A Short Introduction to Stein's Method

Gesine Reinert

DEPARTMENT OF STATISTICS

UNIVERSITY OF OXFORD

Overview

Lecture 1: focusses mainly on normal approximation

Lecture 2: other approximations

1. The need for bounds

Distributional approximations:

Example X_1, X_2, \ldots, X_n i.i.d., $\mathbf{P}(X_i = 1) = p = 1 - \mathbf{P}(X_i = 0)$

$$n^{-1/2} \sum_{i=1}^{n} (X_i - p) \approx_d \mathcal{N}(0, p(1-p))$$

$$\sum_{i=1}^{n} X_i \approx_d Poisson(np)$$

would like to assess distance of distributions; would like

bounds

Weak convergence

For c.d.f.s $F_n, n \ge 0$ and F on the line we say that F_n

converges weakly (converges in distribution) to F,

$$F_n \xrightarrow{w} F$$

if

$$F_n(x) \to F(x) \quad (n \to \infty)$$

for all continuity points x of F

For the associated probability distributions:

$$P_n \xrightarrow{w} P$$

Facts:

1.

$P_n \xrightarrow{w} P \iff P_n(A) \to P(A)$

for each P-continuity set A (i.e. $P(\partial A) = 0$)

2.

$P_n \xrightarrow{w} P \iff \int f dP_n \to \int f dP$

for all functions f that are bounded, continuous, real-

valued

$$P_n \xrightarrow{w} P \iff \int f dP_n \to \int f dP$$

for all functions f that are bounded, infinitely often

differentiable, continuous, real-valued

4. If X is a random variable, denote its distribution by

 $\mathcal{L}(X)$. Then

$$\mathcal{L}(X_n) \xrightarrow{w} \mathcal{L}(X) \iff Ef(X_n) \to Ef(X)$$

for all functions f that are bounded, infinitely often

differentiable, continuous, real-valued

Metrics

Let $\mathcal{L}(X) = P, \mathcal{L}(Y) = Q$; define total variation dis-

tance

$$d_{TV}(P,Q) = \sup_{A \text{ measurable}} |P(A) - Q(A)|$$

Put

$$\mathcal{L} = \{g : \mathbf{R} \to \mathbf{R}; |g(y) - g(x)| \le |y - x|\}$$

and Wasserstein distance

$$d_W(P,Q) = \sup_{g \in \mathcal{L}} |\mathbf{E}g(Y) - \mathbf{E}g(X)|$$
$$= \inf \mathbf{E}|Y - X|,$$

where the infimum is over all couplings X, Y such that

$$\mathcal{L}(X) = P, \mathcal{L}(Y) = Q$$

Using

 $\mathcal{F} = \{ f \in \mathcal{L} \text{ absolutely continuous}, f(0) = f'(0) = 0 \}$

we also have

$$d_W(P,Q) = \sup_{f \in \mathcal{F}} |\mathbf{E}f'(Y) - \mathbf{E}f'(X)|.$$

2. Stein's Method for Normal Approxima-

tion

Stein (1972, 1986)

 $Z \sim \mathcal{N}(\mu, \sigma^2)$ if and only if for all smooth functions f,

$$\mathbf{E}(Z-\mu)f(Z) = \sigma^2 \mathbf{E}f'(Z)$$

For W with $\mathbf{E}W = \mu$, $\operatorname{Var}W = \sigma^2$, if

$$\sigma^2 \mathbf{E} f'(W) - \mathbf{E} (W - \mu) f(W)$$

is close to zero for many functions f, then W should be

close to Z in distribution

Sketch of proof for $\mu = 0, \sigma^2 = 1$:

Assume $Z \sim \mathcal{N}(0, 1)$. Integration by parts:

$$\frac{1}{\sqrt{2\pi}} \int f'(x) e^{-x^2/2} dx$$

= $\left[\frac{1}{\sqrt{2\pi}} f(x) e^{-x^2/2}\right] + \frac{1}{\sqrt{2\pi}} \int x f(x) e^{-x^2/2} dx$
= $\frac{1}{\sqrt{2\pi}} \int x f(x) e^{-x^2/2} dx$

Assume $\mathbf{E}Zf(Z) = \mathbf{E}f'(Z)$: Can use partial integra-

tion to solve differential equation

$$f'(x) - xf(x) = g(x), \quad \lim_{x \to -\infty} f(x)e^{-x^2/2} = 0$$

for any bounded function g, giving

$$f(y) = e^{y^2/2} \int_{-\infty}^{y} g(x) e^{-x^2/2} dx$$

Take $g(x) = \mathbf{1}(x \le x_0) - \Phi(x_0)$, then

$$0 = \mathbf{E}(f'(Z) - Zf(Z)) = \mathbf{P}(Z \le x_0) - \Phi(x_0)$$

so $Z \sim \mathcal{N}(0, 1)$.

Let $\mu = 0$. Given a test function h, let $Nh = \mathbf{E}h(Z/\sigma)$,

and solve for f in the Stein equation

$$\sigma^2 f'(w) - wf(w) = h(w/\sigma) - Nh$$

giving

$$f(y) = e^{y^2/2} \int_{-\infty}^{y} \left(h(x/\sigma) - Nh \right) e^{-x^2/2} dx$$

Now evaluate the expectation of the r.h.s. of the Stein

equation by the expectation of the l.h.s.

Can bound, e.g. $\parallel f'' \parallel \leq 2 \parallel h' \parallel$

Example: X, X_1, \ldots, X_n i.i.d. mean zero, $\operatorname{Var} X = \frac{1}{n}$

$$W = \sum_{i=1}^{n} X_i$$

Put

$$W_i = W - X_i = \sum_{j \neq i} X_j$$

Then

$$\mathbf{E}Wf(W) = \sum_{i=1}^{n} \mathbf{E}X_{i}f(W)$$
$$= \sum_{i=1}^{n} \mathbf{E}X_{i}f(W_{i}) + \sum_{i=1}^{n} \mathbf{E}X_{i}^{2}f'(W_{i}) + R$$
$$= \frac{1}{n}\sum_{i=1}^{n} \mathbf{E}f'(W_{i}) + R$$

So

$$\mathbf{E}f'(W) - \mathbf{E}Wf(W) = \frac{1}{n}\sum_{i=1}^{n} \mathbf{E}\{f'(W) - f'(W_i)\}$$

+R

and can bound remainder term R;

Theorem 1 For any smooth h

$$\left|\mathbf{E}h(W) - Nh\right| \leq \left\|h'\right\| \left(\frac{2}{\sqrt{n}} + \sum_{i=1}^{n} \mathbf{E}|X_i^3|\right).$$

Extends to local dependence:

Let X_1, \ldots, X_n be mean zero, finite variances, put

$$W = \sum_{i=1}^{n} X_i$$

Assume VarW = 1. Suppose that for each i = 1, ..., n

there exist sets $A_i \subset B_i \subset \{1, \ldots, n\}$ such that

 X_i is independent of $\sum_{j \notin A_i} X_j$ and

 $\Sigma_{j \in A_i} X_j$ is independent of $\Sigma_{j \notin B_i} X_j$

Define

$$\eta_i = \sum_{j \in A_i} X_j$$

$$\tau_i = \sum_{j \notin B_i} X_j$$

Theorem 2 For any smooth h with $||h'|| \leq 1$,

$$|\mathbf{E}h(W) - Nh| \leq 2\sum_{i=1}^{n} (\mathbf{E}|X_i\eta_i\tau_i| + |\mathbf{E}(X_i\eta_i)|\mathbf{E}|\tau_i|)$$

$$+\sum_{i=1}^{n}\mathbf{E}|X_{i}\eta_{i}^{2}|.$$

Example: Graphical dependence

 $V = \{1, \ldots, n\}$ set of vertices in graph G = (V, E)

G is a *dependency graph* if, for any pair of disjoint sets

 Γ_1 and Γ_2 of V such that no edge in E has one endpoint

in Γ_1 and the other endpoint in Γ_2 , the sets of random

variables $\{X_i, i \in \Gamma_1\}$ and $\{X_i, i \in \Gamma_2\}$ are independent

Let A_i be the set of all j such that $(i, j) \in E$, union

with $\{i\}, B_i = \bigcup_{j \in A_i} A_j$. Then the above theorem applies.

Size-Bias coupling: $\mu > 0$

If $W \ge 0, \mathbf{E}W > 0$ then W^s has the W-size biased

distribution if

$$\mathbf{E}Wf(W) = \mathbf{E}W\mathbf{E}f(W^s)$$

for all f for which both sides exist

Put $f(x) = \mathbf{1}(x = k)$ then

$$k\mathbf{P}(W=k) = \mathbf{E}W\mathbf{P}(W^s=k)$$

SO

$$\mathbf{P}(W^s = k) = \frac{k\mathbf{P}(W = k)}{\mathbf{E}W}$$

Example: If $X \sim Bernoulli(p)$, then $\mathbf{E}Xf(X) =$

pf(1) and so $X^s = 1$

Example: If $X \sim Poisson(\lambda)$, then

$$\mathbf{P}(X^s = k) = \frac{ke^{-\lambda}\lambda^k}{k!\lambda} = \frac{e^{-\lambda}\lambda^{k-1}}{(k-1)!}$$

and so $X^s = X + 1$, where the equality is in distribution

Construction

(Goldstein + Rinott 1996) Suppose $W = \sum_{i=1}^{n} X_i$

with $X_i \ge 0$, $EX_i > 0$, all *i*.

Choose index V proportional to the mean, $\mathbf{E}X_v$. If V = v: replace X_v by X_v^s having the X_v -size biased distribution, independent, and if $X_v^s = x$: adjust $\hat{X}_u, u \neq$

v, such that

$$\mathcal{L}(\hat{X}_u, u \neq v) = \mathcal{L}(X_u, u \neq v | X_v = x)$$

Then
$$W^s = \sum_{u \neq V} \hat{X}_u + X_V^s$$

Example: $X_i \sim Be(p_i)$ for $i = 1, \ldots, n$

Then $W^s = \sum_{u \neq V} \hat{X}_u + 1$

See Poisson approximation, Barbour, Holst, Janson

1992

$$X, X_1, \ldots, X_n \ge 0$$
 i.i.d., $\mathbf{E}X = \mu, \operatorname{Var}X = \sigma^2$

$$W = \sum_{i=1}^{n} X_i$$

Then

$$\mathbf{E}(W-\mu)f(W) = \mu \mathbf{E}(f(W^s) - f(W))$$

$$\approx \mu \mathbf{E}(W^s - W) f'(W)$$

$$= \mu \frac{1}{n} \sum_{i=1}^{n} \mathbf{E}(X_i^s - X_i) f'(W)$$

$$\approx \mu \mathbf{E} f'(W) \mathbf{E} (X^s - \mu)$$

$$= \ \mu \mathbf{E} f'(W) \left\{ \frac{1}{\mu} \mathbf{E} X^2 - \mu \right\}$$

$$= \sigma^2 \mathbf{E} f'(W).$$

Zero bias coupling

Let X be a mean zero random variable with finite, nonzero variance σ^2 . We say that X^* has the X-zero biased distribution if for all differentiable f for which $\mathbf{E}Xf(X)$ exists,

$$\mathbf{E}Xf(X) = \sigma^2 \mathbf{E}f'(X^*).$$

The zero bias distribution X^* exists for all X that have

mean zero and finite variance. (Goldstein and R. 1997)

It is easy to verify that W^* has density

$$p^*(w) = \sigma^{-2} \mathbf{E} \{ W \mathbf{I}(W > w) \}$$

Example: If $X \sim Bernoulli(p) - p$, then

$$\mathbf{E}\{X\mathbf{I}(X > x)\} = p(1-p) \text{ for } -p < x < 1-p$$

and is zero elsewhere, so $X^* \sim Uniform(-p,1-p)$

Connection with Wasserstein distance

We have for W mean zero, variance 1,

$$|\mathbf{E}h(W) - Nh| = |\mathbf{E}[f'(W) - Wf(W)]|$$
$$= |\mathbf{E}[f'(W) - f'(W^*)]|$$

$$\leq ||f''||\mathbf{E}|W - W^*|,$$

where $|| \cdot ||$ is the supremum norm. As $||f''|| \le 2||h'||$

$$|\mathbf{E}h(W) - Nh| \le 2||h'||\mathbf{E}|W - W^*|;$$

thus

$$d_W(\mathcal{L}(W), \mathcal{N}(0, 1)) \le 2\mathbf{E}|W - W^*|.$$

Construction in the case of $W = \sum_{i=1}^{n} X_i$ sum of independent mean zero finite variance σ_i^2 variables: Choose an index I proportional to the variance, zero bias in that variable,

$$W^* = W - X_I + X_I^*.$$

Proof: For any smooth f,

$$\begin{split} \mathbf{E}Wf(W) &= \sum_{i=1}^{n} \mathbf{E}X_{i}f(W) \\ &= \sum_{i=1}^{n} \mathbf{E}X_{i}f(X_{i} + \sum_{t \neq i} X_{t}) \\ &= \sum_{i=1}^{n} \sigma_{i}^{2}\mathbf{E}f'(X_{i}^{*} + \sum_{t \neq i} X_{t}) \\ &= \sigma^{2}\sum_{i=1}^{n} \frac{\sigma_{i}^{2}}{\sigma^{2}}\mathbf{E}f'(W - X_{i} + X_{i}^{*}) \\ &= \sigma^{2}\mathbf{E}f'(W - X_{I} + X_{I}^{*}) = \sigma^{2}\mathbf{E}f'(W^{*}), \end{split}$$

where we have used independence of X_i and $X_t, t \neq i$.

Immediate consequence:

$$\mathbf{E}|W - W^*| \le \frac{1}{\sigma^2} \sum_{i=1}^n \sigma_i^2 \{ \mathbf{E}|X_i| + \mathbf{E}|X_i^*| \}$$

and

Proposition 1 Let X_1, \ldots, X_n be independent mean zero variables with variances $\sigma_1^2, \ldots, \sigma_n^2$ and finite third moments, and let $W = (X_1 + \ldots + X_n)/\sigma$ where $\sigma^2 =$ $\sigma_1^2 + \ldots + \sigma_n^2$. Then for all absolutely continuous test functions h,

$$|\mathbf{E}h(W) - Nh| \le \frac{2||h'||}{\sigma^3} \sum_{i=1}^n \mathbf{E}\left(|X_i| + \frac{1}{2}|X_i|^3\right) \sigma_i^2,$$

so in particular, when the variables are identically dis-

tributed with variance 1,

$$|\mathbf{E}h(W) - Nh| \le \frac{3||h'||\mathbf{E}|X_1|^3}{\sqrt{n}}.$$

General construction: (Goldstein + R. 1997, Gold-

stein 2003)

Let Y', Y'' be exchangeable pair with distribution F(y', y'')

such that

$$\mathbf{E}(Y''|\mathcal{F}) = (1-\lambda)Y'$$

for some \mathcal{F} such that $\sigma(Y') \subset \mathcal{F}$, and for some $0 < \lambda < 1$

Let \hat{Y}', \hat{Y}'' have distribution

$$dG(\hat{y}', \hat{y}'') = \frac{(\hat{y}' - \hat{y}'')^2}{\mathbf{E}(\hat{Y}' - \hat{Y}'')^2} dF(\hat{y}', \hat{y}'')$$

and let $U \sim \mathcal{U}(0, 1)$ be independent of \hat{Y}', \hat{Y}'' , then

$$Y^* = U\hat{Y}' + (1 - U)\hat{Y}''$$

has the Y^* -distribution.

If in addition Y' = V + T' and Y'' = V + T'' for some T', T'', and on the same state space $\hat{Y}' = V + \hat{T}'$

and $\hat{Y}'' = V + \hat{T}''$ for some \hat{T}', \hat{T}'' with $|\hat{T}'| \leq B$ and

 $|\hat{T}''| \leq B$, then we can couple such that

$$|Y' - Y^*| \le 3B.$$

Example: Simple random sampling

Population of characteristics \mathcal{A} with $\Sigma_{a \in \mathcal{A}} a = 0$ and

 $|a| \leq n^{-1/2}B$ for all $a \in \mathcal{A}$. Let

$$X', X'', X_2, \ldots, X_n$$

be a simple random sample of size n + 1

Use notation $\parallel \mathbf{Z} \parallel = \sum_{z \in \mathbf{Z}} z$, put

$$Y' = \parallel \mathbf{X}' \parallel, \quad Y'' = \parallel \mathbf{X}'' \parallel$$

So Y' - Y'' = X' - X''

Choose $\hat{X}', \hat{X}'' \propto (\hat{x}' - \hat{x}'')^2 \mathbf{I}(\{\hat{x}', \hat{x}''\} \in \mathcal{A}$

Intersection $\mathcal{R} = \{\hat{X}', \hat{X}''\} \cap \{X_2, \dots, X_n\}$ and

$$V = \parallel \{X_2, \dots, X_n\} \setminus \mathcal{R} \parallel; \quad T' = \parallel X' \cap \mathcal{R} \parallel$$

Let \mathcal{S} be a simple random sample of size $|\mathcal{R}|$ from $\mathcal{A} \setminus$

$$\{\hat{X}', \hat{X}'', X_2, \dots, X_n\}$$
 and put $\hat{T}' = \parallel \hat{X}' \cap \mathcal{S} \parallel$; similarly
for T'', \hat{T}''

As $|\mathcal{R}| \leq 2$ we have $|\hat{T}'| \leq 2n^{-1/2}B$ and $|\hat{T}''| \leq 2n^{-1/2}B$

When third moments vanish, fourth moments exist:

Order n^{-1} bound

Also: Berry-Esseen bound, combinatorial central limit

theorem (Goldstein 2004)

Lecture 2: Other distributions

Recap

Would like bounds on distributional distance

Use test functions to assess distance

For standard normal distribution $\mathcal{N}(0,1)$, distribu-

tion function $\Phi(x)$ Stein (1972, 1986)

1. $Z \sim \mathcal{N}(0, 1)$ if and only if for all smooth functions f

$$\mathbf{E}f'(Z) = \mathbf{E}Zf(Z)$$

2. For any smooth function h there is a smooth function

 $f = f_h$ solving the Stein equation

$$h(x) - \int h d\Phi = f'(x) - x f(x)$$

(and bounds on f in terms of h)

3. For any random variable W, smooth h

$$\mathbf{E}h(W) - \int hd\Phi = \mathbf{E}f'(W) - \mathbf{E}Wf(W)$$

Use Taylor expansion or couplings to quantify weak

dependence

If $W \ge 0, \mathbf{E}W > 0$ then W^s has the W-size biased

distribution if

$$\mathbf{E}Wf(W) = \mathbf{E}W\mathbf{E}f(W^s)$$

for all f for which both sides exist

Construction(Goldstein + Rinott 1996)

Suppose
$$W = \sum_{i=1}^{n} X_i$$
 with $X_i \ge 0$, $EX_i > 0$, all i .

Choose index $V \propto \mathbf{E} X_v$. If V = v: replace X_v by X_v^s

having the X_v -size biased distribution, independent, and

if $X_v^s = x$: adjust $\hat{X}_u, u \neq v$, such that

$$\mathcal{L}(\hat{X}_u, u \neq v) = \mathcal{L}(X_u, u \neq v | X_v = x)$$

Then $W^s = \sum_{u \neq V} \hat{X}_u + X_V^s$

Example: $X_i \sim Be(p_i)$ for $i = 1, \ldots, n$

Then $W^s = \sum_{u \neq V} \hat{X}_u + 1$

3. General situation

Target distribution μ

1. Find characterization: operator \mathcal{A} such that $X \sim \mu$ if

and only if for all smooth functions f, $E\mathcal{A}f(X) = 0$

2. For each smooth function h find solution $f = f_h$ of

the Stein equation

$$h(x) - \int h d\mu = \mathcal{A}f(x)$$

3. Then for any variable W,

$$Eh(W) - \int hd\mu = E\mathcal{A}f(W)$$

Usually need to bound f, f', or Δf

Here: h smooth test function; for nonsmooth functions:

see techniques used by Shao, Chen, Rinott and Rotar,

Götze

The generator approach

Barbour 1989, 1990; Götze 1993

Choose \mathcal{A} as generator of a Markov process with sta-

tionary distribution μ , that is:

Let $(X_t)_{t\geq 0}$ be a homogeneous Markov process

Put $T_t f(x) = E(f(X_t)|X(0) = x)$

Generator $\mathcal{A}f(x) = \lim_{t \downarrow 0} \frac{1}{t} \left(T_t f(x) - f(x) \right)$

Facts (see Ethier and Kurtz (1986), for example)

1. μ stationary distribution then $X \sim \mu$ if and only if

 $E\mathcal{A}f(X) = 0$ for f for which $\mathcal{A}f$ is defined

2. $T_th - h = \mathcal{A}(\int_0^t T_u h du)$ and formally

$$\int hd\mu - h = \mathcal{A}\left(\int_0^\infty T_u hdu\right)$$

if the r.h.s. exists

Examples

1.
$$\mathcal{A}h(x) = h''(x) - xh'(x)$$
 generator of Ornstein-Uhlenbeck

process, stationary distribution $\mathcal{N}(0,1)$

2.
$$\mathcal{A}h(x) = \lambda(h(x+1) - h(x)) + x(h(x-1) - h(x))$$
 or

$$\mathcal{A}f(x) = \lambda f(x+1) - xf(x)$$

Immigration-death process, immigration rate λ , unit

per capita death rate; stationary distribution $Poisson(\lambda)$

Advantage: generalisations to multivariate, diffusions, measure space...

4. Chisquare distributions

Generator for χ_p^2 :

$$\mathcal{A}f(x) = xf''(x) + \frac{1}{2}(p-x)f'(x)$$

(Luk 1994: $Gamma(r, \lambda)$) \mathcal{A} is the generator of a

Markov process given by the solution of the stochastic

differential equation

$$X_{t} = x + \frac{1}{2} \int_{0}^{t} (p - X_{s}) ds + \int_{0}^{t} \sqrt{2X_{s}} dB_{s}$$

where B_s is standard Brownian motion

Stein equation

$$(\chi_p^2) \quad h(x) - \chi_p^2 h = x f''(x) + \frac{1}{2}(p-x)f'(x)$$

where $\chi_p^2 h$ is the expectation of h under the χ_p^2 -distribution

Lemma 1 (Pickett 2002)

Suppose $h : \mathbf{R} \to \mathbf{R}$ is absolutely bounded, $|h(x)| \leq$

 ce^{ax} for some c > 0 $a \in \mathbf{R}$, and the first k deriva-

tives of h are bounded. Then the equation (χ_p^2) has a

solution $f = f_h$ such that

$$\parallel f^{(j)} \parallel \leq \frac{\sqrt{2\pi}}{\sqrt{p}} \parallel h^{(j-1)} \parallel$$

with $h^{(0)} = h$.

(Improvement over Luk 1994 in $\frac{1}{\sqrt{p}}$)

Example: squared sum (R. + Pickett)

 $X_i, i = 1, \ldots, n$ i.i.d. mean zero, variance one, exisiting

 8^{th} moment

$$S = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_i$$

and

$$W = S^2$$

Want

$$2EWf''(W) + E(1-W)f'(W)$$

Put

$$g(s) = sf'(s^2)$$

then

$$g'(s) = f'(s^2) + 2s^2 f''(s^2)$$

and

$$2EWf''(W) + E(1 - W)f'(W)$$
$$= Eg'(S) - Ef'(W) + E(1 - W)f'(W)$$
$$= Eg'(S) - ESg(S)$$

Now proceed as in $\mathcal{N}(0, 1)$:

Put

$$S_i = \frac{1}{\sqrt{n}} \sum_{j \neq i} X_j$$

Then by Taylor expansion, some $0 < \theta < 1$,

$$ESg(S) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} EX_i g(S)$$

= $\frac{1}{\sqrt{n}} \sum_{i=1}^{n} EX_i g(S_i) + \frac{1}{n} \sum_{i=1}^{n} EX_i^2 g'(S_i) + R_1$

where

$$R_{1} = \frac{1}{n^{3/2}} \sum_{i} EX_{i}^{3} g''(S_{i})$$
$$+ \frac{1}{2n^{2}} \sum_{i} EX_{i}^{4} g^{(3)} \left(S_{i} + \theta \frac{X_{i}}{\sqrt{n}}\right)$$

From independence

$$ESg(S) = \frac{1}{n} \sum_{i=1}^{n} Eg'(S_i) + R_1$$
$$= Eg'(S) + R_1 + R_2$$

where

$$R_{2} = \frac{1}{n^{3/2}} \sum_{i} EX_{i} g''(S_{i})$$
$$+ \frac{1}{2n^{2}} \sum_{i} EX_{i}^{2} g^{(3)} \left(S_{i} + \theta \frac{X_{i}}{\sqrt{n}}\right)$$
$$= \frac{1}{2n^{2}} \sum_{i} EX_{i}^{2} g^{(3)} \left(S_{i} + \theta \frac{X_{i}}{\sqrt{n}}\right)$$

by Taylor expansion, some $0 < \theta < 1$

Bounds on R_1, R_2

Calculate

$$g''(s) = 6sf''(s^2) + 4s^3f^{(3)}(s^2)$$

and

$$g^{(3)}(s) = 24s^2 f^{(3)}(s^2) + 6f''(s^2) + 8s^4 f^{(4)}(s^2)$$

so with $\beta_i = EX_1^i$

$$\begin{aligned} \frac{1}{2n^2} &\sum_{i} EX_i^2 \left| g^{(3)} (S_i + \theta \frac{X_i}{\sqrt{n}}) \right| \\ &\leq \frac{24}{n} \parallel f^{(3)} \parallel \left(1 + \frac{\beta_4}{n} \right) + \frac{6}{n} \parallel f'' \parallel \\ &\quad + \frac{8}{n} \parallel f^{(4)} \parallel \left(6 + \frac{\beta_4}{n} + 4 \frac{\beta_3^2}{\sqrt{n}} + 6 \frac{\beta_4}{n} + \frac{\beta_6}{n^2} \right) \\ &= c(f) \frac{1}{n}. \end{aligned}$$

Similarly for $\frac{1}{2n^2} \sum_i EX_i^4 \left| g^{(3)}(S_i + \theta \frac{X_i}{\sqrt{n}}) \right|$, employ β_8

For
$$\frac{1}{n^{3/2}} \sum_i EX_i^3 g''(S_i)$$
 have, for some $c(f)$

$$\frac{1}{n^{3/2}} \sum_{i} EX_{i}^{3}g''(S_{i}) = \frac{1}{\sqrt{n}}\beta_{3}Eg''(S) + c(f)\frac{1}{n}$$

and

$$Eg''(S) = 6ESf''(S^2) + 4ES^3f^{(3)}(S^2)$$

Note that g'' is antisymmetric, g''(-s) = -g''(s), so

for $Z \sim \mathcal{N}(0, 1)$ we have

$$Eg''(Z) = 0$$

(Almost) routine now to show that $|Eg''(S)| \le c(f)/\sqrt{n}$

for some c(f).

Combining these bounds show: the bound on the dis-

tance to Chisquare(1) for smooth test functions is of

order $\frac{1}{n}$

Also: Pearson's chisquare statistic

5. Discrete Gibbs measure (R. + Eichelsbacher)

Let μ be a probability measure with support supp $(\mu) =$

 $\{0,\ldots,N\}$, where $N \in \mathbf{N}_0 \cup \{\infty\}$. Write as

$$\mu(k) = \frac{1}{\mathbf{Z}} \exp(V(k)) \frac{\omega^k}{k!}, \quad k = 0, 1, \dots, N,$$

with $\mathbf{Z} = \sum_{k=0}^{N} \exp(V(k)) \frac{\omega^k}{k!}$, where $\omega > 0$ is fixed

Assume \mathbf{Z} exists

Example: $Po(\lambda)$

 $\omega = \lambda, \, V(k) = -\lambda, \, k \ge 0, \, \mathbf{Z} = 1$

or $V(k) = 0, \ \omega = \lambda, \ \mathbf{Z} = e^{\lambda}$

For a given probability distribution $(\mu(k))_{k \in \mathbf{N}_0}$

$$V(k) = \log \mu(k) + \log k! + \log \mathbf{Z} - k \log \omega, \quad k = 0, 1, \dots, N,$$

with $V(0) = \log \mu(0) + \log \mathbf{Z}$

To each such Gibbs measure associate a birth-death

process:

unit per-capita death rate $d_k = k$

birth rate

$$b_k = \omega \exp\{V(k+1) - V(k)\} = (k+1)\frac{\mu(k+1)}{\mu(k)},$$

for $k, k+1 \in \operatorname{supp}(\mu)$

then invariant measure μ

generator

 $(\mathcal{A}h)(k) = (h(k+1) - h(k)) \exp\{V(k+1) - V(k)\}\omega$

$$+k(h(k-1)-h(k))$$

$(\mathcal{A}f)(k) = f(k+1) \exp\{V(k+1) - V(k)\}\omega - kf(k)$

Examples

1. Poisson-distribution with parameter $\lambda > 0$: We use

 $\omega = \lambda, V(k) = -\lambda, \mathcal{Z} = 1$. The Stein-operator is

$$(\mathcal{A}f)(k) = f(k+1)\lambda - kf(k)$$

2. Binomial-distribution with parameters n and 0 <

$$p < 1$$
: We use $\omega = \frac{p}{1-p}$, $V(k) = -\log((n-k)!)$, and

 $\mathcal{Z} = (n!(1-p)^n)^{-1}$. The Stein-operator is

$$(\mathcal{A}f)(k) = f(k+1)\frac{p(n-k)}{(1-p)} - kf(k).$$

Bounds

Solution of Stein equation f for h: f(0) = 0, f(k) = 0

for $k \notin \operatorname{supp}(\mu)$, and

$$f(j+1) = \frac{j!}{\omega^{j+1}} e^{-V(j+1)} \sum_{k=0}^{j} e^{V(k)} \frac{\omega^{k}}{k!}$$
$$(h(k) - \mu(h)).$$

Lemma 2 1. Put

$$M := \sup_{0 \le k \le N-1} \max \left(e^{V(k) - V(k+1)}, e^{V(k+1) - V(k)} \right).$$

Assume $M < \infty$. Then for every $j \in \mathbf{N}_0$:

$$|f(j)| \le 2\min\left\{1, \frac{\sqrt{M}}{\sqrt{\omega}}\right\}.$$

2. Assume that the birth rates are non-increasing:

$$e^{V(k+1)-V(k)} \le e^{V(k)-V(k-1)},$$

and death rates are unit per capita. For every $j \in$

 \mathbf{N}_0

$$|\Delta f(j)| \leq \frac{1}{j} \wedge \frac{e^{V(j)}}{\omega e^{V(j+1)}}.$$

Example: Poisson-distribution with parameter $\lambda >$

0: non-uniform bound

$$|\Delta f(k)| \le \frac{1}{k} \wedge \frac{1}{\lambda},$$

leads to $1 \wedge 1/\lambda$, see Barbour, Holst, Janson 1992

 $\| f \| \le 2 \min\left(1, \frac{1}{\sqrt{\lambda}}\right).$

as in Barbour, Holst, Janson 1992

Size-Bias coupling

Recall: $W \ge 0, EW > 0$ then W^* has the W-size

biased distribution if

$$EWg(W) = EWEg(W^*)$$

for all g for which both sides exist, so

$$E\{e^{(V(k+1)-V(k))} \omega g(X+1) - X g(X)\}$$

= $E\{e^{(V(k+1)-V(k))} \omega g(X+1) - EXEg(X^*)\}$

and

$$EX = \omega E e^{V(X+1) - V(X)}$$

Lemma 3 Let $X \ge 0$ be such that $0 < E(X) < \infty$,

let μ be a discrete Gibbs measure. Then $X \sim \mu$ if and

only if for all bounded g

$$\omega \, E e^{V(X+1) - V(X)} g(X+1)$$

$$= \omega E e^{V(X+1) - V(X)} E g(X^*).$$

For any $W \ge 0$ with $0 < EW < \infty$

$$Eh(W) - \mu(h)$$

$$= \omega \{ E e^{V(W+1) - V(W)} g(W+1) \}$$

$$-Ee^{V(W+1)-V(W)}Eg(W^*)\}$$

where g is the solution of the Stein equation.

Can also compare two discrete Gibbs distributions by

comparing their birth rates and their death rates (see also

Holmes)

Example: $Poisson(\lambda_1)$ and $Poisson(\lambda_2)$ gives

 $|Eh(X) - \int hd\mu| \ \leq \ \parallel f \parallel |\lambda - \lambda_2|$

6. Final remarks

If
$$X_1, X_2, \dots, X_n$$
 i.i.d., $\mathbf{P}(X_i = 1) = p = 1 - \mathbf{P}(X_i = 1)$

0), using Stein's method we can show that

$$\sup_{x} |P((np(1-p))^{-1/2} \sum_{i=1}^{n} (X_i - p) \le x)$$
$$-P(\mathcal{N}(0,1) \le x)|$$
$$\le 6\sqrt{\frac{p(1-p)}{n}}$$

and

$$\sup_{x} |P(\sum_{i=1}^{n} X_i = x) - P(Po(np) = x)|$$

$$\leq \min(np^2, p)$$

So, if $p < \frac{36}{n+36}$, the bound on the Poisson approximation

is smaller than the bound on the normal approximation

• Exchangeable pair couplings, also used for variance

reduction in simulations

- Multivariate, also coupling approaches
- General distributional transformations
- Bounds in the presence of dependence
- In the i.i.d. case: Berry-Esseen inequality not quite

recovered

Further reading

- Arratia, R., Goldstein, L., and Gordon, L. (1989). Two moments suffice for Poisson approximation: The Chen-Stein method. Ann. Probab. 17, 9-25.
- Barbour, A.D. (1990). Stein's method for diffusion approximations, Probability Theory and Related Fields 84 297-322.
- Barbour, A.D., Holst, L., and Janson, S. (1992). Poisson Approximation. Oxford University Press.
- Barbour, A.D. and Chen. L.H.Y. eds (2005). An Introduction to Stein's Method. Lecture Notes Series 4, Inst. Math. Sciences, World Scientific Press, Singapore.
- Barbour, A.D. and Chen. L.H.Y. eds (2005). Stein's Method and Applications. Lecture Notes Series 5, Inst. Math. Sciences, World Scientific Press, Singapore.
- Diaconis, P., and Holmes, S. (eds.) (2004). Stein's Method: Expository Lectures and Applications. IMS Lecture Notes 46.
- Raič, M. (2003). Normal approximations by Stein's method. In Proceedings of the Seventh Young Statisticians Meeting, Mvrar, A. (ed.), Metodološki zveski, 21, Ljubljana, FDV, 71-97.

- Stein, C. (1972). A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. Proc. Sixth Berkeley Symp. Math. Statist. Probab. 2 583-602, Univ. California Press, Berkeley.
- 9. Stein, C. (1986). Approximate Computation of Expectations. IMS, Hayward, CA.