
Linear Mixed Models

Y = Xβ + Zb + ε

whereX and Z are specified design matrices,β

is a vector of fixed effect coefficients,b and ε are
random, mean zero, Gaussian if needed.

Usually think of b being constant over subjects,
the ε as independent between subjects, possibly
correlated within subjects. Letω denote free
parameters in the variance specification.

Likelihood

We observen r.v.’s Y . Once the error structure is
fully specified, and cov(b, ε) = 0,

Y ∼ N (Xβ, V (ω))

V (ω) = var(ε) + Zvar(b)ZT

so minus twice the log-likelihood is

(Y − Xβ)TV −1(ω)(Y − Xβ) + log |V (ω)|

Thus, givenω we find the MLE ofβ by generalized
least squares.

One-way layout

yij = µ + τi + εij, i = 1, ..., ni

If we treat theτi ∼ N
(
0, σ2

b

)
, we have a special

case. The log-likelihood depends onβ through the
group meansmi = yi· . Now

mi ∼ N
(
µ, σ2

b + σ2/ni

)

which suggests that we take a weighted mean ofmi

with weights inversely proportional to var(mi). This
is MVUE and is in fact the MLE ofµ (using the
special structure ofV ).

What if the variances are unknown? For a balanced
layout the estimator does not depend on them. In
general it depends onσ2

b/σ2.

We can find the MLEs ofσ2
b andσ2, but even in the

balanced case they are not the traditional ones: they
have no adjustment for fitting means.

REML

Restricted / residual / reduced maximum likelihood:
a method of estimation in LMEs.

Suppose that we can find some linear combinations
AY whose distribution does not depend onβ. In
fact we can find up ton − p linearly independent
such. One choice is anyn − p of the least-squares
residuals of the regression ofY onX.

In REML we treat AY as the data and use
maximum-likelihood estimation ofω (the parame-
ters inV ).

The REML estimates do not depend on the choice
of A, so this procedure is not as arbitrary as it
sounds. Indeed, the REML estimates minimize

(Y − Xβ)TV −1(ω)(Y − Xβ) + log |V (ω)|
+ log |XTV −1(ω)X|

Clearly the REML estimator ofβ is still GLS,
plugging in the REML estimate ofω: slightly
simpler to compute than MLEs.

Another perspective

The REML fit criterion is the marginal likelihood,
integratingβ out with a vague prior.

Relationship to classical ideas

In balanced designs REML gives the classical
moment estimates of variance components (con-
strained to be non-negative).

Consider a paired comparison: REML will give
the pairedt–test analysis, ML will get the variance
consistently low (by a factor of a half).

Drawbacks

No equivalents of likelihood-ratio tests (REMLs
on models with different fixed effects are not
comparable).

May be able to use Wald-like tests of extra
parameters, but relevant asymptotic theory is hard
to find.

Usual to quote GLS-based variancesXTV −1(ω̂)X

for β̂ in both ML and REML procedures.



BLUPs

Best linear unbiased predictions. In an LME it is
not clear what fitted values and hence residuals are.
Our best prediction for subjecti is not given by the
mean relationship. We need to specify just what is
common with an example we have already seen.

BLUPs replace the random effectsb by their
conditional meanŝb given the data, and then make
predictions using those values,

Ŷ = Xβ̂ + Zb̂

Since everything is Gaussian, these are linear
functions of the data, and as everything is linear,
they are unbiased. They have minimum variance
amongst such estimators.

Obviously if we have a new subject,̂b = 0,
and similarly in multilevel models. Therefore
find several (in general) fitted values and several
residuals.

Effects of Free Trytophan

James McGuire measured mood (POMS score) and
abundance of free trytophan in the blood for 15
post-operative patients.
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Classical model is

yij = µ + αi + βxij + εij, ε ∼ N (0, σ2)

a parallel line for each patient.

LME is

yij = µ + ηi + βxij + εij, η ∼ N (0, σ2
η)

We could also consider a random effect for slope.
This is hopeless in the classical case. The LME
becomes LME is

yij = µ + ηi + (β + ζ)xij + εij, ζ ∼ N (0, σ2
ζ )

where either we allowη and ζ to be correlated or
we centrex carefully. The estimate ofβ and its
estimated s.e. are almost unchanged. The BLUPs
for each patient are very different from the classical
fits.

Non-linear Mixed-Effect Models

Yij = f (xij; β, ηi) + εij

will be general enough for our discussion. What we
usually assume is that

Yij = f (xij; β + ηi) + εij

where some components ofηi may always be zero.
(Only α and θ have random effects in the next
example.)

What is the likelihood? Only rarely can we integrate
over (ηi). So ‘MLEs’ of NLMEs are based on
approximations.



Blood Pressure in Rabbits

Five rabbits were studied on two occasions, after treatment
with saline (control) and after treatment with the 5-
HT3 antagonist MDL 72222. After each treatment
ascending doses of phenylbiguanide (PBG) were injected
intravenously at 10 minute intervals and the responses
of mean blood pressure measured. The goal was to
test whether the cardiogenic chemoreflex elicited by PBG
depends on the activation of 5-HT3 receptors.

The response is thechangein blood pressure relative to the
start of the experiment.
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f (x;α, β, λ, θ) = α +
β − α

1 + exp[(x − λ)/θ]

Fitting NLMEs

1. Fit a non-linear regression to each subject,
and treat the parameter values as the data
at subject level. If there is within-subject
correlation, pool estimates of correlation
parameters across subjects.

2. Use a Taylor-series expansion about the mean
effects. This gives an LME which we can
fit. Repeatedly expand about the fixed effects,
that is write

Yij = f (xij; β̂
0, 0) + X(β − β̂0) + Zηi + εij

3. Use a Taylor-series expansion about estimates
of (ηi):

Yij = f (xij; β̂
0, η̂0)+X(β−β̂0)+Z(ηi−η̂0)+εij

Lindstrom–Bates fit by simultaneously mini-
mizing over (β, ηi); this effectively uses the
BLUPs in the local linearization.

Inference in NLMEs

A problem! We have no likelihood to compare, and
thenlme software appears to quote the likelihood of
the final linearization.

We can use the estimated variance of the parameters
and Wald–like tests.

Rabbits

Note that there are three strata of variation:

1. Animals

2. Occasions within animals

3. Measurements on the animal/occasion combi-
nation.

and the effect of interest, the treatment, varies in the
second stratum.

We start by fitting separate models for each
treatment:

Control:

Log-likelihood: -66.502

Fixed: list(A ~ 1, B ~ 1, ld50 ~ 1, th ~ 1)

A B ld50 th

28.332 1.5134 3.7744 0.28957

Random effects:

Formula: list(A ~ 1, ld50 ~ 1)

Structure: General positive-definite

StdDev Corr

A 5.76889 A

ld50 0.17953 0.112

Residual 1.36735

Treatment:

Log-likelihood: -65.422

Fixed: list(A ~ 1, B ~ 1, ld50 ~ 1, th ~ 1)

A B ld50 th

27.521 1.7839 4.5257 0.24236

Random effects:

Formula: list(A ~ 1, ld50 ~ 1)

Structure: General positive-definite

StdDev Corr

A 5.36549 A

ld50 0.18999 -0.594

Residual 1.44172



Now a combined model

R.nlme1 <-

nlme(BPchange ~ Fpl(Dose, A, B, ld50, th),

fixed = list(A ~ Treatment,

B ~ Treatment,

ld50 ~ Treatment,

th ~ Treatment),

random = A + ld50 ~ 1 | Animal/Run,

data = Rabbit, ...)

Random effects:

Formula: list(A ~ 1, ld50 ~ 1)

Level: Animal

Structure: General positive-definite

StdDev Corr

A.(Intercept) 4.6063 A.(Int

ld50.(Intercept) 0.0626 -0.166

Formula: list(A ~ 1, ld50 ~ 1)

Level: Run %in% Animal

Structure: General positive-definite

StdDev Corr

A.(Intercept) 3.2489 A.(Int

ld50.(Intercept) 0.1707 -0.348

Residual 1.4113

Fixed effects:

Value Std.Error t-value p-value

A.(Intercept) 28.326 2.7802 10.188 <.0001

A.Treatment -0.727 2.5184 -0.288 0.7744

B.(Intercept) 1.525 0.5155 2.958 0.0050

B.Treatment 0.261 0.6460 0.405 0.6877

ld50.(Intercept) 3.778 0.0955 39.579 <.0001

ld50.Treatment 0.747 0.1286 5.809 <.0001

th.(Intercept) 0.290 0.0323 8.957 <.0001

th.Treatment -0.047 0.0459 -1.020 0.3135

This suggests that the only difference by treatment
is to shift the mean curve along (λ varies by
treatment).

Value Std.Error t-value p-value

A 28.170 2.4909 11.309 <.0001

B 1.667 0.3069 5.433 <.0001

ld50.(Intercept) 3.779 0.0921 41.036 <.0001

ld50.Treatment 0.759 0.1217 6.233 <.0001

th 0.271 0.0226 11.964 <.0001

Bayesian Analysis

In the linear case, bothβ and bi are regarded as
random variables, and we have a hierarchical linear
model. Relatively little to say: Bayesians just need
to find the posterior distributions of the quantities of
interest (stillβ and perhapsω).

For a long time the issues were computational, but
the re-discovery of MCMC and the Gibbs sampler
has made even mainstream Bayesians realize that
there are relatively simple ways to do this. (Given
ω, everything is joint Gaussian, so empirical Bayes
procedures were popular.)

The only issues involveω. For simple specifications
(a few variances or general covariance matrices)
with conjugate priors finding the full conditionals
is straightforward. For parameters such as the
correlation in an AR(1) process, need to use
numerical simulation techniques, using a profile of
the joint density.

In the non-linear case the issues are a little harder.
Consider

Yij = f (xij; β + ηi) + εij

and letβi = β + η. Consider the r.v.’s(Y, β, βi, ω).
We can easily simulate

Y | β, (βi), ω the model

β | Y, (βi), ω normal

For

ω | Y, β, (βi)

βi | Y, β, (βj, j 6= i), ω

we have a joint density and can use numerical
simulation procedures.



Generalized Linear Mixed Models

Suppose we have a binomial or Poisson response.
We can apply the same ideas, with linear predictor

η = Xβ + Zb

and distribution ofYi depending onηi through the
link function.

Note that unless we have a Gaussian GLM with
identity link, the marginal distribution ofYi is not
binomial, Poisson etc; the(Yi) are always dependent
(and usually positively correlated in clusters).

This is known as asubject-specificmodel. The
alternative is amarginal or population-averaged
model where the marginal distribution of theYi is
binomial, Poisson, etc, but they are correlated in
clusters.

Logistic GLMM

Simplest case, a random-intercept model:

Yij ∼ bin(nij, pij), logit pij = bi + (Xβ)ij

Herei labels the cluster.

Methods:

• Conditional analysis, conditional on
∑

j yij,
which eliminates the random intercept.

• Approximate MLEs based on Laplace expan-
sion.

• Approximate MLEs based on numerical inte-
gration (and need to estimate the variance of
bi).

• Bayesian analysis by Gibbs sampler.

Note that this is one case where the marginal distri-
butions may be approximately binomial (Bernoulli)
but correlated, and with a different regression on the
covariates.

Marginal Models

Suppose we have several observationsYij on each
clusteri. We allow the meanµij of Yij to depend on
ηij for a linear predictorη = Xβ, the variance of
Yij to depend on its mean (and possibly a dispersion
parameterφ). Observations on different clusters
are independent, but(Yi·) are dependent, with a
correlation matrix depending on parametersω.

Apart from the dependence, this is how we model a
GLM.

Identity link

Supposeµij = ηij, and we fitβ by GLS with weight
matrixW ,

β̂W = (XTWX)−1XTWY

Then asymptoticallyβ̂W is unbiased and normal
with variance matrix

ΣW =
[
(XTWX)−1XTW

]
var(Y )

[
WX(XTWX)−1

]

• We may be able to estimate var(Y ) some other
way (REML from a saturated model?)

• All we lose by not having the correct weights
W is efficiency.

General link

Still use GLS, ignore the dependence of var(Yi·) on
β: ∑

clustersi

∂µij

∂β
var(Yi·)−1 [Yi· − µi·] = 0

These are the GLM score equations, except for
the correlations, which need to estimate simultane-
ously.

This approach (including equations forα) is known
as GEE,Generalized Estimating Equations. It has
asymptotic theory that shows consistency, asymp-
totic normality with estimable variance matrix.


