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In discrete multivariate analysis we suppose we have several categorical factors measured for each case.
Unlike logistic regression and (most instances) of log-linear models we will be interested in problems
where most of the factors are responses and not history variables.

1 Correspondence Analysis

Correspondence analysis is applied to two-way tables of counts, especially large tables. A small exam-
ple is Fisher’s (1940) data on colours of eyes and hair of people in Caithness, Scotland:

fair red medium dark black
blue 326 38 241 110 3
light 688 116 584 188 4

medium 343 84 909 412 26
dark 98 48 403 681 85

which Fisher used for an early example of correspondence analysis. However, the names comes from
the Francophone school of analyses des donńees who called it l’analyse factorielle de correspondences;
the principal developer is Benzecri. Because like PCA the method can be seen in several different ways,
there has been a lot of confusion in the literature until recently.

Suppose we have an r × c table N of counts. Fisher sought ‘scores’ f and g for the rows and columns
which are maximally correlated. Each individual has a row label and a column label, and we can
associate a score with each label, so each individual has two numeric variables, and we look at the
sample correlation of these. (Just to be confusing, in this field variances are normally computed without
subtracting the mean.) Clearly the maximum ‘correlation’ is one, attained by constant scores, so we
seek the largest non-trivial solution.

Let R and C be matrices of the group indicators1 of the rows and columns, so RTC = N . Then the
‘correlation’ matrix is

Xij =
nij/n − (ni·/n)(n·j/n)

√
(ni·/n)(n·j/n)

=
nij − n ri cj

n
√

ri cj

where ri = ni·/n and cj = n·j/n are the proportions in each row and column. This should be familiar,
as

∑
i,j X2

ij is the chi-squared test of no association in the table, that is of independence of the row
and column attributes. In the terminology of correspondence analysis, the row profile is (ri) and the
column profile is (ci), and the chi-squared test is of differences in the row profiles (or equivalently, in
the column profiles). Let Dr and Dc be the diagonal matrices of (ri) and (cj) respectively.

Fisher’s analysis corresponds to forming the singular value decomposition X = UλVT and selecting
the first singular value and left and right singular vectors of Xij and rescaling by (ri)−1/2 and (cj)−1/2,
respectively. So this is a sort of weighted decomposition of N , adjusting for the difference prevalences
of different rows and columns.

This is done by function corresp in library MASS:

1so R is a n × r matrix of zeroes and ones, with a single one in each row, and analogously for C.

1



-0.4 -0.2 0.0 0.2 0.4 0.6

-0
.4

-0
.2

0.
0

0.
2

0.
4

0.
6

blue

light

medium

dark

-0.5 0.0 0.5 1.0

-0
.5

0.
0

0.
5

1.
0

F

R

M

D

B

symmetric

-1 0 1 2

-1
0

1
2

bluelight

medium

dark

-1 0 1 2

-1
0

1
2

F

R

M

D

B

rows

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

blue

light

medium

dark

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

F
R

M

D

B

columns

Figure 1: Three variants of correspondence analysis plots from Fisher’s data on people in Caithness:
(left) ‘symmetric”, (middle) ‘row asymmetric’ and (right) ‘column asymmetric’.

> corresp(caith)
First canonical correlation(s): 0.44637

eyes scores:
blue light medium dark

-0.89679 -0.98732 0.075306 1.5743

hair scores:
fair red medium dark black

-1.2187 -0.52258 -0.094147 1.3189 2.4518

Can we make use of the second and further singular values? In what Gower & Hand (1996) call
‘classical CA’ we consider A = D

−1/2
r UΛ and B = D

−1/2
c V Λ. Then the first columns of A and B

are what we have termed the row and column scores scaled by ρ, the first canonical correlation. More
generally, we can see distances between the rows of A as approximating the distances between the row
profiles, and analogously for the rows of B and the column profiles.

Classical CA plots the first two columns of A and B on the same figure. This is a form of a biplot,
sometimes known as a ‘symmetric’ plot. Note that unlike PCA biplots, the Λ enters in both A and B.
Other authors (for example, Greenacre, 1992) advocate ‘asymmetric’ plots. The asymmetric plot for
the rows is a plot of the first two columns of A with the column labels plotted at the first two columns
of Γ = D

−1/2
c V ; the corresponding plot for the columns has columns plotted at B and row labels at

Φ = D
−1/2
r U . These are much closer to PCA biplots for the rows and columns respectively.

The two-dimensional forms of the plot are shown in Figure 1. These were produced by

caith2 <- caith # make shorter labels
dimnames(caith2)[[2]] <- c("F", "R", "M", "D", "B")
par(mfcol = c(1, 3))
plot(corresp(caith2, nf = 2)); title("symmetric")
plot(corresp(caith2, nf = 2), type = "rows"); title("rows")
plot(corresp(caith2, nf = 2), type = "col"); title("columns")

Note that the symmetric plot (left) has the row points from the asymmetric row plot (middle) and
the column points from the asymmetric column plot (right) superimposed on the same plot (but with
different scales).
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2 Multiple correspondence analysis

Multiple correspondence analysis (MCA) is (confusingly!) a method for visualizing the joint properties
of p � 2 categorical variables that does not reduce to correspondence analysis (CA) for p = 2, although
the methods are closely related (see, for example, Gower & Hand, 1996, §10.2).

Suppose we have n observations on the p factors with � total levels. Consider G, the n × � indicator
matrix whose rows give the levels of each factor for each observation. Then all the row sums are
p. MCA is often (Greenacre, 1992) defined as CA applied to the table G, that is the singular-value
decomposition of D

−1/2
r (G/

∑
ij gij)D

−1/2
c = UΛV T . Note that Dr = pI since all the row sums are

p, and
∑

ij gij = np, so this amounts to the SVD of p−1/2GD
−1/2
c /pn.

An alternative point of view is that MCA is a principal components analysis of the data matrix X =
G(pDc)−1/2; with PCA it is usual to centre the data, but it transpires that the largest singular value
is one and the corresponding singular vectors account for the means of the variables. A simple plot
for MCA is to plot the first two principal components of X (which correspond to the second and third
singular vectors of X). This is a form of biplot, but it will not be appropriate to add axes for the
columns of X as the possible values are only {0, 1}, but it is usual to add the positions of 1 on each
of these axes, and label these by the factor level. (The ‘axis’ points are plotted at the appropriate row
of (pDc)−1/2V .) The point plotted for each observation is the vector sum of the ‘axis’ points for the
levels taken of each of the factors. Gower and Hand seem to prefer (e.g., their Figure 4.2) to rescale
the plotted points by p, so they are plotted at the centroid of their levels. This is exactly the asymmetric
row plot of the CA of G, apart from an overall scale factor of p

√
n.

We can apply this to the example of (Gower & Hand, 1996, p. 75) by

farms.mca <- mca(farms, abbrev = T) # Use levels as names
plot(farms.mca, cex = rep(0.7, 2), axes = F)
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Figure 2: Multiple correspondence analysis plot of dataset farms on 20 farms on the Dutch island of
Terschelling. Numbers represent the farms and labels levels of moisture (M1, M2, M4 and M5), grassland
usage (U1, U2 and U3), manure usage (C0 to C4) and type of grassland management (SF: standard,
BF: biological, HF: hobby farming, NM: nature conservation). Levels C0 and NM are coincident (on the
extreme left), as are the pairs of farms 3 & 4 and 19 & 20.
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