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Manifesto

Statisticians and other users of statistical methods have been choosing
models for a long time, but the current availability of large amounts of data
and of computational resources means that model selection is now being
done on a scale which was not dreamt of a generation ago.

Unfortunately, the practical issues are probably less widely appreciated than
they used to be, as statistical software and the advent of AIC, BIC (and so
on) has made it so much easier for the end user to trawl through literally
thousands of models (and in some cases many more).

Traditional distinctions between ‘parametric’ and ‘non-parametric’ models
are often moot, when people now (attempt to) fit neural networks with half
a million parameters.



What is a model?

Of the senses you will find in a dictionary, the most appropriate is

a simplified (often mathematical) description of a system etc. to
assist calculations and predictions.

(Ω,F, P ) ? The issue is what P represents:

• A true (and completely known) generating mechanism.

• Some convenient and partially known mechanism, so usually one of
(Pθ, θ ∈ Θ).

• Our best understanding of the generating mechanism after parameter
estimation and (perhaps) model choice.



Where do the models come from?

• Sometimes a set of models is provided based on subject-matter theory.
In my experience good theory is very rare. Sometimes called mech-
anistic models. One example is the Black–Scholes theory of option
pricing.

• Most often some simple restrictions are placed on the behaviour we
expect to find, for example linear models, AR(p) processes, factorial
models with limited interactions. Sometimes called empirical models.

Note that these can be very broad classes if transformations of vari-
ables (on both sides) are allowed.

• We now have model classes that can approximate any reasonable
model, for example neural networks. And we may have subsets within
these such as (generalized) additive models. Nowadays we may have
the data and the computational resources to fit such models.



What are models good for?

This is often taken for granted.

• For explanation, to test a possible causal mechanism.

• For prediction.

• For decision making (which is more or less the same as prediction).

• For adjustment.

Quite a lot of the discussion in the literature is (it seems to me) at cross-
purposes because it is making different and unstated assumptions about the
purpose of models.



The purpose of models is not to fit the data but to sharpen the
questions.

Samuel Karlin, 1983
(11th R A Fisher Memorial Lecture)

A theory has only the alternative of being right or wrong. A
model has a third possibility: it may be right, but irrelevant.

Manfred Eigen, 1973

No one trusts a model except the person who wrote it. Everyone
trusts an observation except the person who made it.



Why do we want to choose a model?

It took me a long while to realize how profound a question that was.

For explanation, Occam’s razor applies and we want

an explanation that is as simple as possible,
but no simpler

attrib Einstein

and we do have a concept of a ‘true’ model, or at least a model that is a good
working approximation to the truth, for

all models are false, but some are useful
George Box, 1976

Explanation is like doing scientific research.



On the other hand, prediction is like doing engineering development. All
that matters is that it works. And if the aim is prediction, model choice
should be based on the quality of the predictions.

Workers in pattern recognition have long recognised this, and used valida-
tion sets to choose between models, and test sets to assess the quality of the
predictions from the chosen model.

One of my favourite teaching examples is

Ein-Dor, P. & Feldmesser, J. (1987) Attributes of the perfor-
mance of central processing units: a relative performance pre-
diction model. Communications of the ACM 30, 308–317.

which despite its title selects a subset of transformed variables. The paper is
a wonderful example of how not to do that, too.



More on CPUs’ performance

There were six machine characteristics on 209 computer ‘models’:

• the cycle time (nanoseconds),

• the cache size (Kb),

• the minimum and maximum possible main memory size (Kb)

• the minimum and maximum possible number of channels.

How much memory and how many channels the actual machine tested had
is unspecified.

The original paper gave a linear regression for the square root of perfor-
mance, but log scale looks more intuitive. We have a methodology to test
that, from Box & Cox (1964).



Box–Cox transformations
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That is not what we were expecting!



Caveat: what did we transform?

We only transformed the response: it is natural to transform the regressors as
well, so we need to choose several transformations simultaneously. We have
technology to do that, even with non-parametric smooth functions (ACE,
AVAS, . . . ) but it is not very reliable.

Old-fashioned methods work: we discretized the continuous regressors into
four groups and used these as categorical predictors.



Box–Cox transformations revisited
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which is rather satisfying. We need a broad enough class of models.



Plug-in vs predictive approaches

The way we teach applied statistics we

• posit a parametric model (Pθ, θ ∈ Θ).

• estimate the parameters as θ̂.

• (perhaps) do some diagnostic checks on the fit of Pθ̂.

• (to a very large extent) act as if Pθ̂ is the ‘true’ model.

In the pattern recognition literature this is known as the plug-in approach.

For a long time a few people objected, notably Aitchison and Geisser. They
said that we should be using

P̂ (A) =

∫
Pθ(A)p(θ | data) dθ

known as the predictive approach.



In this approach the P of our model is our current best summary of our
knowledge about the data-generating mechanism.

This does seem the right thing to use for prediction and decision-making
purposes. For many simple families of models (linear regression, linear
discriminant analysis) is makes only a little difference, but for others (e.g.
logistic regression) it does.

Note that this is more general than it seems at first sight, as variable selection
problems (for example) reduce to setting some components of θ to zero.
Thus the predictive approach involves averaging over uncertainty between
(narrow-sense) models as well as within parametric models.



Why select a model at all?

It does seem a widespread misconception that model choice is about

choosing the best model

For explanation we ought to be alert to the possibility of there being several
(roughly) equally good explanatory models.

I learnt that from David Cox after having already done a lot of informal
model choice in applied problems in which I would have benefited from
offering several alternative solutions.

Simplicity helps both with communicating the concepts embodied in the
model and in what psychologists call generalization, the ability to ‘work’
in scenarios very different from those in which the model was studied. So
there is a premium on few models.



For prediction I find a good analogy is that of choosing between expert
opinions: if you have access to a large panel of experts, how would you
use their opinions?

People do tend to pick one expert (‘guru’) and listen to him/her, but it would
seem better to seek a consensus view, which translates to model averaging
rather than model choice. Our analogy is with experts, which implies some
prior selection of people with a track record: one related statistical idea is
the Occam’s window (Madigan & Raftery, 1994) which keeps only models
with a reasonable record.

Because the model may be used in scenarios very different from those in
which it was tested, generalization is still important, and other things being
equal a mechanistic model or a simple empirical model has more chance of
reflecting the data-generation mechanism and so of generalizing. But other
things rarely are equal.



All the models/experts may be wrong

Note that taking a consensus view only helps sometimes with generalization.

Draper (1995) has a graph of predictions of oil prices for 1981–90 made
in 1980. The analysts were all confident, differed considerably from each
other, and were all way off — the oil price was $13 in 1986!



Computational cost

A major reason to choose a model appears still to be computational cost, a
viewpoint of Geisser (1993). Even if we can fit large families of models, we
may have time to consider the predictions only from a few.

The question then is what we do once we select the best model?
Presumably it affords the “best” single description amongst
those entertained. Should we now use it for prediction? If we
do, we know it is not optimal under any loss function except one
that reflects a principle of parsimony that states one should only
use one of the models for prediction.

A much-quoted example is a NIST study on reading hand-written ZIP codes,
which have to be read in about 1/2 second each to be useful in a sorting
machine. The best known predictions come by combining tens of models.



Models for adjustment

Here is a usage where selection is hard to defend.

The MSc Case Studies class has considered two problems where linear
regression models were used for adjustment.

Effect of lead on blood pressure

Measurements of systolic blood pressure on over 20,300 males. Interest is
in predict change in blood pressure with exposure to lead (as measured by
blood samples). Stepwise selection was done on ca 40 possible adjustment
variables.

Effect of punishment on crime rates

Ehrlich’s data on crime rates in 47 US states, with 15 explanatory variables,
12 for adjustment and three of interest (income inequality, probability of
imprisonment, length of sentence).



An historical perspective — Model choice in 1977

That’s when I started to learn about this.

• The set of models one could consider was severely limited by com-
putational constraints, although packages such as GLIM 3.77 were
becoming available.

• Stepwise selection was the main formal tool, using hypothesis tests
between a pair of nested models, e.g. F tests for regressions.
Few people did enough tests to worry much about multiple compar-
isons issues.

• Residual plots were used, but they were crude plots and limited to
small datasets.

There was very little attempt to deal with choosing between models that
were genuinely different explanations: Cox’s (1961) ‘tests of separate fam-
ilies of hypotheses’ existed but was little known and less used.
But the world was changing . . . .



Cross-validation

A much misunderstood topic!

Leave-one-out CV

The idea is that given a dataset of N points, we use our model-building
procedure on each subset of size N − 1, and predict the point we left
out. Then the set of predictions can be summarized by some measure of
prediction accuracy. Idea goes back at least as far as Mosteller & Wallace
(1963), and Allen’s (1971, 4) PRESS (prediction sum-of-squares) used this
to choose a set of variables in linear regression.

Stone (1974) / Geisser (1975) pointed out we could apply this to many
aspects of model choice, including parameter estimation.

NB: This is not jackknifing a la Quenouille and Tukey.

Having to do model-building N times can be prohibitive unless there are
computational shortcuts.



V-fold cross-validation

Divide the data into V sets, and amalgamate V−1 of them, build a model and
predict the result for the remaining set. Do this V times leaving a different
set out each time.

How big should V be? We want the model-building problem to be realistic,
so want to leave out a small proportion. We don’t want too much work. So
usually V is 3–10.

One early advocate of this was the CART book (Breiman, Friedman, Olshen
& Stone, 1984) and program.



Does it work?

Leave-one-out CV does not work well in general. It makes too small
changes to the fit.

10-fold CV often works well, but sometimes the result is very sensitive to
the partitioning used. We can ‘average’ over several random partitions.

Often better for comparisons than for absolute values of performance.

How prediction accuracy is measured can be critical.



AIC, BIC and all that

Akaike (1973, 1974) introduced a criterion for model adequacy, first for
time-series models and then more generally. He relates how his secretary
suggested he call it ‘An Information Criterion’, AIC.

This has a very appealing simplicity:

AIC = −2 log(maximized likelihood) + 2p

where p is the number of estimated parameters. Choose the model with the
smallest AIC (and perhaps retain all models within 2 of the minimum).

Despite that, quite a few people have managed to get it wrong!

This is similar to Mallows’ Cp criterion for regression,

Cp = RSS/σ2 + 2p−N

and is the same if σ2 is known. Both are of the form

measure of fit + complexity penalty



Schwarz’s (1978) criterion, often called BIC or SBC, replaces 2 by log n for
a suitable definition of n, the size of the dataset. In the original regression
context this is just the number of cases.

BIC was anticipated by work of Harold Jeffreys in the 1930’s.



Derivation of AIC

Suppose we have a dataset of size N , and we fit a model to it by maximum
likelihood, and measure the fit by the deviance D (constant minus twice
maximized log-likelihood). Suppose we have m (finite) nested models.

Hypothetically, suppose we have another dataset of the same size, and we
compute the deviance D∗ for that dataset at the MLE for the first dataset.
We would expect that D∗ would be bigger than D, on average. In between
would be the valueD′ if we had evaluated the deviance at the true parameter
values. Some Taylor-series expansions show that

ED∗ − ED′ ≈ p, E D′ − ED ≈ p

and hence AIC = D + 2p is (to this order) an unbiased estimator of ED∗.
And that is a reasonable measure of performance, the Kullback-Leibler
divergence between the true model and the plug-in model (at the MLE).

These expectations are over the dataset under the assumed model.



Crucial assumptions

1. The model is true! Suppose we use this to select the order of anAR(p)

model. If the data really came from an AR(p0) model, all models with
p ≥ p0 are true, but those with p < p0 are not even approximately true.

This assumption can be relaxed. Takeuchi (1976) did so, and his result
has been rediscovered by Stone (1977) and many times since. p gets
replaced by a much more complicated formula.

2. The models are nested – AIC is widely used when they are not.

3. Fitting is by maximum likelihood. Nowadays many models are fitted
by penalized methods or Bayesian averaging . . . . That can be worked
through too, in NIC or Moody’s peff.



4. The Taylor-series approximations are adequate. People have tried
various refinements, notably AICC (or AICc) given by

AICC = D + 2p
( N

N − p− 1

)
Also, the MLEs need to be in the interior of the parameter space, even
when a simpler or alternative model is true. (Not likely to be true for
variance components for example.)

5. AIC is a reasonably good estimator of ED∗, or at least that dif-
ferences between models in AIC are reasonably good estimators of
differences in ED∗.

This seems the Achilles’ heel of AIC.
AIC = Op(N) but the variability as an estimate is Op(

√
N). This

reduces to Op(1) for differences between models provided they are
nested.



AIC has been criticised in asymptotic studies and simulation studies for
tending to over-fit, that is choose a model at least as large as the true model.
That is a virtue, not a deficiency: this is a prediction-based criterion, not an
explanation-based one.

AIC is asymptotically equivalent to leave-one-out CV for iid samples and
using deviance as the loss function (Stone, 1977), and in fact even when the
model is not true NIC is equivalent (Ripley, 1996).



Next week’s lecture

• Other formal criteria, especially those with a Bayesian flavour.

• Selection where we have a specific goal in mind (FIC)

• Shrinking rather than dropping variables.

• Combining different models.

• The state of the art in 2010.


