
M.Sc. Practical MT2005 week 6

Logistic and Log-linear Models

1 Low Birth Weights

Hosmer & Lemeshow (1989) give a dataset on 189 births at a US hospital, with the main
interest being in low birth weight. The following variables are available in data framebirthwt

in library MASS

low birth weight less than 2.5 kg (0/1),
age age of mother in years,
lwt weight of mother (lbs) at last menstrual period,
race white / black / other,
smoke smoking status during pregnancy (0/1),
ptl number of previous premature labours,
ht history of hypertension (0/1),
ui has uterine irritability (0/1),
ftv number of physician visits in the first trimester,
bwt actual birth weight (grams).

Although the actual birth weights are available, we concentrate here on predicting if the birth
weight is low from the remaining variables. The dataset contains a small number of pairs of
rows that are identical apart from the ID; it is possible that these refer to twins but identical
birth weights seem unlikely.

We use a logistic regression with a binomial (in fact 0/1) response. It is worth considering
carefully how to use the variables. It is unreasonable to expect a linear response withptl .
Since the numbers with values greater than one are so small we reduce it to an indicator of
past history. Similarly,ftv can be reduced to three levels. With non-Gaussian GLMs it is
usual to use treatment contrasts.

library(MASS)
?birthwt
options(contrasts = c("contr.treatment", "contr.poly"))
attach(birthwt)
race <- factor(race, labels = c("white", "black", "other"))
table(ptl)
ptd <- factor(ptl > 0)
ftv <- factor(ftv)
table(ftv)
levels(ftv)[-(1:2)] <- "2+"
table(ftv) # as a check
bwt <- data.frame(low = factor(low), age, lwt, race,

smoke = (smoke > 0), ptd, ht = (ht > 0), ui = (ui > 0), ftv)
detach(); rm(race, ptd, ftv)



We can then fit a full logistic regression.

birthwt.glm <- glm(low ~ ., family = binomial, data = bwt)
summary(birthwt.glm, cor = F)

Since the responses are binary, even if the model is correct there is no guarantee that the
deviance will have even an approximately chi-squared distribution, but since the value is about
in line with its degrees of freedom there seems no serious reason to question the fit. We use
stepwise selection by AIC:

birthwt.step <- stepAIC(birthwt.glm)
birthwt.step$anova
birthwt.step2 <- stepAIC(birthwt.glm, ~ .^2 + I(scale(age)^2)

+ I(scale(lwt)^2), trace = F)
birthwt.step2$anova
summary(birthwt.step2, cor = F)$coef
table(bwt$low, predict(birthwt.step2) > 0)
plot(birthwt.step2)

Note that although bothage and ftv were previously dropped, their interaction is now in-
cluded, the slopes onage differing considerably within the threeftv groups.

Try also three-way interactions.

An alternative approach is to predict the actual live birth weight and later threshold at 2.5
kilograms. Try this: it produces somewhat worse predictions with around 52 errors.

2 Speed Limits in Sweden

An experiment was performed in Sweden in 1961–2 to assess the effect of speed limits on the
motorway accident rate. The experiment was conducted on 92 days in each year, matched so
that dayj in 1962 was comparable to dayj in 1961. On some days the speed limit was in
effect and enforced, while on other days there was no speed limit and cars tended to be driven
faster. The speed limit days tended to be in contiguous blocks.

The data set is given in the data frameTraffic with factorsyear , day and limit and the
response is the daily traffic accident count,y .

Fit Poisson log-linear models and summarize what you discover. Some first steps in the anal-
ysis would be

options(contrasts = c("contr.treatment", "contr.poly"))
try(rm(y)) # to be careful
attach(Traffic)
tr <- data.frame(y, day = factor(day), year = factor(year), limit)
detach()
fm <- glm(y ~ day + year + limit, data = tr, family = poisson)
fm2 <- stepAIC(fm, scope = list(upper = . ~ . + limit:year))
plot(fm2)
exp(coef(fm2)["limit"])



3 Cancer Deaths of Atomic Bomb Survivors

This example was set as an assessed practical in 2003.

The table shows data on cancer deaths amongst survivors of the atomic bombs
dropped on Japan in WWII, categorized by the time (in years) after the bomb that
death occurred and the amount of radiation exposure received (in rads).

exposure 0–7 8–11 12–15 16–19 20–23 24–27 28–31
0 10/262 12/243 19/240 31/237 35/253 48/227 73/220
25 17/313 17/290 17/285 47/280 50/275 65/269 71/262
75 0/38 2/36 1/35 5/34 8/34 7/33 12/32
150 1/28 0/26 4/25 1/25 6/24 12/24 11/23
250 1/13 1/12 0/12 4/12 3/11 7/11 13/10
400 0/15 2/14 5/14 3/14 2/13 3/13 5/13

The entries in the table are

number of deaths / person-years at risk

where the ‘denominator’ is computed by summing the number of years (includng
fractional years) alive in the time interval over all the people who had that amount
of radiation and who were alive at the beginning of the interval.

Find a suitably parsimonious model for the rate of cancer deaths from this dataset,
and express its results graphically. Your conclusions should include a statement
on the effect of radiation on the cancer death rate, including quantifying your
uncertainty.

It should be clear that we want to use a Poisson log-linear regression model for the numbers
of death with offset log of the person-years at risk. I set up a 42-row data frame1 Atomic with
the data by row, responseDeaths , offset variableAtRisk and factorsdose and tyears .
The basic model should be something like

options(contrasts=c("contr.treatment", "contr.poly"), digits=5)
fm <- glm(Deaths ~ tyears + dose + offset(log(AtRisk)), family = poisson,

data = Atomic)
summary(fm, cor=F)

Note that the fit is fairly good, although the residual deviance is a little large. Given how small
some of the counts are, we should not take this too seriously.

Now we can explore if either factor could be dropped (a priori unlikely)

dropterm(fm, test="Chisq")

Can we simplify this? It looks as if a linear effect in tyears would be OK (and as the intervals
are of different length, I used the midpoints).

1which you can load fromAtomic.sdd on the course website – just double-click on this to load into S-PLUS.



Atomic$ot <- c(4,10,14,18,22,26,30)[Atomic$tyears]
fm2 <- glm(Deaths ~ ot + dose + offset(log(AtRisk)), family = poisson,

data = Atomic)
anova(fm, fm2, test="Chisq")

shows this is a reasonable simplification.

We can use prediction to get the fitted rates and hence mean survival times.

preddata <- Atomic
preddata$AtRisk <- rep(1,42)
Atomic$lrates <- predict(fm2, preddata)
tab <- matrix(exp(-Atomic$lrates),6,7, byrow=T)
dimnames(tab) <- list(levels(Atomic$dose), levels(Atomic$tyears))
round(tab,1)

Note that the Poisson model corresponds to exponential survival times, so this is a reasonable
interpretation. We could show this graphically by

trellis.device()
xyplot(exp(-lrates) ~ ot | dose, data=Atomic, type="b")

or using multiple lines on one graph. They should include some confidence intervals, too. For
example

Atomic$selrates <- predict(fm2, preddata, se=T)$se
Atomic$up <- Atomic$lrates + 2*Atomic$selrates
Atomic$low <- Atomic$lrates - 2*Atomic$selrates

xyplot(exp(lrates) ~ ot | dose, data=Atomic, type="b", subscripts=T,
panel = function(x,y,subscripts, ...) {

panel.xyplot(x,y, ...)
error.bar(x, y, exp(Atomic$low[subscripts]),

exp(Atomic$up[subscripts]), add=T, incr=F)
}

)

xyplot(lrates ~ as.numeric(as.character(dose)) | tyears, data=Atomic,
type="b", subscripts=T,

panel = function(x,y,subscripts, ...) {
panel.xyplot(x,y, ...)
error.bar(x, y, Atomic$low[subscripts],

Atomic$up[subscripts], add=T, incr=F)
}

)

although for a report make sure you use better labels (by creating new variables). Note that
any of the panels of the second trellis could be regarded as answering the question, as could
a plot of the dose effects with standard errors superimposed, on rate or survival time scale
(possibly plotted on log scale but labelled on one of those scales).


