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Traditionally a ‘model’ is a family of probability distributions for the observed
data parametrized by a set of parameters (of fixed and finite dimension), but it is
often helpful to consider all the models considered as subsets of one model, as well
as some even larger models used in ‘over-fitting’ as part of the validation process.
Traditional distinctions between ‘parametric’ and ‘non-parametric’ models are of-
ten moot, when people now (attempt to) fit neural networks with half a million
parameters. We consider how to select in such model classes.

Statisticians and other users of statistical methods have been choosing
models for a long time, but the current availability of large amounts of
data and of computational resources means that model choice is now being
done on a scale which was not dreamt of 25 years ago. Unfortunately, the
practical issues are probably less widely appreciated than they used to be,
as statistical software has made it so much easier for the end user to trawl
through literally thousands of models (and in some cases many more).

Model choice is a large subject, and this paper deliberately chooses to
look at only some aspects of it, most particularly some of the misunder-
standings about formal methods such as AIC and cross-validation. Whole
books have been written about these and other aspects: two recent ones
are Harrell (2001) and Burnham and Anderson (2002).

1. Why do we want to select a model?

I have slowly come to realize that this is an important question and one
that is asked too seldom. First we need to ask where do our models come
from?

• Sometimes a set of models is provided based on subject-matter
theory. In my experience good theory is very rare. Sometimes
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these are called mechanistic models. One example is the Black–
Scholes theory of option pricing, which is derived from a theory
and has been shown to be a good approximation, but not so good
that practically important improvements cannot be made.

• Most often some simple restrictions are placed on the behaviour
we expect to find, for example linear models, AR(p) processes,
factorial models with limited interactions. These are sometimes
called empirical models. Note that these can be very broad classes
if transformations of variables (on both sides) are allowed.

• We now have model classes that can approximate any reasonable
model, for example neural networks (Ripley, 1996). Nowadays we
may have the data and the computational resources to fit such
models, if not necessarily the understanding to fit them well.

The main distinction I would draw is between explanation and pre-
diction. Generally with the mechanistic models we are concerned with
explaining how the world works, even though the philosophy of science
teaches that we test models by their ability to predict. The third class of
models is unambiguously designed to give good predictions.

For the second class, we might be doing either. When people first started
to do agricultural experiments they were (it seems) both trying to find out
which factors had an effect, and for those that did, how large the effect
was. Nowadays many experiments are done with microarrays to find out
which few (out of thousands) of genes are expressed differently in different
experimental conditions. But regression and time-series models are most
commonly used for their predictive abilities.

For explanation, Occam’s razor applies and we want

an explanation that is as simple as possible, but no simpler
attrib Einstein

and we do have a concept of a ‘true’ model, or at least a model that is
a good working approximation to the truth. Simplicity helps both with
communicating the concepts embodied in the model and in what psychol-
ogists call generalization, the ability to ‘work’ in scenarios very different
from those in which the model was studied.

On the other hand, prediction is like doing engineering development.
All that matters is that it works, and if the aim is prediction, model selec-
tion should be based on the quality of the predictions. Workers in pattern
recognition have long recognised this, and used validation sets to choose
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between models, and test sets to assess the quality of the predictions from
the chosen model. Because the model may be used in scenarios very dif-
ferent from those in which it was tested, generalization is still important,
and other things being equal a mechanistic model or a simple empirical
model has more chance of reflecting the data-generation mechanism and so
of generalizing. But other things rarely are equal.

We should ask why we do want to choose a model. It does seem a
widespread misconception that model choice is about ‘choosing the best
model’. For explanation we ought to be alert to be possibility of there
being several (roughly) equally good explanatory models: when I was a
young Lecturer at Imperial College I learnt this from David Cox, having
already done a lot of informal model choice in applied problems in which I
would have benefited from offering several alternative solutions.

For prediction I find a good analogy is that of choosing between expert
opinions: if you have access to a large panel of experts, how would you
use their opinions? (See Cooke, 1991.) People do tend to pick one expert
and listen to him/her, but it would seem better to seek a consensus view,
which translates to model averaging rather than model choice. Our analogy
is with experts, which implies some prior selection of people with a track
record: one related statistical idea is the Occam’s window (Madigan and
Raftery, 1994) which keeps only models with a reasonable record.

A major reason to choose a model appears still to be computational
cost, a viewpoint of Geisser (1993, §4.1). This has become less relevant,
and we discuss model averaging in a later section. Note, though, that taking
a consensus view only helps sometimes with generalization. For example,
Draper (1995, p. 48) has a graph of predictions of oil prices for 1981–90
made in 1980. The analysts were all confident, differed considerably from
each other, and were all way off! Almost all of the uncertainty is in the
‘correct’ model for oil price movements, and the analysts’ models all seem
to be incorrect as prices went down when all the analysts predicted them
to rise.

Ein-Dor and Feldmesser (1987) provide an example of the confusion
between explanation and prediction that is one of my favourite teaching
examples. The title says they give a relative performance prediction model,
yet they selecta a subset of transformed variables in seeking an explanation.

athe paper is a wonderful example of how not to do that, too.
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2. A historical perspective

Let us look back 25 years to when I started to learn about this area. The
set of models one could consider was severely limited by computational
constraints, although packages such as GLIM 3.77 were becoming available.

Stepwise selection was the main formal tool, using hypothesis tests be-
tween a pair of nested models, e.g. F tests for regressions. Almost no
one did enough tests to worry much about issues of multiple comparison.
Nowadays people do tens of thousands of significance tests (see Marchini
and Ripley, 2000 for an example of mine).

Residual plots were used to help assess the fit of models, but they were
crude plots and limited to small datasets.

There was very little attempt to deal with choosing between models that
were genuinely different explanations: Cox (1961, 1962)’s ‘tests of separate
families of hypotheses’ existed but were little known and less used.

Formal methods of model choice were becoming available. Schwarz
(1978) had proposed a criterion sometimes called SBC or BIC, although
it seems to be due to Jeffreys in the 1930’s. Papers by Allen (1971, 1974)
and Akaike (1973, 1974) had introduced PRESS and AIC (Akaike’s An In-
formation Criterion) respectively. Cross-validation goes back at least as far
as Mosteller and Wallace (1963), and Stone (1974) has been read to the
Royal Statistical Society, to a less than appreciative audience.

Perhaps the only formal criterion that was in common use was Mallows’
Cp criterion for regression, which I am told was well known long before
Mallows’ first publication (Mallows, 1973).

My impression is that these developments were held back by the lack of
computational resources to try out large classes of models, and by the lack
of large datasets to present challenging problems.

3. Cross-validation

Cross-validation is a much misunderstood topic in the neural networks and
machine learning community.

The idea is of leave-one-out CV is that given a dataset of N points, we
use our model-building procedure on each subset of size N − 1, and predict
the point we left out. Then the set of predictions can be summarized by
some measure of prediction accuracy. Allen’s PRESS (prediction sum-of-
squares) used this to choose a set of variables in linear regression. Stone
(1974) and Geisser (1975) pointed out we could apply this to many aspects
of model choice, including parameter estimation. It is often confused with
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jackknifing a la Quenouille and Tukey.
Having to do model-building N times can be prohibitive unless there

are computational shortcuts.
In V -fold cross-validation we divide the data into V sets, amalgamate

V − 1 of them, build a model and predict the result for the remaining set.
Do this V times leaving a different set out each time. How big should V

be? We want the model-building problem to be realistic, so want to leave
out a small proportion. We do not want too much work, so usually V is
3–10. One early advocate of this was Breiman et al. (1984).

Leave-one-out CV does not work well in general, as it makes too small
changes to the fit. Ten-fold CV often works well, but sometimes the result
is very sensitive to the partitioning used, and it is often better for compar-
isons than for absolute values of performance. How prediction accuracy is
measured can be critical. We can now afford to average the results over
several random partitions.

Stone (1974, pp. 126–7) mentioned the idea of using cross-validation not
to choose between models but to combine them. This has been developed
by Wolpert (1992) under the name of stacked generalization.

4. AIC, BIC and all that

Akaike (1973, 1974) introduced a criterion for model adequacy, first for
time-series models and then more generally. He relates how his secretary
suggested he call it ‘An Information Criterion’, AIC. Two books largely
about this criterion are Sakamoto et al. (1986) and Burnham and Anderson
(2002).

This has a very appealing simplicity:

AIC = −2 log(maximized likelihood) + 2p

where p is the number of estimated parameters. Choose the model with
the smallest AIC (and perhaps retain all models within 2 of the minimum).
(Despite the simplicity, quite a few people have managed to get it wrong,
for example the step function in S-PLUS.) This is similar to Mallows’ Cp

criterion for regression,

Cp = RSS/σ2 + 2p − N

and is the same if σ2 is known. Both are of the form

measure of fit + complexity penalty
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Schwarz’s criterion, often called BIC, replaces 2 by log n for a suitable
definition of n, the size of the dataset. In the original regression context
this is just the number of cases.

Derivation of AIC

Suppose we have a dataset of size N , and we fit a model to it by maximum
likelihood, and measure the fit by the deviance D (constant minus twice
maximized log-likelihood). Suppose we have m (finite) nested models.

Hypothetically, suppose we have another dataset of the same size, and
we compute the deviance D∗ for that dataset at the MLE for the first
dataset. We would expect that D∗ would be bigger than D, on average. In
between would be the value D′ obtained if we had evaluated the deviance
at the true parameter values. Some Taylor-series expansions (e.g. Ripley,
1996, pp. 31–4) show that

E D∗ − E D′ ≈ p, E D′ − E D ≈ p

and hence AIC = D + 2p is (to this order) an unbiased estimator of E D∗.
The latter is a reasonable measure of performance, the Kullback-Leibler
divergence between the true model and the plug-in model (at the MLE).

These expectations are over the dataset under the assumed model.

Crucial assumptions

The assumptions needed for this argument are much less well known than
they should be, and AIC is often proposed (and used) to select between m

very different models.

(1) The model is true! Suppose we use this to select the order of an
AR(p) model. If the data really came from an AR(p0) model, all
models with p ≥ p0 are true, but those with p < p0 are not even
approximately true.

This assumption can be relaxed. Takeuchi (1976) did so, and his
result has been rediscovered by Stone (1977) and many times since.
However, p gets replaced by a much more complicated formula that
is not simple to measure.

(2) The models are nestedb – AIC is widely used when they are not.

bsee the bottom of page 615 in the reprint of Akaike (1973).
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(3) Fitting is by maximum likelihood. Nowadays many models are fit-
ted by penalized methods or Bayesian averaging . . . . That can be
worked through too, in NIC (Murata et al., 1991, 1993, 1994) or peff

(Moody, 1991, 1992).
(4) The Taylor-series approximations are adequate. People have tried

various refinements, notably AICC (or AICc) given by

AICC = D + 2p
( N

N − p + 1

)
Also, the MLEs need to be in the interior of the parameter space,
even when a simpler or alternative model is true. (This is not likely
to be true for variance components for example.)

(5) AIC is a reasonably good estimator of E D∗, or at least that dif-
ferences between models in AIC are reasonably good estimators of
differences in E D∗. This seems the Achilles’ heel of AIC. For N

independent samples we expect AIC = Op(N) but the variability
as an estimate is Op(

√
N). This reduces to Op(1) for differences

between models provided they are nested.

AIC has been criticised in asymptotic studies and simulation studies for
tending to over-fit, that is choose a model at least as large as the true model.
That is a virtue, not a deficiency: this is a prediction-based criterion, not
an explanation-based one.

AIC is asymptotically equivalent to leave-one-out CV for independent
identically distributed samples using deviance as the loss function (Stone,
1977), and in fact even when the model is not true NIC is equivalent (Ripley,
1996).

5. Bayesian Approaches

Note the plural — I think Bayesians are rarely Bayesian in their model
choices. Assume m (finite) models, exactly one of which is true.

In the Bayesian formulation (Bernardo and Smith, 1994; Draper, 1995),
models are compared via P{M | T }, the posterior probability assigned to
model M given the dataset T .

P{M | T } ∝ p(T |M)pM ,

p(T |M) =
∫

p(T |M, θ)p(θ) dθ
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so the ratio in comparing models M1 and M2 is proportional to
p(T |M2)/p(T |M1), known as the Bayes factor.

However, a formal Bayesian approach then averages predictions from
models, weighting by P{M | T }, unless a very peculiar loss function is in
use.

Suppose we just use the Bayes factor as a guide. The difficulty is in
evaluating p(T |M). Asymptotics are not useful for Bayesian methods, as
the prior on θ is often very important in providing smoothing, yet asymp-
totically negligible. One approximation is to take θ̂ as the mode of the
posterior density and V as the inverse of the Hessian of − log p(θ̂ | T ) (since
for a normal density this is the covariance matrix); we can hope to find θ̂

and V from the maximization of

log p(θ | T ) = L(θ; T ) + log p(θ) + const

Let E(θ) = −L(θ; T ) − log p(θ), so this has its minimum at θ̂ and Hessian
there of V −1.

p(T |M) =
∫

p(T | θ) p(θ) dθ =
∫

exp−E(θ) dθ

≈ exp−E(θ̂)
∫

exp[− 1
2 (θ − θ̂)T V −1(θ − θ̂)] dθ

= exp−E(θ̂) (2π)p/2|V |1/2

via a Laplace approximation to the integral. Thus

log p(T |M) ≈ L(θ̂; T ) + log p(θ̂) + p
2 log 2π + 1

2 log |V |.

It may be feasible to use this directly for model selection.
If we suppose θ has a prior which we may approximate by N(θ0, V0), we

have

log p(T |M) ≈ L(θ̂; T ) − 1
2 (θ̂ − θ0)T V −1

0 (θ̂ − θ0)
− 1

2 log |V0| + 1
2 log |V |

and V −1 is the sum of V −1
0 and the Hessian H of the log-likelihood at θ̂.

Thus

log p(T |M) ≈ L(θ̂; T ) − 1
2 (θ̂ − θ0)T V −1

0 (θ̂ − θ0) − 1
2 log |H |.

If we assume that the prior is very diffuse we can neglect the second term,
so the penalty on the log-likelihood is − 1

2 log |H |.
For a random sample of size n from the assumed model, this might be

roughly proportional to −(1
2 log n) p provided the parameters are identifi-

able. This is the proposal of Schwarz (1978).
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Crucial assumptions

(1) The data were generated as an independent, identically distributed
random sample, and originally for linear models only. It is not clear
what n should be for, say, a random effects model.

(2) Choosing a single model is relevant in the Bayesian approach.
(3) The model is true.
(4) The prior can be neglected. We may not obtain much informa-

tion about parameters which are rarely effective, even in very large
samples.

(5) The simple asymptotics are adequate and that the rate of data
collection on each parameter would be the same. We should be
interested in comparing different models for the same n, and in
many problems p will be comparable with n.

Note that as this is trying to choose an explanation, we would expect
BIC to neither overfit nor underfit, and there is some theoretical support
for that.

6. Deviance Information Criterion

Named by Spiegelhalter et al. (2002) in a Bayesian setting where prior
information is not negligible, and the model is assumed to be a good ap-
proximation but not necessarily true.

In GLMs (and elsewhere) the deviance is the difference in twice max-
imized log likelihood between the saturated model and the fitted model,
or

D(θ) = deviance(θ) = const(T ) − 2L(θ; T )

and in GLMs we use D(θ̂) as the (scaled) (residual) deviance.
Define

pD = D(θ) − D(θ)

The first overline means averaging θ over p(θ | T ), and the second means
our estimate of the ‘least false’ parameter value, usually the posterior mean
of θ (but perhaps the median or mode of the posterior distribution). Then
define

DIC = D(θ) + 2 pD

Clearly DIC is AIC-like, but
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• Like NIC it allows for non-ML fitting, in particular for the regular-
ization effect of the prior that should reduce the effective number
of parameters.

• It is not necessary (but is usual) that pD ≥ 0.
• DIC is explicitly meant to apply to non-nested non-IID problems.
• DIC is intended to be approximated via MCMC samples from the

posterior density of θ given T . On the other hand, DIC needs
an explicit formula for the likelihood (up to a model-independent
normalizing constant).

7. Model Averaging

For prediction purposes (and that applies to almost all Bayesians) we should
average the predictions over models. What do we average?

The probability predictions made by the models.

For linear regression this amounts to averaging the coefficients over the
models (being zero where a regressor is excluded), and this becomes a form
of shrinkage. Other forms of shrinkage like ridge regression may be as good
at very much lower computational cost.

Note that we may not want to average over all models. We may want
to choose a subset for computational reasons, or for plausibility.

How do we choose the weights?

In the Bayesian theory this is clear, via the Bayes factors. In practice this
is discredited. Even if we can compute them accurately (and via Markov
Chain Monte Carlo we may have a chance), we assume that one and exactly
one model is true. In practice Bayes factors can depend on aspects of model
inadequacy which are of no interest. I first encountered that in Ripley
(1992), where we fitted formal probability models to images (and therefore
had tens of thousands of observations). There was a common noise model
but different priors for the different models. We were able to calculate
Bayes factors approximately by MCMC in a week or so, and we pleased
to see that that the factors were very decisive. After some checking, we
discovered that they were very decisively picking the wrong model. There
was a ‘true’ model (the models represented different species of nematodes)
but a lot of investigation showed that the ‘noise’ model was interacting with
the texture of the nematodes.
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Alternative approaches are via cross-validation (goes back to Stone,
1974) and via bootstrapping (LeBlanc and Tibshirani, 1993). This can also
be viewed as an extended estimation problem, with the weights depend-
ing on the sample via a model (e.g. a multiple logistic); so-called stacked
generalization (Wolpert, 1992) and mixtures of experts (Jacobs et al., 1991).

Bagging, boosting, random forests

Model averaging ideas have been much explored in the field of classification
trees.

In bagging (Breiman, 1996a,b) models are fitted to bootstrap resamples
of the data, and weighted equally. Breiman (1996b) motivates this for
unstable methods such as classification trees in which a small change in the
training set can lead to a large change in the classifier. A variant on this idea
which has been suggested many times is to add ‘noise’ to the training set,
randomly perturbing either the feature vectors x or the classes c (or both).
Further along this line, we could model the joint distribution of (X, C) and
create new training sets from this distribution. Bagging can be seen as the
rather extreme form of this procedure in which the model is the empirical
distribution. (Krogh and Vedelsby, 1995, use cross-validation rather than
re-sampling, and consider designing training sets weighted towards areas
where the existing classifiers are prone to disagree.)

In boosting (Schapire, 1990; Freund, 1990; Drucker et al., 1994; Fre-
und, 1995; Freund and Schapire, 1995) each additional model is chosen
to (attempt to) repair the inadequacies of the current averaged model by
resampling biased towards the mistakes. The idea is to design a series of
training sets and use a combination of classifiers trained on these sets. (Ma-
jority voting and linear combinations have both been used.) There have
been many papers on this topic, as well as empirical tests which tend to
show (e.g., Quinlan, 1996) that boosting often does well but occasionally
does disastrously.

In random forests (Breiman, 2001) the tree-construction algorithm ran-
domly restricts itself at the choice of each split, to create a ‘forest’ of trees
from a single training set.

8. Practical model selection in 2004

The concept of a model is much larger than it was 25 years ago. Even a
decade ago, people attempted to fit neural networks with half a million free
parameters. We are no longer so tied to maximum likelihood estimation,
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Figure 1. Two smooth curves fitted to the concentration of the chemical GAG in the
urine of 314 children aged 0–18 years.

and fit models to much larger datasets. The latter almost inevitably means
that we fit more complex models, and ‘smooth’ terms are often used in
place of linearc terms.

Large model classes often overlap very considerably. There are many
ways to obtain a smooth curve like Figure 1. The traditional approach
would be to fit a polynomial, and one of the curves is a degree-six polyno-
mial chosen by forwards stepwise selection. The other is a smoothing spline,
with the degree of smoothness chosen by GCV.d There are many alterna-
tive approaches, including neural networks and local polynomials (Wand
and Jones, 1995; Loader, 1999). These can all fit very similar curves, and
the issue of choosing between the model classes is rather a moot one.

Alternative explanations with roughly equal support are commonplace:
model averaging seems a good solution. Selecting several models, studying
their predictions and taking a consensus is also a good idea, when time
permits and when non-quantitative information is available. As Figure 1

cor low-order polynomial
dgeneralized cross-validation, which is not in fact cross-validation as defined here.
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shows, we may need other information to choose between very different
formulae with similar predictions, in so far as we can choose at all.

‘Regression diagnostics’ are often based on approximations to over-
fitting or case deletion. Now we can (and some of us do) fit extended models
with smooth terms or use fitting algorithms that automatically downweight
groups of points. (I rarely use least squares these days.) It is still all too
easy to select a complex model just to account for a tiny proportion of
aberrant observations.

Although we do have more tools available than at the start of my career,
it seems to me that model selection has actually got harder: as we explore
more of the statistical model world we encounter more and more chasms
awaiting the unwary. It worries me how causally AIC and its allies are
used, and hope this paper will go some way to raising awareness of the
limitations of formal methods of model selection.
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