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1. The nature of time series
Types of data, examples, objectives, informal analysis, overview of tech-
niques for time series analysis

2. Stationary models
Weak and strong stationarity, some time-domain models, analysis in
the frequency domain, state-space models, continuous-time models

3. Statistical analysis
Precision of mean and sample autocorrelations, maximum-likelihood
fitting, frequency domain

4. Some more advanced topics
Multiple time series, nonlinear models, chaos

Time series analysis is a very complex topic, far beyond what could be
covered in an 8-hour class. Hence the goal of the class is to give a brief
overview of the basics in time series analysis. Much further reading is strongly
recommended.

Organization of the class

This class will take place Tuesdays 9-10 and Thursdays 10-11, starting week
5, ending week 8, in the Department of Statistics. There will be a practical
class on

Tuesday, week 7, 2:15-4:30, in the Computer lab in the department

and there will be an examples class on



Wednesday, week 7, 12-1, in the seminar room in the department.
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1 The nature of time series

Often, observations are recorded at different times, usually but not necessar-
ily at equally spaced time points. The dependence among these observations
is of particular interest in time series analysis.

1.1 Types of data

To illustrate different types of data, consider the some examples.

1. Speech data. In Shumway and Stoffer (2000) there is a .1 second
(1000 point) sample of recorded speech of the phrase aaaa...hhhh. The
signal is highly repetitive and has rather regular periodicities.

2. Total ozone series in Arosa, Switzerland.

The total ozone series of Arosa is the longest ozone series in the world.
The measurements began in 1926; since 1988, the Swiss Meteorological Insti-
tute is responsible for operational measurements at Arosa. The total ozone
amount is given in DU (Dobson units). The time series first fluctuates about
a nearly constant value, then it seems to be decreasing. See
http://www.lapeth.ethz.ch/doc/chemie/tpeter/totozon.html.

3. Wolf sunspot series.

In 1848, R. Wolf devised a daily method of estimating solar activity by
counting the number of individual spots and groups of spots on the face of
the sun. To compute his sunspot number, he added 10 times the number of
groups to the total count of individual spots. Today, Wolf sunspot counts
continue, since no other index of the sun’s activity reaches into the past as
far. On average, the spot count takes about 4.8 years to rise from a minimum
to a maximum, and another 6.2 years to fall to a minimum once again; see
http://www.ece.ogi.edu/ ericwan/DATA/sunspots94.dat.

4. EEG sleep data. This is a discrete-valued time series. In connection
with a study on the effects of prenatal exposure to alcohol, the per-minute
sleep state of infants is recorded by an EEG. Sleep state is categorized per
minute, into one of six possible states: quiet sleep - trace alternant (1), quiet
sleep - high voltage (2), transitional sleep (3), active sleep - low voltage (4),
active sleep - high voltage (5), awake (6); see Shumway and Stoffer (2000).



5. A financial time series. Standard & Poor’s Fund Services provide
the S&P 500 index, reflecting stock market behaviour. In the S&P 500
series from 1960 to 16th October 1987, one might be more interested in the
extreme value behaviour than in the average behaviour. From A..J. McNeil.

On FExtremes and Crashes. RISK, January 1998: page 99.

6. El Nino and fish population. An environmental series called
the Southern Oscillation Index (SOI) and associated recruitment (number of
new fish) for a period of 453 months ranging over 1950-1987 can be found in
Shumway and Stoffer (2000). The SOI index measures changes in air pressure
related to sea surface temperatures in the central pacific. About every 3-7
years there is a warming effect, called El Nino. This is an example for using
two time series; here the question is to assess the effect of El Nino on fish
population. Both series display repeating cycles; would these be related?

7. Gaussian white noise.
This is an erratic series; it is a collection of uncorrelated mean zero ran-
dom variables with same, finite variance. See Shumway and Stoffer (2000),

Diggle (1990).

The simplest form of data is a longish series of continuous measurements
at equally spaced time points. Distinguish between aggregated values and
point values. Also possible are discrete data, or mixtures between discrete
and continuous. Of special interest are spatial and spatial-temporal time
series. In medical statistics, one might want to analyze a number of possibly
short series (corresponding to different individuals) of similar structure; such
problems are also refereed to as longitudinal data analysis.

1.2 Objectives

The main objectives in time series analysis are

e Analysis and interpretation: find a model to describe the time depen-
dence in the data. Can the model be interpreted?

e Forecasting; Given a finite sample from the series, forecast the next
value, or the next several values

e Estimation of derived quantities, or signal extraction from observations
of signal plus noise



e Control: How to adjust various control parameters to make the series
fit closer to a target

e Adjustment: For example, in a linear model the errors could form a
time series of correlated observations; one would then want to adjust
the estimated variances to allow for this serial correlation.

1.3 Informal analysis

Suppose we observe a time series (y;):e7, where T is some subset of the real
numbers. Firstly, inspect the data for broad features, such as periodicity and
trend, and for possible anomalies, such as outliers, missing observations, and
discontinuities corresponding to changes of instrumentation or definition.
Typically one is then interested in some of the following features.

Long-term structure? These include drifts in mean, change of variabil-
ity, etc. Plot means, etc, of non-overlapping blocks of data. For elimination
of trend in order to study local structure

e take residuals from smooth, e.g. polynomial or other (spline, e.g.), fit
(regression). Example: wool price data, Diggle (1990)

e take first or higher order differences (example: wool price data, Diggle

(1990)

o take residuals from a suitable smoother, for example by a moving av-
erage operation. Example: female deaths in the UK attributed to
bronchitis, emphysema, and asthma; Diggle (1990).

Periodic structure? Form a two-way table of, for example, years times
month (or quarters) and examine marginal means.

Local structure? If necessary, eliminate trend etc. Plot y,,j versus y;
for h = 1 and perhaps for h = 2,3,.... If appropriate linearity is present,
compute correlations r; and plot them against h; this is the sample auto-
correlation function (acf). Are there any oscillations? Or does it appear to
be effectively random? Example: Wolf sunspot numbers, see Brockwell and
Davis (1991), p. 32. These are time-domain methods.



Spectral analysis? Use a series expansion; for data yi,ys,...,y, write
1]
ye = Y+ > _{cpcos(wpl) + spsin(wyt)},
p=1
P n
w, = 2#5, p= 1,...,L§J.
The phases are then tan¢, = 22, and the squared amplitudes (powers) are
tp

a? = 0729 + s;. Plot a scaling constant times aZ

. versus w,; this plot is called
a periodogram. Sometimes we are interested in the possibility of very high
outlying values, in other cases it is the broad trend with w, that is of con-

cern. Then some smoothing would again be in place. Example: SOI-data,

Shumway and Stoffer (2000), p. 241.

In preliminary analysis of a long series it is often a good idea to split the
data into, say, three or four sections and initially look at these separately.

1.4 An overview on techniques of time series analysis

Assume now that we sample at equally spaced time points, with a spac-
ing of 1 time unit. Suppose our observations come from a stationary series
(Y2)i=0,41,42,..., 1.e. all trends and other non-random effects have been re-
moved. Three main examples are as follows.

AR(p). An autoregressive process of order p (AR (p)-process) is given by
P
Yt = E qbr}/t—r + €,
r=1

where ¢1,. .., ¢, are fixed coeflicients, and (¢;); are independent errors (dis-
turbances) with mean zero and variance o*:
noise stems from an analogy with white light, where all possible periodic
oscillations are present with equal strength. Often the errors are assumed to

white noitse. The name white

be Gaussian; then (¢); is called Gaussian white noise.

MA(q). A moving average process of order ¢ (MA(q)) is given by

q
Yt - E 0561‘—57
s=0



where 6y = 1, 6;,...,0, are fixed coeflicients, and (&), is white noise.

ARMA((p,q). An ARMA (p,q)-process is given by

P q
Yt = Z Qbr}/t—r + Z 0561‘—57 (1)
s=0

r=1

where ¢, ..., ¢, and 0y = 1, b1,...,0, are fixed coefficients, and (¢ ); is white
noise.

Sometimes these models are written in short using the back-shift operator

B

By, = y;_1.

Define for complex numbers z, the autoregressive polynomial @,

() = 1 bz )
with ¢, # 0, and the moving average polynomial ©,

O(z) = 1+0i2+4 02"+ 40,27, (3)
with 6, # 0. With the notation

By = yi—r,
an ARMA(p,q)-process is given by the solution of the ARMA equations

O(B)Y; = O(B)e;. (4)

ARIMA (p,d,q). 1If the process is not stationary, then we would try

to take differences and investigate whether the process is stationary. The
difference operatoris given by

Vyr = Y — Y1
so that

Vi = V(Vy) = yr — 241 + ys2
and so on. If

Y, = Viz,



is an ARMA(p,q)-process, then (Z;)i=o +1,42,.. is called an integrated autore-
gressive moving average process, in short, ARIMA(p,d, q).

State-space approach. Sometimes a useful model for the data is of the
form

Y, = Si+G (5)
Sy = Sio1+ e,

where (S;); are unobservable states of the system. Here ((;): are independent
or uncorrelated, and (€;); is white noise. We will see later that the model (5)
is equivalent to an ARMA(p,q)-model. However, more general state space
models go much beyond the ARMA framework; models can be much more
general than (5), for example

Y: = h(Se, ) (6)
Sy = Qt(St—laﬁt)a

where h; and ¢, are known functions.
A typical tool for analyzing these models are Kalman filters, to be en-
countered in a later section.

Further methods include

e nonlinear models

e models for irregularly spaced data

e continuous time models

e generalized linear models with dependent errors
e Bayesian analysis

e long-range dependence models, often based on fractals: use the differ-
ence operator V%, where d is a fractional number.

Further reading

1. G.E. Box AND G.M. JENKINS (1970). Time Series Analysis: Fore-
casting and Control. Holden-Day.

2. P.J. DiGGLE, K.-L. YANG, AND S.L. ZEGER (ED.) (1994). The
Analysis of Longitudinal Data. Oxford Statistical Science.



2 Stationary models

Assume that we consider data (y1,ya,...,y,) that is a realization of a ran-
dom vector (Y1,Y3,...,Y,),. That is, we consider an often largely hypo-
thetical ensemble of repetitions of the data. Often we even assume that
(y1,Y2, .., Yn) is one finite realization of a sample of size n from a stochastic
process (Yt)t:O,:I:l,:I:Z,...-

For many statistical purposes, the process (Y;);=0,41,42,.. should exhibit
some redundancy. Either (Y;)i=o 41,42 . is itself stationary, or it can be re-
duced to some stationary process. A general model is

Yt = mt—l—st—I—Zt, t:(),j:l,j:Q,...,

where m; is a deterministic trend, s, is a seasonal effect, and (Z;)i=0,41,42,..
is a stationary stochastic process with mean zero. Real-life data are seldom
stationary, but often they can be reduced to approximate stationarity by

e removing deterministic trend
e removing seasonal effects
o differencing

e transformations of the data.

2.1 Definitions

A process (Y3)i=o.41,42,... is called second-order stationary or weak sense sta-
tionary if there are y, (y,)n such that

EY, = u (7)
Cov(Yy,Yign) = n  forall t,h.

In particular, Var(Y;) = v is constant (and finite). Often we will call a
second-order stationary processes just a stationary process.

A process (Kf)t:07i17i27... is strictly stationary or strong sense stationary
if for all 7,s,¢y,...,t,, the two vectors

(Ytlv-"aYts) and (Y7f1+7'7"'7Y7fs+7')

have the same distribution.



A process (Y;)i=0,+1,42,... is Gaussian if the joint distribution of any subset
of values is multivariate normal. This distribution is completely determined
by its mean vector and covariance matrix. Hence, if a Gaussian process satis-
fies the second-order stationary condition, it must also be strictly stationary.

For a stationary process, the function ~v; as a function of h is called the
autocovariance function, and

_Jr
Yo

Ph

is called the autocorrelation function (acf). When necessary, define y_, = ;.
Thus the acf describes the second-order properties of the time series.

Studies of processes based on ~; or on similar higher-moment properties
are said to be in the time domain, to be contrasted later with properties
based on a Fourier series-like analysis, which are said to be in the frequency
domain.

2.2 Some time-domain models

Suppose (Y;)i=o0,+1,42,... is a stationary process with g = 0, where u is given

in (7.

Example 1: White noise. A set of uncorrelated random variables of
zero mean and finite variance is stationary with v, = 0 for A # 0.

Example 2: AR(1). Suppose

Y = ¢Yii+e, t>0
YO - Zo.

One also says that the system is forced by the innovation ¢;. Here, (&) is
white noise with Var(e;) = o2, and ¢ is uncorrelated with Y; and indeed
with all previous values of Y. Backward recursion gives

k-1
YV, = ¢+ dey.
7=0

10



1. If |¢| > 1 then the only stationary solution would be

=1
Y = — — €41 5.
t ]2::1 Qb] t+7

This solution depends on the future. We do not study this solution
here.

2. If |¢| = 1 then the process is a random walk with Var(Y;) = o%t.

3. Provided that |¢| < 1 and that the variance of Y; is bounded, we can
represent an AR(1) model by

o0

Y, = Zqéjet_j (almost surely), (8)

=0
regarded as starting in the remote past

4. 1f |¢| < 1 and if Zj is replaced by a random variable having the station-

. . . . . 2
ary distribution of the process, with mean zero and variance iﬁ, then

stationarity can be verified. Usually in a representation of the type (8)
we shall omit the almost surely from now on.

Properties can now be obtained from the infinite series, or using the

following type of argument. Due to stationarity, ¥;_; and Y; have the same

variance oy, s0

oy = ¢loy +o7,
or
2
oy = ] ieqbQ'
Similarly,
Y1 = EYiYiing = EYi(@Yien + €rni1) = o,
SO

11



Thus, if 0 < ¢ < 1 then the observations at two consecutive times are
positively correlated. If —1 < ¢ < 0, then the observations at two consecutive
times are negatively correlated, whereas the observations two time steps apart
are positively correlated.

When a process does not depend on the future, such as AR(1) when
|¢| < 1, the process is called causal. More generally, an ARMA process (Y;);
is causal if it can be represented as

oo
Yt = E Cr€ip.
r=0

Example 3: MA(1). Suppose
Yt = 6t+96t—17 t:(),j:l,j:Q,

Then 79 = (1 4 8*)c2, 71 # 0, and v, = 0 for A > 1. Thus the process is
stationary.

In general, MA(q) is stationary for any choice of 0y, ..., 60,. The acf of an
MA(q) is given by

oy 003 1<h<
oh = { Taran, 1Sh<q
0, h > q.
Thus the acf vanishes for A > ¢. This can be used as a diagnostics for an
MA process.
In particular, the acf of M A(1) is given by

9 h=1
_ 1362
Ph {0, h>1.

Thus two MA(1) processes defined by 6 and by % are identical for all prac-
tical purposes. This leads to the identifiability condition: Recall the MA
polynomial ©(z) given in (3). Then the identifiability condition states that
O(z) # 0 for all z such that |z] < 1,that is, all zeros of ©(z) lie outside the
unit circle.

The results below will usually assume that an MA(1) process is iden-
tifiable. However, most of them can be extended to include the case that
|0 = 1, if the notion of invertibility is generalised to assume only that
€ € spani{Y;, —oo < s < t}.

12



For the above MA(1) process this implies that 0| < 1.

Note that we can invert the roles of ¥ and € in the MA(1)-process and
write

¢ = —bOg_1+Y.

If 0] < 1 then we have the infinite AR representation of the model:

€ = i(—&)th_j.

=0

Such a process is called an invertible process. (Thus an invertible MA(1)
process can be represented by a causal AR(oo)-process.)

Similarly recall the definition (2) of the AR polynomial ®(z).

Example. Consider the process

1 1
Y — §Yt—1 = ¢ — §€t—1-

At first glance this looks like an ARMA(1,1)-process. However, in operator
form, we obtain

(1-26)vi=(1- L6
2 2

that is, a solution of the above equation is Y; = ¢, so Y; is white noise.
Therefore we typically assume that the AR polynomial ®(z) and the MA
polynomial ©(z) have no common factors.

From the ARMA equations, heuristically we might write
Y; = ®(B)"'O(B)e
for causality, and
¢ = 0(B)"'®(B)Y,

for invertibility. However, it is not obvious that these operators would be
invertible.

13



Theorem 1 Suppose an ARMA (p,q)-process has AR polynomial ®(z) and
MA polynomial ©(z), where ®(z) and O(z) have no common factors. Then
the ARMA (p,q)-process is causal only if the roots of ®(z) lie outside the unit
circle. Then

Yo = 2 e, (9)

where the coefficients are given by solving

U(z) = 2%21‘:28, 2] < 1.

Theorem 2 Suppose an ARMA (p,q)-process has AR polynomial ®(z) and
MA polynomial ©(z), where ®(z) and O(z) have no common factors. Then
the ARMA (p,q)-process is invertible only if the roots of ©(z) lie outside the
unit circle. Then

o0
& = Y mYi,
=0

where the coefficients are given by solving

I(z) = 2@%’ = ggz;, |z| < 1.

For the proofs, see Brockwell & Davis (1991), pp. 85-87.

e If the ARMA(p,q)-process (Y;); is such that the polynomials ®(z) and
O(z) have common factors, then there are two possibilities.

1. None of the common zeros lie on the unit circles, in which case
(Y;): is the unique stationary solution of the ARMA equations with
no common zeroes, obtained by cancelling the common factors of
®(z) and O(z).

2. At least one of the common zeros lies one the unit circle, in which
case the ARMA equations may have more than one stationary

solution. (See Brockwell & Davis (1991), Problem 3.24.)

e If ®(z) and O(z) have no common factors and if ®(z) has a zero lying
on the unit circle, then there is no stationary solution to the ARMA
equations (4) .

14



For a causal ARMA(p,q)-process we have, from (9), that

o= Cov(Yy,Yiur) = a2 Y ibjn h >0,

=0

Either we could solve for the ¢’s in ¥(2)®(z) = O(z) by comparing coeffi-
cients, or we could use that

E(Y,®(B)Yi4n) = E(Y:O(B)eyn),

giving
P L
o= D b — 0l Y Oitbin, h>0.
7=1 i=h
This leads to the difference equations

P
Yo=Y biv— = 0, h>maz(p,q+1)

i=1

P q
Y= bt = 02y 0ibj_p, 0 < h <max(p,q+1).
7=1 7=h

Example. To calculate the acf of an ARMA(1,1)-process
Yi= oY1 + 061 + €
with |¢| < 1,]0] < 1, we have
Y — -1 =0, h =23, ...
SO
= cg”
for some constant ¢. To determine ¢, note that

Yo = ¢+ oi(l+00+6%)
v = ¢y +0ld.

15



Solving this system gives
o = J21 + 20 + 62
€ 1_ ¢2

I O ()

1 — ¢?
and, as v; = ¢,
o
gb’
giving
2(L+00)(0+9) s
= h >
Th 0. 1_|_29¢_|_02¢ > _07
and
1+6¢)(6

1+ 200 + 62 ’

Example. For an AR(p) process, (10) translates into the Yule Walker
equations

P
Pr= > PPt
=1
Let z1,..., 2, denote the roots of ®(z), with multiplicities my, ..., m,. Then
(see Shumway & Stoffer. pp.109-110) we obtain
pr = 2" Pi(h) 4+ 2 Po(h) 4o 2T P (R), R > p,
where Pj(h) is a polynomial of degree m; — 1.

o If all roots are real, then p; dampens to zero geometrically fast, as,
from causality, all roots have absolute value larger than 1.

e The rate of decay depends on the roots that are closest to the unit
circle.

o A pair of complex conjugate zeros together contribute a geometrically
damped sinusoidal term.

Note that we can interpret the causal representation of an ARMA process
as an MA(oo) representation.

16



2.3 Prediction

If we make the wholly unrealistic assumption that the parameters in the
process are known, then the AR-representation specifies the optimal mean
square predictor one step ahead, and by modest extension of the argument,
k steps ahead, as follows. Denote the k-step ahead predictor given the ob-
servations yi,...,y, by

yr = BV Vi =yi, ., Y, = ).

Consider the one-step ahead predictor y, ,,, the best linear predictor. This
predictor is chosen to minimize the mean-square error,

Py = E(Yas — Yn1+1)2‘

It can be shown (Shumway & Stoffer, p. 115) that the best linear predictor
is found by solving the prediction equations

E(Yn+1—ynl+1) = 0
E(Yo =Y )Ye) = 0, k=1,....n. (11)

Thus y, ., will be a linear combination of yi,...,y,; write

y',lH_l - anlyn + ¢n2yn—1 + ot ¢’fmy1
Then the prediction equations (11) yield that

n

E((Yn+1 _Z¢njyn+l—j)yn+1—k) = 0, k‘ = 1,...,72

7=1
giving that
Zqﬁm”'}/k_j = Yk, k= 1,...,n. (12)
7=1
We can write (12) in matrix form: Let
Un = (Ye-1)jk=t1..m
v, = ()"

In

qb = (qbnlv"'a(bnn)Ta

—n

then (12) translates into
Fn@n =7,

17



If 02 > 0 and if 4, — 0 for h — oo, then I',, is invertible, and

¢ =T,y .

This matrix equation can be solved recursively using the Levinson-Durbin
recursion. Start with ¢go = 0, P = 9. For n > 1,

n—1
Pn — = ¢n— ,kpn—k
qbnn — kn_ll 5 ! (13)
I — 2021 Gt kPk
Pry = P (1—¢r,),

and, for n > 2,

¢nk = qbn—l,k - ¢nn¢n—1,n—k7 k= 17 ey — 1.

Thus the first steps of the recursion give

9500 = 0, P10 ="

d1 = p1, Py =(l—41) =1 -pi)
p2 — P11p1 _ P2 — P%

L —oups —P%

9521 = 9511 - 9522¢11 = ,01(1 - ¢22)

PP o= (1= 6%)(1 — 6%)

. ,030 - </521,02 - 9522,01

P33 = , .

1 — ¢a1p1 — Pa2p2

9522 =

Example. For an AR(2)-process we have
o1

1 — ¢

Ph— G1ph—1 — P2pp—2 = 0, h>2

P =

hence we obtain

. D1
P11 = 1~ &
b2 = o
b1 = 1
¢33 = 0.

18



We obtain Y}' = pYi, which is what we would have expected from linear
regression. Moreover, Y2 = 1Y + ¢,Y3, from the model, and similarly all
predictions for higher values will use the AR(2) equation directly.

Note that similarly to forecasting one can also backcast. Let Y~ be the
minimum mean square linear predictor of Yy based on {Y;,...,Y,_;}. This
leads to the same prediction equations as for forecasting, see Shumway &

Stoffer (2000), p.124.

2.4 The partial autocorrelation function

One reason for calculating the acf is that if (Y;); is MA(q) then py = 0 for
|h| > g, so plots of the sample acf should show a sharp drop to near zero
after the gth coefficient; this is a diagnostic tool for an MA(g)-process. A
corresponding tool for AR(p) is given by the partial autocorrelation function
(pacf); the pacf of lag h is just ¢pp, given by (13). Note that

o1 = 007“7“(3/1,3/0) =M
¢hh = CO?"T(Yh - Yhh_17Y0 - Y(Jh_1)7 h Z 2.

Thus ¢y, is the correlation between Y; and Y;;;, with the linear effect of
{Yit1,...,Yien_1}, on each, removed. Another way of defining the pacf is
(see Shumway & Stoffer (2000), p.111),

9511 = COTT(YhYO) =/
bun = Corr(Y, =Y, Y, — Y.

Example. Causal AR(1). The prediction of Y3 based on ¥; will be a

linear function, Y, = a¥;. The mean-square error is
B, =Y = B(Y—an)
= 70— 2am + oy,
hence
a=— = p=¢,
and

b2 = Corr(Yy — ¢Y1, Yy — ¢Y1) = 72 — 2671 + ¢y = 0.

19



Moreover ¢, = 0 for all A > 1.

Example. Causal AR(p). Here, for h > p, we have

hence

P
v/t = Y 4V,
i=1

¢hh = COTT’(Eh,Yh = Yhh_l) = O, h > p.

This can be used as a diagnostic tool for an AR(p)-process.

Other examples.

1. MA(1): Here ¢p, = %, h>1.

2. MA(q): The pacf will never cut off.

Remarks.

1. Processes for which p; decays like h=(1*%) for some 0 < § < 1 are said
to have long-range dependence.

2. First or higher order differences can be modelled by an ARMA(p,q)
model, leading to ARIMA(p,d,q) model. Seasonal models. usually of a
somewhat artificial kind, can be produced by differencing s terms apart.
The family of models resulting from these observations are called Boz-
Jenkins models. They are flexible but typically wholly empirical.

3. There are general theorems expressing a broad class of stationary pro-
cesses in autoregressive and in moving average form.

4. Processes of AR form in which the innovations are not merely uncor-
related but i.i.d. are called linear processes.

5. A linear process is time-reversible if and only if it is Gaussian.

6. The Gaussian AR(1) is a Markov process.
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2.5 Fitting ARIMA models using the Box-Jenkins Ap-
proach

The classical Box-Jenkins approach to fitting ARIMA models can be decom-
posed into identification, estimation, and verification.

Identification

First we need to assess whether the observations come indeed from a
stationary process. For this purpose, the acf should decay to zero fairly
rapidly. If this is not the case, (repeated) differencing would be in place,
until the acf would decay to zero fairly rapidly. If differencing seems to
increase the variance, the model might be over-differenced. Note that in
models with long-range dependence the acf would not decay to zero rapidly;
typically, the autocorrelations tend to zero hyperbolically, that is, p, ~ h™2,
with @ > 0; in this case, so-called fractionally differenced ARIMA models
would be in place. So differencing might not always be successful.

Once the series is accepted as stationary, the next step is initial identi-
fication of p and ¢. For this we use the acf and the pacf. An MA(q) series
is identified from the property that all values of the acf after the gth are
negligible, whereas an AR(p) series is identified from the property that all
values of the pacf after the pth are negligible. To determine whether values
of the acf, or the pacf, are negligible, use as a very rough approximation that
acf and pacf have a standard deviation of around \/LE As a rule of thumb,
:I:% would give very approximate 95 % confidence bounds. In S-PLUS these
are shown as dotted lines.

Note that for diagnostics of an ARMA(p,q) process, these two criteria
cannot be combined easily, due to the contribution of the MA-part in the
pacf of the process, and due to the contribution of the AR-part in the acf of
the process.

Estimation: Yule-Walker estimators
For AR(p) models, the method of moments is very useful. From Y; =
Y1 iYiej + €, (&) being ii.d. WN(0,0?), we obtain the Yule-Walker

equations
P
M= D biNi-nly (14)
i=1
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for h > 0. For 1 < h < p, these are p equations in p unknowns ¢y, ..., ¢,
hence (14) can be solved. Indeed, a Durbin-Levinson type recursion can be
used again. Note that in practice we will use 4, h = 1,...,p instead of
Yoo ooy Yp-

In matrix notation, put I', = {vi_;}%_;, and v, = (¥1,--+,7)T. Then
the Yule-Walker estimators é and 012 of ¢ and o7 are given by the solutions

of

o = 13,

~ A ATA

o2 = 10—? g
This gives

o = 1713,

02 = 4, - o Y,
If (Y;); is a causal AR(p) process with i.i.d. WN(0, ¢?), then (see Brock-
well and Davis (1991), p.241)

Vi (8- ¢)

is approximately MVN(0,0?I';")-distributed, and Ot? converges to o2 in
probability.
The Yule-Walker estimator qb is optimal with respect to the normal dis-

tribution.
Moreover (Brockwell and Davis (1991), p.241) for the pacf of a causal
AR(p) process we have that, for m > p,

N -

is asymptotically standard normal. However, the elements of the vector
qu = (qolm, e ,qum) are in general not asymptotlcally uncorrelated.
The residual variance

o)

can be used as a guide to the selection of the appropriate order p. Define an
approximate log likelihood by

—2log L = nlog(c?),
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then this can be used either for likelihood ratio tests, or by minimizing the
AIC = —2log L 4+ 2p. Note that this should not be applied in a totally
undiscriminatory way, as one would still like to be able to interpret the
results.

Estimation: Maximum likelihood estimators

For general ARMA(p,q) models, the Yule-Walker estimator is not opti-
mal. If a parametric model for the white noise is assumed, then maximum
likelihood estimation can be used. Mostly this relies on the prediction er-
ror decomposition: Use similar ideas as in the state-space formulation of an

ARMA(p,q). The Y1, Y5, ..., Y, have joint density

SV Ve V) = SO T[SVl <s<i—1).

t=2

Assume Gaussian WN, and, as for the Kalman filter, that
LY, 1<s<t—1)=N(Y, P

and
L) = N (V. D).

Then for the log likelihood we obtain

n

R VAY
—2log L = Y {log(Zﬂ) +log P/~ + M} : (15)

t—1
t=1 Pt

Thus the log likelihood is written in terms of the innovations ¢, = Y; — Yt
These innovations are independent Gaussian mean zero, hence this formula-
tion is more amenable to analysis. Here, Y; and PI™" are functions of the
unknown parameter

@Z (¢17"'7¢p7017"'79q)

and (15) can be minimized with respect to 0, giving the maximum likelihood
estimator ©. In general, numerical approximations to the mle will be needed
here.

The second derivative of —2log L, evaluated at the mle (:), is the observed
information matrix, and its inverse is an approximation of the variance-
covariance matrix of the estimator. Asymptotic normality holds, also for non-
Gaussian but “regular” white noise, see Brockwell and Davis (1991), p.386.
Thus we obtain standard errors for the parameters ¢q,...,¢,,01,...,0,.
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In practice, for AR(p), for example, Y, = PRy qAb]-Yt_j for t > p is ob-
tainable, but it is not so obvious how to obtain the corresponding quantity
for ¢t < p; it requires some consideration of the stationary distribution of the
process. A similar argument holds for ARMA(p,q) models. Hence the ex-
act likelihood function is often replaced by a conditional likelihood function.
One conditions on the first m values of the series, where m > p is small. The
conditional likelihood is then given by

n

Y; — V;)?
—2log L, = > {10g(27r) +log P71 + %} .
t=m+1 Pt

When comparing models with different numbers of parameters, it is im-
portant to use the same value of m, in particular when minimizing the
AIC = —2log L, +2(p+ ¢q). In S-PLUS, this corresponds to keeping n.cond

in the arima.mle command fixed.
Verification

Two main techniques for model verification are

1. Overfitting: Add extra parameters to the model and use a likelihood
ratio test to see that these are not significant

2. Residual analysis: Calculate residuals from the fitted model and plot
their acf, pacf, spectral density estimates, etc. to check whether they
are consistent with white noise.

Another possibility is the Boz-Pierce test (portmanteau test) based on
K
Q=ny
h=1

where K > p + d + ¢ but much smaller than n. Here, rj, is the Ath sample
autocorrelation of the residual series. If the model is correct, then, asymp-
totically, @ follows a Chi-square distribution with K — (p + d + q) degrees
of freedom. This procedure appears also in S-PLUS. We would reject the
model at level « if

Q> Xi_o(K—p—d—q).
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An improved test is the Box-Ljung procedure:

K 2

Q=n(n+2)y

)
h:ln_h

the distribution of Q is closer to a Chi-square distribution with K — (p+d+q)
degrees of freedom if the model is correct. A problem here is the rather
arbitrary choice of K.

For ARIMA(p, d, g) models, the main steps of identification, estimation
and verification are the same as above. Generalizations of ARIMA(p, d, q)
include

e seasonal ARIMA (SARIMA); in examining autocorrelations, particular
attention must be paid to the values at or near multiples of the period

¢ ARMAX (ARMA with exogenous process)

o fractionally differenced ARIMA, where the fractional difference opera-
tor is defined as

Vi =

|
=
|
=
au
[
M
=
o
_'_
=z
=
2
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2.6 Analysis in the frequency domain

The idea here is to express the regularity of a series in terms of periodic
variations of the underlying phenomenon. Thus it heavily relies on Fourier
methods.

The spectral theory for stationary processes is based on the following fact.
For any sequence {~, };, of autocovariances generated by a stationary process,
there exists a function F' such that

= /( AR, (16)
where F'is the unique function on [—m, 7] such that
. F(—=7)=0
2. F is non-decreasing and right-continuous

3. The increments of F' are symmetric around zero: for 0 < a < b <,

The function F'is called the spectral distribution function (see Smith (2001)).
Note that this is not necessarily a probability distribution function, as F/(1) =
1 is not required. The interpretation is that, for 0 < a < b <7, F(b) — F(a)
measures the contribution to the total variability of the process within the
frequency range (a,b].

If F'is everywhere continuous and differentiable, then

sy =L

is called the spectral density function, and (16) becomes
S PV (17)

It 3550 [71| < 00, then it can be shown that f always exists, and is given by

1 & : 1 &
JO) = 5= 3 e = 22+ = 37y cos(Mh).
m he— oo T

27T h=1

We observe that, due to symmetry, f(A) = f(=X).
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The spectrum and the acf contain equivalent information concerning the
underlying sequence. However, the spectrum has a more tangible interpre-
tation in terms of the inherent tendency for realizations of {Y;}; to exhibit
cyclic variations about the mean.

Note that some textbooks define the spectral density function in a differ-
ent form; Shumway & Stoffer (2000) use

1/2 ,
= / e%zyhf(u)dl/.

1/2

This is just the same integral as above, using a change of variable.

Sometimes it is also convenient to consider the normalized spectral density
function

A\ o .
Foy=tD o Lo e
€ h=—0c0

see also the Exercise sheet.

Example. WN(0,0?), 6 > 0. Here, 79 = 02, 4, = 0 for i # 0, and
2

zﬂ’

J)

independent of A. The spectral distribution function is uniform. The converse
also holds: A process is WN if and only if its spectral density is constant.
Indeed, a quantile-quantile plot for the spectral distribution function versus
the uniform can be used to test for white noise, see Brockwell & Davis (1991),
p. 223.

Example. AR(1). Here vy = %, and 7, = ¢"y0, so

) = g 30 oM

_ Yo, 1 o~ b ik 1 o h_—idh
B 27r+27r70};¢e +27r70hz_:1¢e

iA S
_ oy 9 9o —
2m 1 — et 1 — geiA
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(1 - ¢%)
2m(1 — 2¢ cos(N) + ¢?)

2

O-E

27(1 — 2 cos(N) + ¢?)’

where we used that e™* + e = 2cos(A). Plotting the spectral density
f(X), we see that in the case ¢ > 0 the spectral density f(}) is a decreasing
function of A, the power is concentrated at low frequencies, corresponding
to graduate long-range fluctuation. For ¢ < 0 the spectral density f(X)
increases, the power is concentrated at high frequencies; such a process tends
to oscillate.

The spectral density for an ARMA(p,q)-process is again related the the
AR and to the MA polynomials. See Brockwell and Davis (1991), p.123, for

the following theorem.

Theorem 3 Let ®(B)Y, = O(B)¢; describe an ARMA (p,q)-process, where
{e:}+ ~ WN(0,02). Suppose that ®(z) and ©(z) have no common factors,
and ® has no zeros on the unit circle. Then {Y;} has spectral densily

_ ol le(e P
T o et

Example. AR(1). Here ®(z) =1 — ¢z, and O(z) = 1, so, for —7m < X <

) = —Jz|1 o
27 ¢
2

0-6

27(1 — 2¢cos(N) + ¢?)’

as calculated before.

Example. MA(1). Here ®(z) = 1,0(z) = 1 + 0z, and we obtain, for
—r < A<,

) = Tt
27 ‘
2

- ;—;(1 + 20 cos(N) + 07).
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Plotting the spectral density f(A), we see that in the case § > 0 the spectral
density is large for low frequencies, small for high frequencies. This is not
surprising, as we have short-range positive correlation, smoothing the series.
For 6 < 0 the spectral density is large around high frequencies, and small for
low frequencies; the series fluctuates rapidly about its mean value. Thus, to
a coarse order, the qualitative behaviour of the spectral density is similar to
that of an AR(1) spectral density.

Working with the discrete Fourier transform offers advantages, in partic-
ular there are fast algorithms available (FFTs). For estimating the spectrum,
the periodogram has some nice properties, which we will see later.

Note: Similarly, complex-valued processes can be analyzed, using the
definition of covariance that, for X and Y mean zero,

Cov(X,Y) = E(XY),
where Y is the complex conjugate of Y. Then
1 & »
(\) = — 2V
fb( ) 27T h:z—:oo the

and

vy = /” ¢ (N)d).

Time-invariant linear filters

A different view point on time series is provided by time-invariant linear
filters. In order to extract signals from a time series, the distribution of power
or variance can be modified by making a linear transformation. We say that
the process {Z:}i=0+1,42,. is obtained from the process {Y;}i=0 4142, by
application of the linear filter

C={copt,k=0+1,+2 ..}
if

Zi= > cxYr, 1=0,4+1,+2,...

k=—0c0
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The filter is time-invariant if ¢;;, = a;_y, depends only on ¢ — k. Then

Zi= > apYig, 1=0,4+1,+2,...

k=—0c0

Z; is also called the output, and {Y;}, is called the input. The Fourier trans-
form

A(I/) — Z ate—Zm'ut
t=—00
is called the frequency response function.

It is straightforward (see Shumway and Stoffer (2000), p. 228) to calculate
that the spectral density of {Z;}; is related to the spectral density of {Y;},
by

f2(v) = [A(@W)]* fr (v).

The spectral density multiplier |A(v)|? is called the transfer function.

Example. A first difference filter
Zy=VY; =Y, =Y.
Here ag = 1,41 = —1,a, =0 for r #£ 0,1, and
Alv) = 1—e™
IA(W)|> = 2(1 — cos(2mv)).

Thus this filter is large for higher frequencies, and small for lower frequencies;
it will enhance higher frequencies. Such a filter is called a high-pass filter.

Example. A centred moving average filter is given by

P

Zi= Y apYig.

k=—p

Then

p
Alv) =2 Z ai cos(2mvk) + 1.

k=1

The filter will enhance lower frequencies; it is a low-pass filter.

Example. A causal ARMA(p,q) process Y; = 372 ;6 ; can be inter-
preted as obtained from {¢;}; by application of the time-invariant linear filter

{¢;,7=0,1,2,...}.
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2.7 State-space models

State-space models assume that the observations {Y;}; are incomplete and
noisy functions of some underlying unobservable process {X;};, called the
state process, which is assumed to have a simple Markovian dynamics. The
general state space model (see Kiinsch (2001)) is described by

1. Xo, X1, Xy, ... 1s a Markov chain

2. Conditionally on {X;};, the Y;’s are independent, and Y; depends on
X, only.

When the state variables are discrete, one usually calls this model a hidden
Markov model; the term state space model is mainly used for continuous state
variables.

A prominent role is played by the linear state space model

Xt = GtXt—l —|—’Ut (18)
Y, = HiXi+w, (19)

where G; and H; are deterministic matrices, and {v;}; and {w;}; are two
independent white noise sequences with v; and w; being mean zero and having
covariance matrices V> and W7, respectively. The general case,

X; = gt(Xt—hUt)
i = ht(XtﬂUt)a

is much more flexible. Also, multivariate models are available. The typical
question on state space models is the estimation or the prediction of the
states { X;}; in terms of the observed data points {Y;};.

Example. Suppose the model
Xi = oXioi + vy
1/1‘ = Xt —I_ Wy,

where {v; }; and {w, }; are two independent white noise sequences with v; and
w; being mean zero and having covariance V;? and W2, respectively. Then

Yi—oYis = Xy —oXiy +w — dwi,y

= v+ w — Pwe_q.
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The right-hand side shows that all correlations at lags > 1 are zero. Hence
the right-hand side is equivalent to an MA(1) model, and thus Y¥; follows an
ARMA(1,1)-model.

The following example shows that any ARMA(p,q)-model with Gaussian
WN can be formulated as a state space model.

Example. ARMA(p,q) with Gaussian WN (thus independent WN). For
a causal invertible ARMA(p,q) process

P g
Yi=D ¢Yiej + D biery,
7=1 7=0

write
Yis = E(Yy|[Yulu < s).
Then (see Kiinsch 2001)

min(j—1,p) p q
Yigje = Z &Yy + Z O Yeyi—i + Zgiet—}—j—ia
=1 i=min(j,p) i=0
empty sums being taken as zero; so that for j > k = max(p, ¢+ 1), Yiqp is
linearly dependent with X; := (Y4, Yiqqp,. .., Yt+k—1|t)T- We thus can choose
X; as state vector. Then (19) holds with H; = (1,0,...,0)) and w; = 0.
Also we have that Y, ;11 = Yipi¢ + biesqr for some coefficients b;, so that

P
Yitrji41 = Z i Yipr—jit + breryas
j=1

thus establishing (18). The representation of an ARMA model as a state-
space model is not unique, see Brockwell and Davis (1991), pp.469-470.

Note that the above model is more flexible than ARMA(p,q). If, for
example, the observation at time ¢ is missing, then we simply put H; =
(0,0,...,0)T. However, it is difficult to deal with non-Gaussian linear state
space models.

Many examples for state-space models come from engineering, and, more
recently, from biology, and from mathematical finance.

Example. If P, denotes the price of an asset at time ¢, then at least to
a first approximation the log return

P
t—1
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has conditional mean zero given the past, but its conditional variance - called
volatility - depends on the past. Stochastic volatility models consider the
conditional variance as an exogenous random process. The easiest example
is

Xe = m4+oXio1+ v
Y, = eXP(Xt)wn

see Timmer & Weigend (1997). For more general stochastic volatility models,

see Shephard (1996).
Filtering, smoothing, and forecasting

The primary aims of the analysis of state space models are to produce
estimators for the underlying unobserved signal X; given the data Y* =
(Yi,...,Ys) up to time s. When s < ¢ the problem is called forecasting, when
s = t it is called filtering, and when s > t it is called smoothing. For a
derivation of the results below see also Smith (2001).

We will throughout assume the white noise to be Gaussian.

For filtering and forecasting, we use the Kalman filter. It is a recursive
method to calculate a conditional distribution within a multivariate normal
framework.

It is useful to first revise some distributional results for multivariate nor-
mal distributions. Suppose that

(%)= () ( ) &
Then the conditional distribution of Z; given Z; = 2, is

L(Z1| 72 = 22) = MVN (1 + S1257] (22 — p2), Bu1 — 0257, 81 ) (21)
and conversely, if Z, ~ MVN (2, ¥5) and if (21) holds, then (20) holds.

Assume the model

X = GXeoi + vy
Y H X; 4 wy,
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with (v;); ind. WN(0,V}), and (wy); ind. WN(0, W;). Here, X; is a vector.
Put Y' = (V5,Y2,...,Y;) and

X; = E(X{Y?)
Ptsl,tg = E{(th - X?:‘Sl)(Xt2 - X:g)T}
= B{(Xy, — X})(Xy, — X7,)"|Y,}

When ¢, = t, = ¢, we will write P? for convenience. Suppose XJ = u and
P{ = 0p, and that

E(Xt_1|Yt_1) = JMVN(ij, P_y).
Then

LY = L(GXi + oY)
= ./MVN(GtX;‘:lla Rt)a

where
R, = GtPt—th_l + Vi
Also,

E(ift|Xt) — HtXt
VCH"(}/AXLL) = Wt.

Let Z; have the conditional distribution of Y; given Y'=!, and let Z, have
the conditional distribution of X; given Y'~!. Put

Zy =Y,
Ze = X
p2 = GX/7|
Voo = Ry

1+ E1221_11(22 — ) = HX,
Y — E1221_11221 = W

Then, with (20) and (21), the conditional distribution of (V;, X;)T given Y*~!
is given by

Y vie1) H,G. X!~} W, + H,R,HI H,R,
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Apply (20) and (21) again, reversing the roles of Z; and Z;, to compute that
the conditional distribution of X; given Y' ™! is multivariate normal with
mean X! and variance P, where

X = GXIZ + ReHI (W, + HiRHD)NY; — H,G: X]7]) (22)
P, = Ri— RHI' (W, + HiR:H)™ H,R;.

Equations (22) and (22) are known as the Kalman filter updating equations.
This solves the filtering problem.

Note that we initialized the recursion by X§ = y and P{ = o4. Instead
one might have initialized the recursion by some prior distribution, of by an
uninformative prior X§ = 0, P = kI, where I denotes the identity matrix.

For forecasting, suppose ¢t > s. By induction, assume we know X; ,, P’ ,.

Then
X, = G X7,
P = GPGT + V.

Recursion solves the forecasting problem.
Note that the conditional distribution of Y;;; given Y! is

MVYN (Hypg1 G Xy, Hipr Regt HY L+ Wig).

This fact is the basis of the prediction error decomposition, useful for param-
eter estimation.

For smoothing we use the Kalman smoother. We proceed by backwards
induction. Suppose that X}, P/ are known, where P/ is the conditional co-
variance matrix of Y, given {X;,..., X;} . With a similar derivation as

above, fort =n,n —1,...,1,

Xiy = X{O 4 T (X7 = X7
Ptn—l = Ptt—_ll + Jt—l(Ptn - Ptt_l)JtT—1

where
Jt—l — Ptt__llHT(Ptt_l)_l-

Note that these procedures differ for different initial distributions, and often
it is not clear which initial distribution is appropriate.
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2.8 Continuous time models

In continuous time, stochastic difference equations are replaced by stochastic
differential equations, and the white noise process (¢;); by a Brownian process
dW (t) with the formal properties that

E(dW(1) = 0
Var(dW(t)) = o’dt
cov(dW (t),dW(s)) = 0, t#s.

The simplest and most important example, the analogue in continuous time

of AR(1), is the Ornstein-Uhlenbeck process (OU-process) with
dY (t) = —pY(t)dt+ dW(t),

leading to the autocorrelation function e=**. If the OU-process is sampled
at equally spaced time points ¢ apart, then there results and AR(1) with
1 = e~ P, whereas if it is observed in discrete time in aggregated form, the
result is an ARMA(1,1).

Rigorous theory needs more theoretical tools for integrals with respect to

AW (1).
Further reading
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398.
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3 Statistical Analysis

3.1 Time domain

There are two broad complementary approaches to analysis, one essentially
nonparametric, and one specific to a family of models. Often one starts with
the first to get a broad idea of the structure of the data. That may be
sufficient or it may lead to the more formal fitting of a model often out of
the ARIMA family.

We here always consider the situation of n observations y,...,y,.

3.1.1 Nonparametric approach

First having removed any substantial trend that is present, we assume that
the observations come from a stationary process with mean p and autoco-
variance function 7;,. We estimate the mean p by the data mean

1 n
V=2

2

and the variance 0* = 74 by

where the divisor n may need modifying in short series not in general ton—1
however.
A direct calculation gives

2

Var(Y) = z + % E(n — )y

n
2

%(m;m)

%

J=—00

= _7Tf (E¢1) )

assuming that >, |pa| < oo. Note the very important point that this is

g

often extremely different from 72 (which we obtain for WN). The situation
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is much worse for series with long-range dependence, so that >, |pn| = oc;
then convergence of variance is at a slower rate than =.

Suppose
Yi=p+ Y e,

i=—o0

where {¢}; is WN(0,0?). If 3" |¢;| < oo and if 3" 4; # 0, then (see Brock-
well & Davis (1991), p.219), the scaled sample mean %Y is asymptotically

2
normal with mean g and variance (Z;’;Oo ;/g) .

We now estimate the lag h autocorrelation by

_ S (Y = Y)(Yran — )

Y (ye —y)? ’
or, especially if h is appreciable compared with n some adaptation thereof
with different divisors. In general it is probably a bad idea to go beyond

h = {5. Similarly, we estimate the lag h autocovariance by

. I & _ _
Y = g Z(yt - y)(yt+h - y).

i=1

If the corresponding population correlation is zero (white noise), then the
sample correlation has variance % Note that the presence of correlation for
some, usually small, & induces correlation between the sample correlations
at larger values of h, even if the population correlation is zero.

For a causal ARMA(p,q) process Y; = 3,50 65 with 37 |15 < oo, and
(¢¢): being i.i.d. WN(0, ¢2) such that

e ecither ch < 00

e or ijoﬂb? < oo

we have that (see Brockwell and Davis (1991), p. 221) for any A the vector
r = (ry,...,rs) is asymptotically multivariate normal distributed with mean
vector p = (p1,...,pr) and variance-covariance matrix %W, Here, W =
(wij)ﬁjzl is given by Bartlelt’s formula

wy = S {plk+D)p(k+ )+ p(k — D)ok + ) + 20(3)p(j) 2

k=—00

—2p(1)p(k)p(k + 5) — 20(5)p(k)p(k + 1)} .
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For i.i.d. WN, for example, we obtain w;; = 1 if 1 = 5, and w;; =0 if 1 # j.

If n is small, or if the parameter values are close to the boundaries, then
the convergence towards the asymptotic distribution can be very poor. In this
case, bootstrap methods would be advisable. Here the specific dependence
structure has to be taken into account. There are specific bootstrap methods
for time series; see Biihlmann (2001) for an overview.

3.2 Fitting ARIMA models

For fitting ARIMA models, the classical Box-Jenkins approach can be used,
see Subsection 2.5.

3.2.1 Estimation in state-space models

In state-space models, a maximum-likelihood approach based on the pre-
diction error decomposition can be employed. Here, missing data can be
treated as well, see Kohn and Ansley (1986). For non-Gaussian models, in-
ference usually involves computer-intensive methods, such as MCMC and
Gibbs sampling, see also Kiinsch (2001). An example is given by the Lake
Huron data analysis in Smith (2001).

3.3 Frequency domain

3.3.1 Nonparametric approach

Interpreting the spectral density as the variance at a given frequency, we
might get useful information out of the magnitude of that variance by isolat-
ing the frequency component. Hence, try to enhance the periodic component
in a time series at frequency v by correlating the series against periodic sine
and cosine functions at frequency v. The sine and cosine transforms

(v) = n~3
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should be large when the series contains the frequency v, and should be small
otherwise. Typically, we will probe at frequencies v}, = %, 0=1,....n—1.
The corresponding frequencies wy = 271'% are called the Fourier frequencies.

The (sample) periodogram
Li(v) = Y (v) + V()

measures the sample variance or power at the frequency v. We will see
that the periodogram is an approximately unbiased estimator of the spectral
density function. The estimated spectral density can be used to estimate the
autocorrelation function, using (17).

A shorter way of describing the periodogram is via the discrete Fourier
transform: write

Yf(l/) — n—% Z EG_QWWL‘
t=1

L) = [Vi(v)P.
Note that the time series can be recovered from the Fourier transform via

Y, = n_% ZYtGQMUt-
t=1
For Gaussian WN, because Y, and Y; are obtained by orthogonal trans-
formation and are orthogonal to the general mean, they are themselves inde-
pendently normally distributed with constant variance. In fact, if /¥ denotes
a frequency such that 271f is close to v for any given n, then Y.(v*) and
Y,(v}) are asymptotically i.i.d. normal with mean zero and variance  f(v),

n
and

21,(v)
f(v)
is asymptotically Chisquare distributed with two degrees of freedom. This

result can be extended to the simultaneous estimation (Brockwell and Davis
(1991), p.346; for a heuristic proof see Smith (2000), pp. 41-42).

Theorem 4 Let w; = Q%j,l < j < 5 be the Fourier frequencies. Suppose
that (Yy); is a causal ARMA((p,q) process with 322 [¢;| < oo, and assume
that the i.i.d. WN (&), satisfies that Ee; < oo. Then the periodogram ordi-
nates {1,(w;),1 < j < 5} are approzimately independent and exponentially

distributed, with means { f(w;),1 < j < 5}
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Remarks.

e Theorem 4 is central for spectral estimation theory. No similar result
for the sample acf is available.

e From Theorem 4, we have that for a Fourier frequency w, I,,(w) is ap-
proximately exponentially distributed with mean f(w), so Varl,(w) ~
f(w)? does not converge to zero as n — oo, Thus I,(w) is NOT a
consistent estimator of f(w).

Note that, regardless of the size of n, the approximating Chisquare distri-
bution will always have only two degrees of freedom. The degrees of freedom
can be increased by taking a moving average, for example. In addition, the
independence of the periodogram ordinates at different Fourier frequencies
results in the sample periodogram, as a function of w, being extremely ir-
regular. Also for this reason often smoothing is applied, for instance using
a moving average, or more generally a smoothing kernel. Here the choice of
bandwidth is nontrivial. Note that we need to adjust the spectral estimates
for the effects of filtering.

Example. Suppose we use a centred moving average smoothed spectral
density estimator

_ L

A

1 =7 /
ﬂw:=zk§;u(%+;y

where v}, = % is a Fourier frequency that is close to the frequency of interest

v. Then, for large n, (Shumway & Stoffer (2000), p.243)
QLf(Vk) ~ X2
f(V) 2L
that is, % follows approximately a chi-squared distribution with 2L de-

grees of freedom. Thus we obtain a 100(1-a)% confidence interval

2L f (1) V 2L f (1)
(o) SIS Ty

Another problem with the periodogram is that of leakage: if I, is eval-
uated at non-Fourier frequencies w there may be “side-lobes” to either side
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of the main peak, which may significantly distort the spectrum. In this case
tapering is used, that is, we transform the series by putting g: = y:h:, for a
function h;. A 100p% cosine taper, for example, is given by

%{1—cos(ﬂt:n;/21)}, I<t<m
hy =< 1, m+1<t<n-—m
%{1—cos(ﬂ%ﬂ/21)}, n—m<1<n,

where usually p = 277” S-PLUS departs from this convention by using p =
instead. For more detail see, for example, Shumway & Stoffer (2000), pp.24
251.

7

3.4 Parametric approach

It is also possible to fit parametric models to the spectral density function.
A convenient class of models is given by the Bloomfield class,

F(w) = exp {2 30 cos(kw)} .

k=0
Any parametric spectral density function f(r,©) can be estimated using the
approximate Whittle log likelihood

[n w;j
log L = —Zlogf(ug,@) — Z ﬁ

Thus maximum likelihood estimation can be applied.

Note that spectral analysis assumes stationarity, so no information about
trend is available. It is basically a nonparametric approach, which is good
as long as n is large. Finally, note that it is not always clear whether inter-
pretation of the underlying process in terms of cyclic patterns of variation
makes sense.

4 Some more advanced topics

4.1 Multivariate time series

Virtually all the above discussion generalizes when a vector is observed at
each point in time. In the time domain, analysis would typically use cross-
correlations and vector autoregressive-moving average models. In the fre-
quency domain, dependencies at different frequencies are analysed separately.
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4.2 Nonlinear models

Virtually all the above models are essentially linear. They can be extended in
an important although relatively minor way by point-wise transformation of
the variable, for example by taking logarithms. Formal tests for nonlinearity
can be based on lagged third moments

Calr,5) = B(Y: = 1)(Vigr — 1) (Yigs — 1)
in the time domain, and by higher-order spectra, in particular the bispectrum
1 00 00 ) )
fS(Vh 1/2) = 447-2 Z Z 03(7“, S)e—zrul—zsw’

r=—00 $§=—00

in the frequency domain. For linear Gaussian models the bispectrum and
the lagged third moments would vanish.

Explicitly nonlinear models can show quite different kinds of behaviour
from that typical of linear models but tend to be difficult to study other than
numerically. Some special cases are

e models of variance heterogeneity, ARCH and its generalizations, of
much interest in finance and econometrics more generally,

e nonlinear autoregressions of the form
Yisi =9Yy) + &, Vi = g(Va, &),

for suitable nonlinear functions g. Note that polynomials cannot be
used except for rather limited purposes because of nonstationarity,

e threshold autoregressions in which g(Y;) is piecewise linear.

For nonlinear time series, the amplitude (the periodogram) does not suffice to
estimate the spectral density, and the acf; instead the phase is also needed.
The interplay between randommness and nonlinearity generates new effects
such as coexistence of fixed points, periodic points, and chaotic attractors,
and new tools have been developed for these systems. In particular, nonlinear
time series analysis uses many ideas from deterministic chaos theory. For
more details see, e.g., Diks (1999).
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4.3

Chaos

There is a large literature centering around the idea that some simple deter-

ministic processes generate output that is very like a realization of a stochas-
tic process. In particular it satisfies sensitivity to the initial conditions. Tak-

ens (1981), for example, gives a reconstruction of the asymptotic dynamics

of a dynamical system from an observed deterministic time series. This is a
completely different approach to time series.

Acknowledgement. Much of these notes are based on lecture notes
by D.R. Cox. Helpful discussions with him and with N. Stollenwerk are
gratefully acknowledged.

[u—y

Further reading

P. B”uhlmann (2001). Bootstrap for time series. To appear in Statisti-
cal Science. See also http://stat.ethz.ch/ buhlmann/bibliog.html

G.E.P. Box, and G.M. Jenkins (1970). Time Series Analysis, Forecast-
ing, and Control. Holden-Day.

C. Diks (1999). Nonlinear Time Series Analysis. World Scientific.

. R. KouN aND C.F. ANSLEY (1986). Estimation, interpolation and

prediction for ARIMA models with missing data. J. Amer. Stalist.
Assoc. 81, T51-761.

. H. R. KUNScH (2001). State space and hidden Markov models. In

Complex Stochastic Systems, O.E. Barndorff-Nielsen, D.R. Cox and C.
Klippelberg, eds. Chapman and Hall.

F. TAKENS (1981). Detecting strange attractors in turbulence. in

Dynamical Systems and Turbulence, Warwick 1980 (Lecture Notes in
Mathematics), (eds D.A. Rand and L.-S. Young), vol. 898, 366-381.

44



