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Student’s t distribution

Only rarely do we know σ2. We do have an estimator of it, s2. Can we just
plug that in? Not quite!

We know
x − µ

σ/
√

n
∼ N(0, 1)

if we replace σ by s we will increase the variability of the left-hand-side and
so ‘smear out’ the distribution. However, the effect will be small if s2 is an
accurate estimator of σ2.

The correct answer was guessed by W. S. Gossett (pseudonym ‘Student’)
and proved by R. A. Fisher.

x − µ

s/
√

n
∼ tν, ν = n − 1

The parameter ν is known as the number of ‘degrees of freedom’.



Confidence Intervals – Example

We will illustrate this by a population of 334 measurements. Two nurses
were asked to measure tuberculin reaction sizes (in mm), and the dataset is
the set of 334 differences. So they are whole numbers, with summary

> print(summary(react), digits=4)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-9.000 -2.000 -1.000 -0.796 0.000 8.000

Viewed as a random sample from a large population, we can ask if the
difference is significantly different from zero, and if so by how much:

> t.test(react)

t = -7.75, df = 333, p-value = 0

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

-0.999 -0.594



Alternatively, if we suspected in advance that the difference would be
negative and did not care at all that it would be positive we could use

> t.test(react, alternative="less")

t = -7.75, df = 333, p-value = 0

alternative hypothesis: true mean is less than 0

95 percent confidence interval:

NA -0.627



Plots of the population

react
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Samples of size 10
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Samples of size 30
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Samples of size 100
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Tests of location

Suppose we are not interested in the difference between the two nurses only
if there is one. Then we want a hypothesis test of H0 : µ = µ0 = 0 against
H1 : µ �= µ0. To do so we choose a statistic T that is larger (in probability)
under H1 than under H0. The absolute value of the t statistic

T =
x − µ0

s/
√

n

is an obvious candidate.

We can then proceed in either of two ways:

1. We compute a ‘p-value’. Suppose we observed T = t0. The p-value is
the probability of observing a value of T at least as extreme by chance
under the null distribution. In our example that is Pµ0(|T | > t0) =

2P (Y > t0) where Y ∼ tn−1. A small p-value is evidence against the
null hypothesis.



2. Alternatively, we can set a significance level α and choose a critical
value c such that PH0(T > c) � α. We then reject the null hypothesis
if we observe a value greater than c.

Note that we reject (or not) the null hypothesis: we never ‘accept’
hypotheses.

Conventional significance levels are 5%, 1% and 0.1%, marked by
one, two or three ‘significance stars’ respectively. Don’t!

Note that we reject the null hypothesis at level α if and only if the p-value is
less or equal to α, and also if and only if a confidence interval of size 1 − α

does not cover µ0.



Tests of spread

Sometimes we have two samples and we want to test if they differ in scale:
taking logs usually works. What is we want to test if they differ in spread
about possibly different locations. We can compute their variances. The
salaries for male bank clerks had variance 477113, for females 291460?
Are they really different?

Suppose we have sample variances s2
1 and s2

2 from samples of size n1 and
n2. Their ratio looks like a good test statistic for H0 : σ2

1 = σ2
2 versus

H1 : σ2
1 �= σ2

2. Under the null-hypothesis

s2
1

s2
2

∼ Fn1,n2

another famous distribution, Snecedor’s F (for Fisher).



We reject the null hypothesis if the ratio is too far from one. In our example

> var.test(bankM, bankF)

F = 1.64, num df = 31, denom df = 60, p-value = 0.102

alternative hypothesis: true ratio of variances is not equal to 1

95 percent confidence interval:

0.906 3.147

The confidence interval is for the ratio λ = σ2
1/σ

2
2, and arises from consid-

ering log(s2
1/s

2
2) − log λ.



Two-sample inference

Now supposed we want to compare the locations of two samples, x1, . . . , xn1

and y1, . . . , yn2.

The easier case is when we know (or have tested) that the variances are
the same. Then we can suppose Xi ∼ N(µ1, σ

2), Yj ∼ N(µ2, σ
2) and

we are interested in δ = µ1 − µ2. Then x − y has mean δ and variance
σ2/(1/n1 + 1/n2). This suggests working with the statistic

(x − y) − δ0

s/
√

1/n1 + 1/n2

∼ tn1+n2−2

where s2 = [(n1 − 1)s2
1 + (n2 − 1)s2

2]/(n1 + n2 − 2) is the pooled variance
estimate.

Otherwise we use
(x − y) − δ0√
s2

1/n1 + s2
2/n2

∼ tν

which is an approximation, with a formula for ν involving ni and s2
i .



Bank clerks’ salaries

There were 32 male and 61 female bank clerks. Here we are only interested
in discrimination against women (??)

> t.test(bankM, bankF, alternative="greater", var.equal = F)

Welch Modified Two-Sample t-Test

t = 5.83, df = 51.3, p-value = 0

alternative hypothesis: true difference in means is greater than 0

95 percent confidence interval:

583 NA

t.test(bankM, bankF, alternative="greater", var.equal = F)$p.value

[1] 1.86e-007



Another way to look at this is to ask if the difference would arise by chance
if gender were irrelevant, and so we could randomly assign genders. Let’s
pick 32 of the 32 + 61 people randomly as ‘male’. We did that 10000 times:

> summary(tstats)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-4.34 -0.70 -0.02 -0.03 0.66 3.38

so the observed difference is very unlikely to have occurred by chance.

Note: this is not evidence of sex discrimination, only of association between
gender and salary. The male clerks might have been older and more
experienced, for example.



10000 randomizations of gender

tstats
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Robustness of the t statistics

We have demonstrated that the sample mean can be quite close to normality
even if the original population is not too close to normal (and even if it is
rather discrete). In general the ‘t tools’ work well unless outliers upset the
calculation of s.

Nevertheless, alternatives have been developed, for continuous distributions.



Tests of location zero

These apply to data such as the differences in tuberculin reaction, and the
null hypothesis is that the data have a symmetric continuous distribution
about zero (and so zero will not occur).

sign test

This just looks at the number of positive signs, which under the null
hypothesis has a binomial distribution like coin-tossing.

Our example has 61 zeros.



Wilcoxon signed-rank test

This uses the absolute values of the differences, and ranks them. The statistic
is then the sum of the ranks for the differences for which the sign is positive.

For small samples without ties we use the permutation distribution, other-
wise a large-sample normal approximation.

As a refinement, zero differences are dropped completely.

> wilcox.test(react, exact=F)

Wilcoxon signed-rank test

signed-rank normal statistic with correction Z = -7.55, p-value = 0

alternative hypothesis: true mu is not equal to 0

> wilcox.test(react[react!=0], exact=F)

signed-rank normal statistic with correction Z = -7.34, p-value = 0



Two-sample non-parametric tests

The Mann–Whitney or Wilcoxon rank-sum test is for location shifts between
two samples.

First rank all the observations, assigning average ranks to the ties. Then sum
the ranks for the observations in the first sample.

For small samples without ties we use the permutation distribution, other-
wise a large-sample normal approximation.

> wilcox.test(bankM, bankF, exact=F, alternative="greater")

Wilcoxon rank-sum test

rank-sum normal statistic with correction Z = 5.11, p-value = 0

alternative hypothesis: true mu is greater than 0



Another two-sample example

Twenty-eight 14-year-old pupils were given a problem in coordinate geom-
etry. They were divided into two groups of 14 and given different material
to read, and timed (in seconds) as to how long it took them to solve the
problem.

new 68 70 73 75 77 80 80 132 148 155 183 197 206 210

old 130 139 146 150 161 177 228 242 265 >300 >300 >300 >300 >300

Even though we don’t know the exact times we can still do a Mann-Whitney
test. If we jitter the data to break the ties we get

> wilcox.test(times[1:14], times[15:28], alternative = "less")

Exact Wilcoxon rank-sum test

rank-sum statistic W = 137, n = 14, m = 14, p-value = 0.0009




