One other general principle is worth knowing, that ofrejection sampling. Suppose we know
how to simulate from probability density (or mass function)g with the same support8 asf
such thatf/g is bounded byM < ∞. Then we can create a sample fromf by

4which will include not using an excessive number of theUi
5so simulating coin tossing by readings the bits ofUi in some binary representation is not a good idea.
6it is the quantile function, given inS-PLUS asqnorm etc.
7and adding up− log Ui can be replaced by multiplyingUi.
8g > 0 whereverf > 0.

2

Repeat
GenerateY from g.
GenerateU ∼ U(0, 1).

until MU ≤ f(Y)/g(Y).

The expected number of tries isM , so this works best ifg andf are closely matched: it is
often used to make approximate methods of simulation exact.

Another advantage of rejection sampling is that we don’t need to knowf , only a function
f ′ ∝ f and a bound onf ′/g. This allows us to ignore normalizing constants which may be
awkward to compute, or even not known explicitly.

The references (especially Devroye, 1986) cover a plethora of techniques and applications of
them to standard distributions. It is unlikely these days that you will need to actually imple-
ment them: look around for existing implementations in whichever programming language
you are using.

One important technique is nowadays known asMarkov Chain Monte Carloand will be cov-
ered in a module in Trinity Term.

Simulation Experiments

The most important thing to remember when you are using simulation is that you areper-
forming an experiment. So, the experiment should be designed, and the data it produces
should be analysed.

The main point in the design of a simulation experiment is to eliminate inessential variation
and so make the results as precise as possible. The first and most important idea is to com-
pare ideas on the same simulation runs, sometimes known as usingcommon random numbers
although it is just an application ofblocking. Other ideas are ways to reduce variability:

control variates: estimate the difference between the result of interest and a similar one
which can be obtained analytically and also estimated from the data.

antithetic variates: deliberately introduce negative correlations between runs: rarely useful.

importance sampling: simulate from a different distribution and adjust. Useful to make rare
events less rare, for example.

The more complicated the problem the less likely these are to be useful, but they should be
borne in mind if a simulation experiment is taking too long.

The main difficulty withanalysisis dependence in the results. Many simulations are of events
through time, and so the results from a time series – there are specialized methods of analysis
for such time series.

Various uses of simulation methods in statistical inference will be covered in theComputer-
Intensive Statisticsmodule.

3

Reference books

Bratley, P., Fox, B. L. and Schrage, L. E. (1987)A Course in Simulation. Second Edition.
Springer.

Devroye, L. (1986)Non-uniform Random Variate Generation. Springer.

Ripley, B. D. (1987)Stochastic Simulation. Wiley.

Ross, S. M. (1996)Simulation. Second Edition. Academic Press.

4

Appendix: the PRNG in S-PLUS

The current generator is based on George Marsaglia’s “Super-Duper” package from about
1973. The generator produces a 32-bit integer whose top 31 bits are divided by231 to produce
a real number in[0, 1). The 32-bit integer is produced by a bitwise exclusive-or of two 32-bit
integers produced by separate generators. The C code for the random number generator is,
(effectively,

unsigned int congrval, tausval; # assume 32-bit

static double xuni()

{

unsigned int n, lambda = 69069, res;

do {

congrval = congrval * lambda;

tausval ^= tausval >> 15;

tausval ^= tausval << 17;

n = tausval ^ congrval;

res = (n>>1) & 017777777777;

} while(res == 0);

return (res / 2147483648.);

}

The integercongrval follows the congruential generator

Xi+1 = 69069Xi mod 232

as unsigned integer overflows are (silently) reduced modulo232; that is, the overflowing bits
are discarded. As this is a multiplicative generator (no additive constant), its period is230 and
the bottom bit must always be odd (including for the seed).

The integertausval follows a 32-bit Tausworthe generator (of period 4 292 868 097<
232 − 1):

bi = bi−p xorbi−(p−q), p = 32, q = 15

This follows from a slight modification of Algorithm 2.1 of Ripley (1987, p. 28). (In fact, the
period quoted is true only for the vast majority of starting values; for the remaining 2 099 198
non-zero initial values there are shorter cycles.)

For most starting seeds the period of the generator is230 × 4 292 868 097≈ 4.6×1018, that is
quite sufficient for calculations that can be done in a reasonable time inS-PLUS. The current
values ofcongrval andtausval are encoded in the vector.Random.seed, a vector of 12
integers in the range0, . . . , 63. If x represents.Random.seed, we have

congrval =
6∑

i=1

xi 2
6(i−1) and tausval =

6∑
i=1

xi+6 26(i−1)

5

