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Manifesto

Statisticians and other users of statistical methods have been choosing
models for a long time, but the current availability of large amounts of data
and of computational resources means that model choice is now being done
on a scale which was not dreamt of 25 years ago.

Unfortunately, the practical issues are probably less widely appreciated than
they used to be, as statistical software and the advent of AIC, BIC and all
that has made it so much easier for the end user to trawl through literally
thousands of models (and in some cases many more).

Traditional distinctions between ‘parametric’ and ‘non-parametric’ models
are often moot, when people now (attempt to) fit neural networks with half
a million parameters.



Where do the models come from?

• Sometimes a set of models is provided based on subject-matter theory.
In my experience good theory is very rare. Sometimes called mech-
anistic models. One example is the Black–Scholes theory of option
pricing.

• Most often some simple restrictions are placed on the behaviour we
expect to find, for example linear models, AR(p) processes, factorial
models with limited interactions. Sometimes called empirical models.

Note that these can be very broad classes if transformations of vari-
ables (on both sides) are allowed.

• We now have model classes that can approximate any reasonable
model, for example neural networks. And we may have subsets within
these such as (generalized) additive models. Nowadays we may have
the data and the computational resources to fit such models.



Why do we want to choose a model?

It took me a long while to realize how profound a question that was.

Explanation vs Prediction

This causes a lot of confusion. For explanation, Occam’s razor applies and
we want

an explanation that is as simple as possible,
but no simpler

attrib Einstein

and we do have a concept of a ‘true’ model, or at least a model that is a good
working approximation to the truth, for

all models are false, but some are useful
G.E.P. Box, 1976



Explanation is like doing scientific research.

On the other hand, prediction is like doing engineering development. All
that matters is that it works. And if the aim is prediction, model choice
should be based on the quality of the predictions.

Workers in pattern recognition have long recognised this, and used valida-
tion sets to choose between models, and test sets to assess the quality of the
predictions from the chosen model.

One of my favourite teaching examples is

Ein-Dor, P. & Feldmesser, J. (1987) Attributes of the perfor-
mance of central processing units: a relative performance pre-
diction model. Communications of the ACM 30, 308–317.

which despite its title selects a subset of transformed variables. The paper is
a wonderful example of how not to do that, too.



More on CPUs’ performance

There were six machine characteristics:

• the cycle time (nanoseconds),

• the cache size (Kb),

• the minimum and maximum possible main memory size (Kb)

• the minimum and maximum possible number of channels.

How much memory and how many channels the actual machine tested had
is unspecified.

The original paper gave a linear regression for the square root of perfor-
mance, but log scale looks more intuitive. We have a technology to test that,
from Box & Cox (1964).



Box–Cox transformations
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That is not what we were expecting!



Caveat: what did we transform?

We only transformed the response: it is natural to transform the regressors as
well, so we need to choose several transformations simultaneously. We have
technology to do that, even with non-parametric smooth functions (ACE,
AVAS, . . . ) but it is not very reliable.

Old-fashioned methods work: we discretized the continuous regressors into
four groups and used these as categorical predictors.



Box–Cox transformations revisited
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which is rather satisfying.



Why select a model at all?

It does seem a widespread misconception that model choice is about

choosing the best model

For explanation we ought to be alert to be possibility of there being several
(roughly) equally good explanatory models.

I learnt that from David Cox after having already done a lot of informal
model choice in applied problems in which I would have benefited from
offering several alternative solutions.

Simplicity helps both with communicating the concepts embodied in the
model and in what psychologists call generalization, the ability to ‘work’
in scenarios very different from those in which the model was studied. So
there is a premium on few models.



For prediction I find a good analogy is that of choosing between expert
opinions: if you have access to a large panel of experts, how would you
use their opinions?

People do tend to pick one expert (‘guru’) and listen to him/her, but it would
seem better to seek a consensus view, which translates to model averaging
rather than model choice. Our analogy is with experts, which implies some
prior selection of people with a track record: one related statistical idea is
the Occam’s window (Madigan & Raftery, 1994) which keeps only models
with a reasonable record.

Because the model may be used in scenarios very different from those in
which it was tested, generalization is still important, and other things being
equal a mechanistic model or a simple empirical model has more chance of
reflecting the data-generation mechanism and so of generalizing. But other
things rarely are equal.



All the models/experts may be wrong

Note that taking a consensus view only helps sometimes with generalization.

Draper (1995) has a graph of predictions of oil prices for 1981–90 made
in 1980. The analysts were all confident, differed considerably from each
other, and were all way off — the oil price was $13 in 1986!



Computational cost

A major reason to choose a model appears still to be computational cost, a
viewpoint of Geisser (1993). Even if we can fit large families of models, we
may have time to consider the predictions only from a few.

A much-quoted example is a NIST study on reading hand-written ZIP codes,
which have to be read in about 1/2 second each to be useful in a sorting
machine.



An historical perspective — Model choice in 1977

That’s when I started to learn about this.

• The set of models one could consider was severely limited by com-
putational constraints, although packages such as GLIM 3.77 were
becoming available.

• Stepwise selection was the main formal tool, using hypothesis tests
between a pair of nested models, e.g. F tests for regressions.

Few people did enough tests to worry much about multiple compar-
isons issues.

• Residual plots were used, but they were crude plots and limited to
small datasets.

There was very little attempt to deal with choosing between models that
were genuinely different explanations: Cox’s (1961) ‘tests of separate fam-
ilies of hypotheses’ existed but was little known and less used.
But the world was changing . . . .



Cross-validation

A much misunderstood topic!

Leave-one-out CV

The idea is that given a dataset of N points, we use our model-building
procedure on each subset of size N − 1, and predict the point we left
out. Then the set of predictions can be summarized by some measure of
prediction accuracy. Idea goes back at least as far as Mosteller & Wallace
(1963), and Allen’s (1971, 4) PRESS (prediction sum-of-squares) used this
to choose a set of variables in linear regression.

Stone (1974) / Geisser (1975) pointed out we could apply this to many
aspects of model choice, including parameter estimation.

NB: This is not jackknifing a la Quenouille and Tukey.

Having to do model-building N times can be prohibitive unless there are
computational shortcuts.



V-fold cross-validation

Divide the data into V sets, and amalgamate V −1 of them, build a model and
predict the result for the remaining set. Do this V times leaving a different
set out each time.

How big should V be? We want the model-building problem to be realistic,
so want to leave out a small proportion. We don’t want too much work. So
usually V is 3–10.

One early advocate of this was the CART book (Breiman, Friedman, Olshen
& Stone, 1984) and program.



Does it work?

Leave-one-out CV does not work well in general. It makes too small
changes to the fit.

10-fold CV often works well, but sometimes the result is very sensitive to
the partitioning used. We can ‘average’ over several random partitions.

Often better for comparisons than for absolute values of performance.

How prediction accuracy is measured can be critical.



AIC, BIC and all that

Akaike (1973, 1974) introduced a criterion for model adequacy, first for
time-series models and then more generally. He relates how his secretary
suggested he call it ‘An Information Criterion’, AIC.

This has a very appealing simplicity:

AIC = −2 log(maximized likelihood) + 2p

where p is the number of estimated parameters. Choose the model with the
smallest AIC (and perhaps retain all models within 2 of the minimum).

Despite that, quite a few people have managed to get it wrong!

This is similar to Mallows’ Cp criterion for regression,

Cp = RSS/σ2 + 2p − N

and is the same if σ2 is known. Both are of the form

measure of fit + complexity penalty



Schwarz’s (1978) criterion, often called BIC or SBC, replaces 2 by log n for
a suitable definition of n, the size of the dataset. In the original regression
context this is just the number of cases.

BIC was anticipated by work of Harold Jeffreys in the 1930’s.



Derivation of AIC

Suppose we have a dataset of size N , and we fit a model to it by maximum
likelihood, and measure the fit by the deviance D (constant minus twice
maximized log-likelihood). Suppose we have m (finite) nested models.

Hypothetically, suppose we have another dataset of the same size, and we
compute the deviance D∗ for that dataset at the MLE for the first dataset.
We would expect that D∗ would be bigger than D, on average. In between
would be the value D′ if we had evaluated the deviance at the true parameter
values. Some Taylor-series expansions show that

E D∗ − E D′ ≈ p, E D′ − E D ≈ p

and hence AIC = D + 2p is (to this order) an unbiased estimator of E D∗.
And that is a reasonable measure of performance, the Kullback-Leibler
divergence between the true model and the plug-in model (at the MLE).

These expectations are over the dataset under the assumed model.



Crucial assumptions

1. The model is true! Suppose we use this to select the order of an AR(p)

model. If the data really came from an AR(p0) model, all models with
p ≥ p0 are true, but those with p < p0 are not even approximately true.

This assumption can be relaxed. Takeuchi (1976) did so, and his result
has been rediscovered by Stone (1977) and many times since. p gets
replaced by a much more complicated formula.

2. The models are nested – AIC is widely used when they are not.

3. Fitting is by maximum likelihood. Nowadays many models are fitted
by penalized methods or Bayesian averaging . . . . That can be worked
through too, in NIC or Moody’s peff.



4. The Taylor-series approximations are adequate. People have tried
various refinements, notably AICC (or AICc) given by

AICC = D + 2p
( N

N − p + 1

)

Also, the MLEs need to be in the interior of the parameter space, even
when a simpler or alternative model is true. (Not likely to be true for
variance components for example.)

5. AIC is a reasonably good estimator of E D∗, or at least that dif-
ferences between models in AIC are reasonably good estimators of
differences in E D∗.

This seems the Achilles’ heel of AIC.
AIC = Op(N) but the variability as an estimate is Op(

√
N). This

reduces to Op(1) for differences between models provided they are
nested.



AIC has been criticised in asymptotic studies and simulation studies for
tending to over-fit, that is choose a model at least as large as the true model.
That is a virtue, not a deficiency: this is a prediction-based criterion, not an
explanation-based one.

AIC is asymptotically equivalent to leave-one-out CV for iid samples and
using deviance as the loss function (Stone, 1977), and in fact even when the
model is not true NIC is equivalent (Ripley, 1996).



Bayesian approaches

Note the plural — I think Bayesians are rarely Bayesian in their model
choices. Assume M (finite) models, exactly one of which is true.

In the Bayesian formulation, models are compared via P{M |T}, the pos-
terior probability assigned to model M .

P{M |T} ∝ p(T |M)pM,

p(T |M) =

∫
p(T |M, θ)p(θ) dθ

so the ratio in comparing models M1 and M2 is proportional to
p(T |M2)/p(T |M1), known as the Bayes factor.

However, a formal Bayesian approach then averages predictions from mod-
els, weighting by P{M |T}, unless a very peculiar loss function is in use.
And this has been used for a long time, despite recent attempts to claim the
credit for ‘Bayesian Model Averaging’.



Suppose we just use the Bayes factor as a guide. The difficulty is in eval-
uating p(T |M). Asymptotics are not useful for Bayesian methods, as the
prior on θ is often very important in providing smoothing, yet asymptotically
negligible.

We can expand out the log posterior density via Laplace approximation and
drop various terms, eventually reaching

log p(T |M) ≈ L(θ̂; T) − 1
2 log |H|.

where H is the Hessian of the log-likelihood and we needed to assume that
the prior is very diffuse.

For an iid random sample of size n from the assumed model, the penalty
might be roughly proportional to −(1

2 log n) p provided the parameters are
identifiable. This is Schwarz’s BIC up to a factor of two. As with AIC, the
model with minimal BIC is chosen.



Crucial assumptions

1. The data were derived as an iid sample. (What about e.g. random
effects models?) (Originally for linear models only.)

2. Choosing a single model is relevant in the Bayesian approach.

3. The model is true.

4. The prior can be neglected. We may not obtain much information
about parameters which are rarely effective, even in very large sam-
ples.

5. The simple asymptotics are adequate and that the rate of data collec-
tion on each parameter would be the same. We should be interested in
comparing different models for the same N , and in many problems p

will be comparable with N .

Note that as this is trying to choose an explanation, we would expect it to
neither overfit nor underfit, and there is some theoretical support for that.

There are other (semi-)Bayesian approaches, including DIC.



Model averaging

For prediction purposes (and that applies to almost all Bayesians) we should
average the predictions over models. We do not choose a single model.

What do we average?

The probability predictions made by the models.

For linear regression this amounts to averaging the coefficients over the
models (being zero where a regressor is excluded), and this becomes a form
of shrinkage.
[Other forms of shrinkage like ridge regression may be as good at very much
lower computational cost.]

Note that we may not want to average over all models. We may want to
choose a subset for computational reasons, or for plausibility.



How do we choose the weights?

• In the Bayesian theory this is clear, via the Bayes factors. In practice
this is discredited. Even if we can compute them accurately (and via
MCMC we may have a chance), we assume that one and exactly one
model is true. In practice Bayes factors can depend on aspects of
model inadequacy which are of no interest.

• Via cross-validation (goes back to Stone, 1974).

• Via bootstrapping (LeBlanc & Tibshirani, 1993).

• As an extended estimation problem, with the weights depending on
the sample via a model (e.g. a multiple logistic); so-called stacked
generalization and mixtures of experts.



Bagging, boosting, random forests

Model averaging ideas have been much explored in the field of classification
trees.

In bagging models are fitted from bootstrap resamples of the data, and
weighted equally.

In boosting each additional model is chosen to (attempt to) repair the
inadequacies of the current averaged model by resampling biased towards
the mistakes.

In random forests the tree-construction algorithm randomly restricts itself at
the choice of each split.



(Practical) model selection in 2004

• The concept of a model ought to be much, much larger than in 1977.
Even a decade ago, people attempted to fit neural networks with half
a million free parameters.

• Many models are not fitted by maximum likelihood, to very large
datasets.

• Model classes can often overlap in quite extensive ways.



Calibrating GAG in urine

Susan Prosser measured the concentration of the chemical GAG in the urine
of 314 children aged 0—18 years. Her aim was to establish ‘normal’ levels
at different ages.
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Clearly we want to fit a smooth curve. What? Polynomial? Exponential?

Choosing the degree of a polynomial by F-tests gives degree 6.
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Is this good enough?

Smoothing splines would be the numerical analyst’s way to fit a smooth
curve to such a scatterplot. The issue is ‘how smooth’ and in this example it
has been chosen automatically by GCV.

> plot(GAGurine, pch=20)

> lines(smooth.spline(Age, GAG), lwd = 3, col="blue")

An alternative would be local polynomials, using a kernel to define ‘local’
and choosing the bandwidth automatically.

> plot(GAGurine, pch=20)

> (h <- dpill(Age, GAG))

> lines(locpoly(Age, GAG, degree = 0, bandwidth = h))

> lines(locpoly(Age, GAG, degree = 1, bandwidth = h), lty = 3)

> lines(locpoly(Age, GAG, degree = 2, bandwidth = h), lty = 4)
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(Practical) model selection in 2004

. . .

• There are lots of formal ‘figures of adequacy’ for a model. Some have
proved quite useful, but

– Their variability as estimators can be worrying large.

– Computation, e.g. of ‘effective number of degrees of freedom’,
can be difficult.

– Their implicit measure of performance can be overly sensitive
to certain aspects of the model which are not relevant to our
problem.

The assumptions of the theories need to be checked, as the criteria are
used way outside their known spheres of validity (and in some cases
where they are clearly not valid).

• Nowadays people do tens of thousands of significance tests, or more.



Plotting multiple p values

p-value image of a single
fMRI brain slice
thresholded to show
p-values below 10−4 and
overlaid onto an image of
the slice. Colours indicate
differential responses
within each cluster. An
area of activation is shown
in the visual cortex.
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• Formal training/validation/test sets, or the cross-validatory equiva-
lents, are a very general and safe approach.

• ‘Regression diagnostics’ are often based on approximations to over-
fitting or case deletion. Now we can (and some of us do) fit extended
models with smooth terms or use fitting algorithms that downweight
groups of points. (I rarely use least squares these days.) It is still all
too easy to select a complex model just to account for a tiny proportion
of aberrant observations.

• Alternative explanations with roughly equal support are common-
place. Model averaging seems a good solution. Selecting several
models, studying their predictions and taking a consensus is also a
good idea, when time permits and when non-quantitative information
is available.



Epilogue

My memory (which I hope is reliable enough) is that I first encountered
‘Nelder’ as an commentator in an ornithology journal, playing Sherlock
Holmes over the suspiciously large number of rare birds reported from near
Hastings at around the turn of the 20th century.

My friend and co-author Bill Venables (an avid birdwatcher) tells me John
is celebrating his 80th birthday by birdwatching in Australia, including
visiting Kakadu National Park in NT (highly recommended from our 2003
visit).

So here is a little practice, with an Australian bias.


