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Bayesian approaches

Note the plural — I think Bayesians are rarely Bayesian in their model
selection, and Geisser’s quote showed that model choice is perhaps not a
strict Bayesian concept.

Assume M (finite) models, exactly one of which is true, and let T indicate
the data in the training set.

In the Bayesian formulation, models are compared via P{M |T}, the pos-
terior probability assigned to model M .

P{M |T} ∝ p(T |M)pM ,

p(T |M) =

∫
p(T |M, θ)p(θ) dθ

so the ratio in comparing models M1 and M2 is proportional to
p(T |M2)/p(T |M1), known as the Bayes factor.

We assume (often implicitly) that models have equal prior probabilities.



However, a formal Bayesian approach then averages predictions from mod-
els, weighting by P{M |T}, unless a very peculiar loss function is in use.
And this has been used for a long time, despite recent attempts to claim the
credit for ‘Bayesian Model Averaging’.

Suppose we just use the Bayes factor as a guide. The difficulty is in evaluat-
ing p(T |M). Asymptotics are not very useful for Bayesian methods, as the
prior on θ is often very important in providing smoothing, yet asymptotically
negligible.

We can expand out the log posterior density via a Laplace approximation
and drop various terms, eventually reaching

log p(T |M) ≈ const + L(θ̂;T)− 1
2 log |H|.

where H is the Hessian of the log-likelihood and we needed to assume that
the prior is diffuse.



BIC aka SBC

For an iid random sample of size n from the assumed model, the penalty
might be roughly proportional to −(12 log n) p provided the parameters are
identifiable. This is Schwarz’s BIC up to a factor of minus two. As with
AIC, the model with minimal BIC is chosen. Thus

BIC = −2 log p(T |M) + const ≈ −2L(θ̂;T) + (log n) p

There are a number of variants, depending on e.g. which terms are dropped
in the approximations and what estimator is used for θ̂ (MLE, MAP, . . . ).



Crucial assumptions

1. The data were derived as an iid sample. (What about e.g. random
effects models? Originally for linear models only.)

2. Choosing a single model is relevant in the Bayesian approach.

3. There is a true model.

4. The prior can be neglected. We may not obtain much information
about parameters which are rarely effective, even in very large sam-
ples.

5. The simple asymptotics are adequate and that the rate of data collec-
tion on each parameter would be the same. We should be interested in
comparing different models for the same n, and in many problems p
will be comparable with n.

Note that as this is trying to choose an explanation, we would expect it to
neither systematically overfit nor underfit.



BIC vs the exact formula, for variable selection in a 4-variable logistic
regression on 189 subjects.



Hannan–Quinn and asymptotics

The criterion of Hannan & Quinn (1979) is

HQ = 2L(θ̂;T)− (2c log log n)p

where c > 1 is a constant. It was originally derived for determining the
(true) order p0 of an AR(p) process.

Like BIC it is (under regularity conditions) strongly consistent: that is if
there is a single true p the strategy of using BIC or HQ will asymptotically
choose p with probability tending to one. This is also true of AIC.

If there is not a true p we can ask for the model which is least false, that the
P̂ which is closest to the true P in the sense of Kullback-Leibler divergence.

The problem is that for nested models such as AR(p), if one model is true
then so is any larger model. In that case, BIC and HQ are still strongly
consistent, but AIC will tend to choose increasingly complex models and
will select an order p̂ ≥ p0 with probability tending to one.



For prediction, the relevant asymptotics concern the efficiency of the pre-
dictions, for example the mean square error or error rate of the predictions.

For variable selection in a regression, AIC, PRESS and Cp are asymptot-
ically efficient, and BIC and HQ are not. Similarly for AR(p), AIC and
AICC are asymptotically efficient and BIC and HQ are not.

Best of both worlds?

AIC has desirable asymptotic properties for prediction and BIC for expla-
nation. Is it possible to have both?

People have tried, but Yang (Biometrika 2005) showed that the answer is
essentially no (and still no if model averaging is allowed).



Example – Blood groups

Landsteiner’s classification of human blood groups as [O A B AB] clearly
suggests two ‘antigenes’ are involved (O = ‘ohne’). There were two theories
as to what Mendelian genetics are involved: one had three alleles at a single
locus, the other two alleles at each of two loci, each of which give two-
parameter models for the frequencies of occurrences of the blood types.

Bernstein (1924) collected data on 502 Japanese living in Korea, and found
NA = 212, NB = 103, NAB = 39, NO = 148. This gives −2L(θ̂;T) (at the
MLEs) of 1254.2 and 1293.9.

The models are not nested, and they have the same number of free param-
eters. So although we cannot use a testing framework (except perhaps that
of Cox (1961)), both AIC and BIC can be used and strongly support the
single-locus model.



Deviance Information Criterion (DIC)

From Spiegelhalter et al. (2002).

For a Bayesian setting where prior information is not negligible, and the
model is assumed to be a good approximation but not necessarily true.

Consider the deviance to be

D(θ) = deviance(θ) = const(T)− 2L(θ;T)

In GLMs we use D(θ̂) as the (scaled) (residual) deviance.

Define
pD = D(θ)−D(θ)

The first overline means averaging θ over p(θ |T), and the second means our
estimate of the ‘least false’ parameter value, usually the posterior mean of θ
(but perhaps the median or mode of the posterior distribution). Then define

DIC = D(θ) + 2 pD



Clearly DIC is AIC-like, but

• Like NIC it allows for non-ML fitting, in particular it can incorporate
the regularization effect of the prior that should reduce the effective
number of parameters.

• It is not necessary (but is usual) that pD ≥ 0.

• DIC is explicitly meant to apply to non-nested non-IID problems.

• DIC is intended to be approximated via MCMC samples from the pos-
terior density of θ given T. On the other hand, DIC needs an explicit
formula for the likelihood (up to a model-independent normalizing
constant).

In practice pD is often close to p, and indeed asymptotically is equivalent to
the modified p used by Takeuchi and in NIC.



Focussed Information Criterion (FIC)

AIC is aimed at prediction in general, but supposed we are interested in a
specific prediction. Claeskens & Hjort (2003–) considered how this should
affect the strategy for model selection. The criterion they derive is rather
complicated, but called FIC.

Suppose we have a (multiple) linear regression and we are interested in
prediction at a specific point in the covariate space, or we are interested
in a single regression coefficient. Then it is reasonable that the model we
choose for prediction might depend on which point or which coefficient.

Note though that that applies to the whole model selection strategy, not just
to a formal criterion—the panoply of models will very likely depend on the
question.



Example of FIC

A classic example is the dataset menarche in MASS on age of menarche of
3918 girls in Warsaw. This can be fitted by a logistic regression, but there is
some evidence that non-linear terms in age are needed, especially for small
ages.

Thus FIC selects a linear model for predictions near the center of the age
distribution, a quadratic model for the first quartile and a quartic model for
prediction of the 1% quantile (at 10.76 years).

However, there are some strange features of this dataset: 27% of the data
are observations that all 1049 17-year-old girls had reached menarche. It is
unclear that using all the data (or an unweighted MLE) is appropriate for the
questions asked.



Shrinkage

The reason we might want to use variable selection for prediction is not
that we think some of the variables are irrelevant (if we did, why were they
measured in the first place?), but that they are not relevant enough.

The issue is the age-old one of bias vs variance. Adding a weakly relevant
variable reduces the bias of the predictions, but it also increases the uncer-
tainty of the predictions.

Consider a multiple linear regression. For small values of the true regression
coefficient βi, the mean square error of the (interesting) predictions will
decrease if β̂i is forced to be zero, whereas for larger values it will increase.
Criteria such as FIC are estimating if the effect of dropping the variable is
beneficial.

Can we avoid this? Yes, if we don’t force β̂i to zero, but we shrink it towards
zero. This results in biased but less variable predictions.



Ridge regression

For this slide only suppose we have an orthogonal (or even orthonormal)
regression.

Suppose we shrink all our regression coefficients (or all but the intercept) by
a factor λ for 0 < λ ≤ 1. You can show that this always reduces the MSE
for small λ. So some (unknown) amount of shrinkage is always worthwhile.
James & Stein showed that for p > 2 there was a formula for shrinkage that
would always reduce MSE, but unfortunately it might correspond to λ < 0.
Sclove’s variant is

β̃i =
(
1− c

F

)+
β̂i

where c > 0 and F is the F -statistic for all the coefficients being zero.

(http://www.stat.ucla.edu/~cocteau/stat120b/lectures/
lecture4.pdf).



In ridge regression we minimize the sum of squares plus λ times the sum
of squares of the coefficients (usually omitting the intercept, and suitably
scaling the variables).

Lots of related ideas, including really setting small β̃i = 0 and shrinking
larger ones (e.g. ‘LASSO’).



Model averaging

For prediction purposes (and that applies to almost all Bayesians) we should
average the predictions over models. We do not choose a single model.

What do we average? Basic decision theory tells us:

The probability predictions made by the models.

For linear regression this amounts to averaging the coefficients over the
models (being zero where a regressor is excluded), and this becomes a form
of shrinkage.
[Other forms of shrinkage like ridge regression may be as good at very much
lower computational cost.]

Note that we may not want to average over all models. We may want to
choose a subset for computational reasons, or for plausibility.



How do we choose the weights?

• In the Bayesian theory this is clear, via the Bayes factors. In practice
this is discredited. Even if we can compute them accurately (and via
MCMC we may have a chance), we assume that one and exactly one
model is true. [Box quote!] In practice Bayes factors can depend
heavily on aspects of model inadequacy which are of no interest.

• Via cross-validation (goes back to Stone, 1974).

• Via bootstrapping (LeBlanc & Tibshirani, 1993).

• As an extended estimation problem, with the weights depending on
the sample via a model (e.g. a multiple logistic); so-called stacked
generalization and mixtures of experts.



Bagging, boosting, random forests

Model averaging ideas have been much explored in the field of classification
trees.

In bagging models are fitted from bootstrap resamples of the data, and
weighted equally.

In boosting each additional model is chosen to (attempt to) repair the
inadequacies of the current averaged model by resampling biased towards
the mistakes.

In random forests the tree-construction algorithm randomly restricts itself at
the choice of each split.



(Practical) model selection in 2010

• The concept of a model ought to be much, much larger than in 1977.
Even in the 1990s people attempted to fit neural networks with half a
million free parameters.

• Many models are not fitted by maximum likelihood, to very large
datasets.

• Model classes can often overlap in quite extensive ways.



Calibrating GAG in urine

Susan Prosser measured the concentration of the chemical GAG in the urine
of 314 children aged 0—18 years. Her aim was to establish ‘normal’ levels
at different ages.
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Clearly we want to fit a smooth curve. What? Polynomial? Exponential?

Choosing the degree of a polynomial by F-tests gives degree 6.
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Is this good enough?

Smoothing splines would be the numerical analyst’s way to fit a smooth
curve to such a scatterplot. The issue is ‘how smooth’ and in this example it
has been chosen automatically by GCV.

> plot(GAGurine, pch=20)

> lines(smooth.spline(Age, GAG), lwd = 3, col="blue")

Neural networks are another global non-linear model that are usually fitted
by penalized least squares.

An alternative would be local polynomials, using a kernel to define ‘local’
and choosing the bandwidth automatically.

> plot(GAGurine, pch=20)

> (h <- dpill(Age, GAG))

> lines(locpoly(Age, GAG, degree = 0, bandwidth = h))

> lines(locpoly(Age, GAG, degree = 1, bandwidth = h), lty = 3)

> lines(locpoly(Age, GAG, degree = 2, bandwidth = h), lty = 4)
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(Practical) model selection in 2010

. . .

• There are lots of formal ‘figures of adequacy’ for a model. Some have
proved quite useful, but

– Their variability as estimators can be worrying large.

– Computation, e.g. of ‘effective number of degrees of freedom’,
can be difficult.

– Their implicit measure of performance can be overly sensitive
to certain aspects of the model which are not relevant to our
problem.

The assumptions of the theories need to be checked, as the criteria are
used way outside their known spheres of validity (and in some cases
where they are clearly not valid).

• Nowadays people do tens of thousands of significance tests, or more.



Plotting multiple p values

p-value image of a single
fMRI brain slice
thresholded to show
p-values below 10−4 and
overlaid onto an image of
the slice. Colours indicate
differential responses
within each cluster. An
area of activation is shown
in the visual cortex.

10
−4

10
−5

10
−6

10
−7

10
−8

10
−9

10
−10



• Formal training/validation/test sets, or the cross-validatory equiva-
lents, are a very general and safe approach.

• ‘Regression diagnostics’ are often based on approximations to over-
fitting or case deletion. Now we can (and some of us do) fit extended
models with smooth terms or use fitting algorithms that downweight
groups of points. (I rarely use least squares these days.) It is still all
too easy to select a complex model just to account for a tiny proportion
of aberrant observations.

• Alternative explanations with roughly equal support are common-
place. Model averaging seems a good solution. Selecting several
models, studying their predictions and taking a consensus is also a
good idea, when time permits and when non-quantitative information
is available.


