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Sub-titles

• Towards general principles for model selec-
tion.

• ‘Give up your small ambitions’

• Check your assumptions –

– of the models

– of the model selection theories



Model Choice in 1977

That’s both 25 years ago and when I started to learn
about this.

• The set of models one could consider was
severely limited by computational constraints,
although packages such as GLIM 3.77 were
becoming available.

• Stepwise selection was the main formal tool,
using hypothesis tests between a pair of nested
models, e.g.F tests for regressions.

No one did enough tests to worry much about
multiple comparisons issues.

• Residual plots were used, but they were crude
plots and limited to small datasets.

There was very little attempt to deal with choosing
between models that were genuinely different ex-
planations: Cox’s (1961) ‘tests of separate families
of hypotheses’ existed but was little known and less
used.

But the world was changing. . . .



Why do we want to choose a model?

It took me a long while to realize how profound a
question that was.

Explanation vs Prediction

This causes a lot of confusion. For explanation,
Occam’s razor applies and we want

an explanation that is as simple as
possible, but no simpler

attrib Einstein

and we do have a concept of a ‘true’ model, or at
least a model that is a good working approximation
to the truth, for

all models are false, but some are useful
G.E.P. Box, 1976

Explanation is like doing scientific research.



On the other hand, prediction is like doing engineer-
ing development. All that matters is that it works.
And if the aim is prediction, model choice should
be based on the quality of the predictions.

Workers in pattern recognition have long recognised
this, and usedvalidation sets to choose between
models, andtest sets to assess the quality of the
predictions from the chosen model.

One of my favourite teaching examples is

Ein-Dor, P. & Feldmesser, J. (1987) At-
tributes of the performance of central
processing units: a relative performance
prediction model. Communications of
the ACM 30, 308–317.

which despite its title selects a subset of transformed
variables. The paper is a wonderful example of how
not to do that, too.



Where do the models come from?

Not unrelated to the above.

• Sometimes a set of models is provided based
on subject-matter theory. In my experience
good theory is very rare. Sometimes called
mechanistic models. One example is the
Black–Scholes theory of option pricing.

• Most often some simple restrictions are
placed on the behaviour we expect to find, for
example linear models,AR(p) processes, fac-
torial models with limited interactions. Some-
times calledempirical models.

Note that these can be very broad classes if
transformations of variables (on both sides)
are allowed.

• We now have model classes that can approxi-
mate any reasonable model, for example neu-
ral networks. And we may have subsets
within these such as (generalized) additive
models. Nowadays we may have the data
and the computational resources to fit such
models.



Two 1980’s–style Examples

From

Fox, J. A. (2002)An R and S-PLUS Companion to
Applied Regression. Sage.

Prestigious occupations

Data from a Canadian study of 102 occupations.
The response is scores of ‘prestige’ in an opin-
ion survey. Possible explanatory values are ‘in-
come’ (the average income), ‘education’ (the aver-
age number of years of education), ‘women’, the
proportion of women and ‘class’, a categorical vari-
able with levels for professional/managerial, white
collar or blue collar.

A scatterplot matrix suggests that we want to trans-
form income.
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> fit1 <- lm(prestige ~ income + education +

women + type)

> summary(fit1)

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) -0.814 5.331 -0.153 0.879

income 0.001 0.000 3.976 0.000

education 3.662 0.646 5.671 0.000

women 0.006 0.030 0.212 0.832

typeprof 5.905 3.938 1.500 0.137

typewc -2.917 2.665 -1.094 0.277



Residual standard error: 7.13 on 92 degrees of freedom

Multiple R-Squared: 0.835

> fit2 <- lm(prestige ~ log10(income) + education +

women + type)

> summary(fit2)

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) -115.672 18.802 -6.152 0.000

log10(income) 33.745 5.322 6.340 0.000

education 2.974 0.602 4.940 0.000

women 0.084 0.032 2.601 0.011

typeprof 5.292 3.556 1.488 0.140

typewc -3.216 2.407 -1.336 0.185

Residual standard error: 6.44 on 92 degrees of freedom

Multiple R-Squared: 0.865



Added-Variable Plot
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The Effects of Pollution on Mortality

Data on the mortality rates in 60 US cities, with
possible explanatory variables 4 weather variables,
8 census variables and pollution levels of hydrocar-
bons,NOx andSO2.

> fit <- lm(MORTALITY ~ ., data=mortality)

> fit2 <- stepAIC(fit, direction ="both", trace=F)

> fit2$anova

Step Df Deviance Resid. Df Resid. Dev AIC

1 44 53631 440

2 - POOR 1 3 45 53634 438

3 - HUMIDITY 1 13 46 53647 436

4 - WHITECOL 1 18 47 53664 434

5 - SOUND 1 215 48 53879 432

6 - SO2 1 295 49 54175 430

7 - DENSITY 1 1168 50 55342 430

> dropterm(fit2, test="F")

Df Sum of Sq RSS AIC F Value Pr(F)

<none> 55342 430

PRECIP 1 5443 60785 433 4.9 0.031

JANTEMP 1 11709 67052 439 10.6 0.002

JULYTEMP 1 6251 61593 434 5.6 0.021

OVER65 1 2590 57932 430 2.3 0.132

HOUSE 1 5849 61191 434 5.3 0.026

EDUC 1 12175 67518 440 11.0 0.002

NONWHITE 1 25631 80973 450 23.2 0.000

HC 1 9238 64580 437 8.3 0.006

NOX 1 10433 65776 438 9.4 0.003



Quantiles of Standard Normal
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Added-Variable Plot
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Cross-validation

A much misunderstood topic!

Leave-one-out CV

The idea is that given a dataset ofN points, we use
our model-building procedure on each subset of size
N−1, and predict the point we left out. Then the set
of predictions can be summarized by some measure
of prediction accuracy. Idea goes back at least as far
as Mosteller & Wallace (1963).

Allen’s (1971, 4) PRESS (prediction sum-of-
squares) used this to choose a set of variables in
linear regression.

Stone (1974) / Geisser (1975) pointed out we could
apply this to many aspects of model choice, includ-
ing parameter estimation.

This isnot jackknifinga la Quenouille and Tukey.

Having to do model-buildingN times can be pro-
hibitive unless there are computational shortcuts (as
there for linear regression, LDA, QDA and smooth-
ing splines).



V-fold cross-validation

Divide the data intoV sets, and amalgamateV − 1

of them, build a model and predict the result for the
remaining set. Do thisV times leaving a different
set out each time.

How big shouldV be? We want the model-building
problem to be realistic, so want to leave out a small
proportion. We don’t want too much work. So
usuallyV is 3–10.

One early advocate of this was CART (the book).

Does it work?

Leave-one-out CV does not work well in general. It
makes too small changes to the fit.

10-fold CV often works well, but sometimes the re-
sult is very sensitive to the partitioning used. Often
better for comparisons than for absolute values of
performance.

How prediction accuracy is measured can be criti-
cal.



AIC, BIC and all that

Akaike (1973, 1974) introduced a criterion for
model adequacy, first for time-series models and
then more generally. He relates how his secre-
tary suggested he call it ‘An Information Criterion’,
AIC.

This has a very appealing simplicity:

AIC = −2 log(maximized likelihood) + 2p

where p is the number of estimated parameters.
Choose the model with the smallest AIC (and per-
haps retain all models within 2 of the minimum).

Despite that, quite a few people have managed to
get it wrong!

This is similar to Mallows’Cp criterion for regres-
sion,

Cp = RSS/σ2 + 2p − N

and is the same ifσ2 is known. (This was first
published by Mallows in 1973 but is much older.)

Both are of the form

measure of fit+ complexity penalty



Derivation of AIC

Suppose we have a dataset of sizeN , and we fit a
model to it by maximum likelihood, and measure
the fit by thedeviance D (constant minus twice
maximized log-likelihood). Suppose we havem
(finite) nested models.

Hypothetically, suppose we have another dataset of
the same size, and we compute the devianceD∗ for
that datasetat the MLE for the first dataset. We
would expect thatD∗ would be bigger thanD, on
average. In between would be the valueD′ if we had
evaluated the deviance at the true parameter values.
Some Taylor-series expansions show that

E D∗ − E D′ ≈ p, E D′ − E D ≈ p

and henceAIC = D + 2p is (to this order) an
unbiased estimator ofE D∗. And that is a reason-
able measure of performance, the Kullback-Leibler
divergence between the true model and the plug-in
model (at the MLE).

These expectations are over the dataset under the
assumed model.



Crucial assumptions

1. The model is true! Suppose we use this to
select the order of anAR(p) model. If the
data really came from anAR(p0) model, all
models withp ≥ p0 are true, but those with
p < p0 are not even approximately true.

This assumption can be relaxed. Takeuchi
(1976) did so, and his result has been re-
discovered by Stone (1977) and many times
since. p gets replaced by a much more com-
plicated formula.

2. The models are nested – AIC is widely used
when they are not.

3. Fitting is by maximum likelihood. Nowadays
many models are fitted by penalized meth-
ods or Bayesian averaging. . . . That can be
worked through too, in NIC or Moody’speff.

4. The Taylor-series approximations are ade-
quate. People have tried various refinements,
notably AICC (or AICc) given by

AICC = D + 2p
( N

N − p + 1

)



Also, the MLEs need to be in the interior of
the parameter space, even when a simpler or
alternative model is true. (Not likely to be true
for variance components for example.)

5. AIC is a reasonably good estimator ofE D∗,
or at least that differences between models in
AIC are reasonably good estimators of differ-
ences inE D∗.

This seems the Achilles’ heel of AIC.
AIC = Op(N) but the variability as an esti-
mate isOp(

√
N). This reduces toOp(1) for

differences between modelsprovided they are
nested.

AIC has been criticised in asymptotic studies and
simulation studies for tending to over-fit, that is
choose a model at least as large as the true model.
That is a virtue, not a deficiency: this is a prediction-
based criterion, not an explanation-based one.

AIC is asymptotically equivalent to leave-one-out
CV for iid samples and using deviance as the loss
function (Stone, 1977), and in fact even when the
model is not true NIC is equivalent.



Bayesian Approaches

Note the plural — I think Bayesians are rarely
Bayesian in their model choices. AssumeM (finite)
models, exactly one of which is true.

In the Bayesian formulation, models are compared
via P{M |T}, the posterior probability assigned to
modelM .

P{M |T} ∝ p(T |M)pM,

p(T |M) =

∫
p(T |M, θ)p(θ) dθ

so the ratio in comparing modelsM1 and M2 is
proportional top(T |M2)/p(T |M1), known as the
Bayes factor.

However, a formal Bayesian approach then av-
erages predictions from models, weighting by
P{M |T}, unless a very peculiar loss function is in
use. And this has been used for a long time, despite
recent attempts to claim the credit for ‘Bayesian
Model Averaging’.



Suppose we just use the Bayes factor as a guide.
The difficulty is in evaluatingp(T |M). Asymp-
totics are not useful for Bayesian methods, as the
prior on θ is often very important in providing
smoothing, yet asymptotically negligible. One ap-
proximation is to takêθ as the mode of the posterior
density andV as the inverse of the Hessian of
− log p(θ̂ |T) (since for a normal density this is the
covariance matrix); we can hope to find̂θ and V

from the maximization of

log p(θ |T) = L(θ; T) + log p(θ) + const

Let E(θ) = −L(θ;T) − log p(θ), so this has its
minimum atθ̂ and Hessian there ofV −1.

p(T |M) =

∫
p(T | θ) p(θ) dθ =

∫
exp−E(θ) dθ

≈ exp−E(θ̂)

∫
exp[−1

2(θ − θ̂)TV −1(θ − θ̂)] dθ

= exp−E(θ̂) (2π)p/2|V |1/2

via a Laplace approximation to the integral.

Thus

log p(T |M) ≈ L(θ̂; T)+log p(θ̂)+p
2
log 2π+1

2
log |V |.

It may be feasible to use this directly for model
choice.



If we supposeθ has a prior which we may approxi-
mate byN(θ0, V0), we have

log p(T |M) ≈ L(θ̂; T) − 1
2
(θ̂ − θ0)

TV −1
0 (θ̂ − θ0)

−1
2 log |V0| + 1

2 log |V |

andV −1 is the sum ofV −1
0 and the HessianH of the

log-likelihood atθ̂. Thus

log p(T |M) ≈ L(θ̂; T)−1
2
(θ̂−θ0)

TV −1
0 (θ̂−θ0)−1

2
log |H|.

If we assume that the prior is very diffuse we can
neglect the second term, so the penalty on the log-
likelihood is−1

2 log |H|.
For a random sample of sizen from the as-
sumed model, this might be roughly proportional
to −(1

2 log n) p provided the parameters are iden-
tifiable. This is the proposal of Schwarz (1978),
sometimes called SBC or BIC (although it seems
to be due to Harold Jeffreys in the 1930’s).

As with AIC, the model with minimal BIC is cho-
sen.



Crucial assumptions

1. The data were derived as an iid sample. (What
about e.g. random effects models?) (Origi-
nally for linear models only.)

2. Choosing a single model is relevant in the
Bayesian approach.

3. The model is true.

4. The prior can be neglected. We may not
obtain much information about parameters
which are rarely effective, even in very large
samples.

5. The simple asymptotics are adequate and that
the rate of data collection on each parameter
would be the same. We should be interested in
comparing different models for the sameN ,
and in many problemsp will be comparable
with N .

Note that as this is trying to choose an explanation,
we would expect it to neither overfit nor underfit,
and there is some theoretical support for that.

There are other (semi-)Bayesian approaches, in-
cluding DIC.



Deviance Information Criterion

Named by Spiegelhalteret al (2002). In a Bayesian
setting where prior information is not negligible,
and the model is assumed to be a good approxima-
tion but not necessarily true.

In GLMs (and elsewhere) thedeviance is the differ-
ence in twice maximized log likelihood between the
saturated model and the fitted model, or

D(θ) = deviance(θ) = const(T) − 2L(θ; T)

and in GLMs we useD(θ̂) as the (unscaled) (resid-
ual) deviance.

Define
pD = D(θ) − D(θ)

The first overline means averagingθ over p(θ |T),
and the second means our estimate of the ‘least
false’ parameter value, usually the posterior mean
of θ (but perhaps the median or mode of the poste-
rior distribution).

Then define

DIC = D(θ) + 2 pD



Clearly DIC is AIC-like, but

• Like NIC it allows for non-ML fitting, in
particular for the regularization effect of the
prior that should reduce the effective number
of parameters.

• It is not necessary (but is usual) thatpD ≥ 0.

• DIC is explicitly meant to apply to non-nested
non-IID problems.

• DIC is intended to be approximated via
MCMC samples from the posterior density of
θ givenT.

• OTOH, DIC needs an explicit formula for the
likelihood (up to a model-independent nor-
malizing constant).



Model Averaging

For prediction purposes (and that applies to almost
all Bayesians) we should average the predictions
over models. Wedo not choose a single model.

What do we average?

The probability predictions made by the
models.

For linear regression this amounts to averaging the
coefficients over the models (being zero where a
regressor is excluded), and this becomes a form of
shrinkage.
[Other forms of shrinkage like ridge regression may
be as good at very much lower computational cost.]

Note that we may not want to average over all
models. We may want to choose a subset for com-
putational reasons, or for plausibility.



How do we choose the weights?

• In the Bayesian theory this is clear, via the
Bayes factors. In practice this is discredited.
Even if we can compute them accurately (and
via MCMC we may have a chance), we as-
sume that one and exactly one model is true.
In practice Bayes factors can depend on as-
pects of model inadequacy which are of no
interest.

• Via cross-validation (goes back to Stone,
1974).

• Via bootstrapping (LeBlanc & Tibshirani,
1993).

• As an extended estimation problem, with the
weights depending on the sample via a model
(e.g. a multiple logistic); so-calledstacked
generalization andmixtures of experts.



Bagging, boosting, random forests

Model averaging ideas have been much explored in
the field of classification trees.

In bagging models are fitted from bootstrap resam-
ples of the data, and weighted equally.

In boosting each additional model is chosen to
(attempt to) repair the inadequacies of the current
averaged model by resampling biased towards the
mistakes.

In random forests the tree-construction algorithm
randomly restricts itself at the choice of each split.



Model Choice in 2002

• The concept of a model ought to be much,
much larger than in 1977.

• Many models are not fitted by maximum like-
lihood, to very large datasets.

• Model classes can often overlap in quite ex-
tensive ways.

• There are lots of formal ‘figures of adequacy’
for a model. Some have proved quite useful,
but

– Their variability as estimators can be
worrying large.

– Computation, e.g. of ‘effective number
of degrees of freedom’, can be difficult.

– Their implicit measure of performance
can be overly sensitive to certain aspects
of the model which are not relevant to
our problem.

The assumptions of the theories need to be
checked, as the criteria are used way outside
their known spheres of validity (and in some
cases where they are clearly not valid).



• Formal training/validation/test sets, or the
cross-validatory equivalents, are a very gen-
eral and safe approach.

• ‘Regression diagnostics’ are often based on
approximations to over-fitting or case dele-
tion. Now we can (and some of us do) fit
extended models with smooth terms or use
fitting algorithms that downweight groups of
points. (I rarely use least squares these days,)

• Alternative explanations with roughly equal
support are commonplace. Model averaging
seems a good solution. Selecting several mod-
els, studying their predictions and taking a
consensus is also a good idea,when time per-
mits and whennon-quantitative information is
available.

• I do use AIC quite a lot, especially in simpler
problems. Hence thestepAIC function for
S-PLUS/R!
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