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Overview

Lecture 1: focusses mainly on normal approximation

Lecture 2: other approximations
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1. The need for bounds

Distributional approximations:

Example X1, X2, . . . , Xn i.i.d., P(Xi = 1) = p = 1 −

P(Xi = 0)

n−1/2 n∑
i=1

(Xi − p) ≈d N (0, p(1− p))

n∑
i=1

Xi ≈d Poisson(np)

would like to assess distance of distributions; would like

bounds
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Weak convergence

For c.d.f.s Fn, n ≥ 0 and F on the line we say that Fn

converges weakly (converges in distribution) to F ,

Fn
w−→ F

if

Fn(x) → F (x) (n →∞)

for all continuity points x of F

For the associated probability distributions:

Pn
w−→ P

4



Facts:

1.

Pn
w−→ P ⇐⇒ Pn(A) → P (A)

for each P -continuity set A (i.e. P (∂A) = 0)

2.

Pn
w−→ P ⇐⇒

∫
fdPn →

∫
fdP

for all functions f that are bounded, continuous, real-

valued
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3.

Pn
w−→ P ⇐⇒

∫
fdPn →

∫
fdP

for all functions f that are bounded, infinitely often

differentiable, continuous, real-valued

4. If X is a random variable, denote its distribution by

L(X). Then

L(Xn)
w−→ L(X) ⇐⇒ Ef (Xn) → Ef (X)

for all functions f that are bounded, infinitely often

differentiable, continuous, real-valued
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Metrics

Let L(X) = P,L(Y ) = Q; define total variation dis-

tance

dTV (P, Q) = sup
A measurable

|P (A)−Q(A)|
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Put

L = {g : R → R; |g(y)− g(x)| ≤ |y − x|}

and Wasserstein distance

dW (P, Q) = sup
g∈L

|Eg(Y )− Eg(X)|

= inf E|Y −X|,

where the infimum is over all couplings X,Y such that

L(X) = P,L(Y ) = Q
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Using

F = {f ∈ L absolutely continuous, f(0) = f ′(0) = 0}

we also have

dW (P, Q) = sup
f∈F

|Ef ′(Y )− Ef ′(X)|.
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2. Stein’s Method for Normal Approxima-

tion

Stein (1972, 1986)

Z ∼ N (µ, σ2) if and only if for all smooth functions f ,

E(Z − µ)f (Z) = σ2Ef ′(Z)

For W with EW = µ, VarW = σ2, if

σ2Ef ′(W )− E(W − µ)f (W )

is close to zero for many functions f , then W should be

close to Z in distribution
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Sketch of proof for µ = 0, σ2 = 1:

Assume Z ∼ N (0, 1). Integration by parts:

1√
2π

∫
f ′(x)e−x2/2dx

=
 1√

2π
f (x)e−x2/2

 +
1√
2π

∫
xf (x)e−x2/2dx

=
1√
2π

∫
xf (x)e−x2/2dx

Assume EZf (Z) = Ef ′(Z): Can use partial integra-

tion to solve differential equation

f ′(x)− xf (x) = g(x), limx→−∞f (x)e−x2/2 = 0
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for any bounded function g, giving

f (y) = ey2/2
∫ y
−∞ g(x)e−x2/2dx

Take g(x) = 1(x ≤ x0)− Φ(x0), then

0 = E(f ′(Z)− Zf (Z)) = P(Z ≤ x0)− Φ(x0)

so Z ∼ N (0, 1).
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Let µ = 0. Given a test function h, let Nh = Eh(Z/σ),

and solve for f in the Stein equation

σ2f ′(w)− wf (w) = h(w/σ)−Nh

giving

f (y) = ey2/2
∫ y
−∞ (h(x/σ)−Nh) e−x2/2dx

Now evaluate the expectation of the r.h.s. of the Stein

equation by the expectation of the l.h.s.

Can bound, e.g. ‖ f ′′ ‖≤ 2 ‖ h′ ‖
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Example: X,X1, . . . , Xn i.i.d. mean zero, VarX = 1
n

W =
n∑

i=1
Xi

Put

Wi = W −Xi =
∑
j 6=i

Xj

Then

EWf (W ) =
n∑

i=1
EXif (W )

=
n∑

i=1
EXif (Wi) +

n∑
i=1

EX2
i f

′(Wi) + R

=
1

n

n∑
i=1

Ef ′(Wi) + R
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So

Ef ′(W )− EWf (W ) =
1

n

n∑
i=1

E{f ′(W )− f ′(Wi)}

+R

and can bound remainder term R;

Theorem 1 For any smooth h

|Eh(W )−Nh| ≤ ‖h′‖
 2√

n
+

n∑
i=1

E|X3
i |
 .

Extends to local dependence:
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Let X1, . . . , Xn be mean zero, finite variances, put

W =
n∑

i=1
Xi

Assume V arW = 1. Suppose that for each i = 1, . . . , n

there exist sets Ai ⊂ Bi ⊂ {1, . . . , n} such that

Xi is independent of ∑
j 6∈Ai

Xj and

∑
j∈Ai

Xj is independent of ∑
j 6∈Bi

Xj

Define

ηi =
∑

j∈Ai

Xj

τi =
∑

j 6∈Bi

Xj
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Theorem 2 For any smooth h with ‖h′‖ ≤ 1,

|Eh(W )−Nh| ≤ 2
n∑

i=1
(E|Xiηiτi| + |E(Xiηi)|E|τi|)

+
n∑

i=1
E|Xiη

2
i |.
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Example: Graphical dependence

V = {1, . . . , n} set of vertices in graph G = (V, E)

G is a dependency graph if, for any pair of disjoint sets

Γ1 and Γ2 of V such that no edge in E has one endpoint

in Γ1 and the other endpoint in Γ2, the sets of random

variables {Xi, i ∈ Γ1} and {Xi, i ∈ Γ2} are independent

Let Ai be the set of all j such that (i, j) ∈ E, union

with {i}, Bi = ∪j∈Ai
Aj. Then the above theorem ap-

plies.
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Size-Bias coupling: µ > 0

If W ≥ 0,EW > 0 then W s has the W -size biased

distribution if

EWf (W ) = EWEf (W s)

for all f for which both sides exist
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Put f (x) = 1(x = k) then

kP(W = k) = EWP(W s = k)

so

P(W s = k) =
kP(W = k)

EW

Example: If X ∼ Bernoulli(p), then EXf (X) =

pf (1) and so Xs = 1

Example: If X ∼ Poisson(λ), then

P(Xs = k) =
ke−λλk

k!λ
=

e−λλk−1

(k − 1)!

and so Xs = X + 1, where the equality is in distribution
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Construction

(Goldstein + Rinott 1996) Suppose W = ∑n
i=1 Xi

with Xi ≥ 0, EXi > 0, all i.

Choose index V proportional to the mean, EXv. If

V = v: replace Xv by Xs
v having the Xv-size biased

distribution, independent, and if Xs
v = x: adjust X̂u, u 6=

v, such that

L(X̂u, u 6= v) = L(Xu, u 6= v|Xv = x)

Then W s = ∑
u 6=V X̂u + Xs

V
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Example: Xi ∼ Be(pi) for i = 1, . . . , n

Then W s = ∑
u 6=V X̂u + 1

See Poisson approximation, Barbour, Holst, Janson

1992

22



X,X1, . . . , Xn ≥ 0 i.i.d., EX = µ, VarX = σ2

W =
n∑

i=1
Xi

Then

E(W − µ)f (W ) = µE(f (W s)− f (W ))

≈ µE(W s −W )f ′(W )

= µ
1

n

n∑
i=1

E(Xs
i −Xi)f

′(W )

≈ µEf ′(W )E(Xs − µ)

= µEf ′(W )


1

µ
EX2 − µ



= σ2Ef ′(W ).
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Zero bias coupling

Let X be a mean zero random variable with finite,

nonzero variance σ2. We say that X∗ has the X-zero

biased distribution if for all differentiable f for which

EXf (X) exists,

EXf (X) = σ2Ef ′(X∗).

The zero bias distribution X∗ exists for all X that have

mean zero and finite variance. (Goldstein and R. 1997)
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It is easy to verify that W ∗ has density

p∗(w) = σ−2E{W I(W > w)}

Example: If X ∼ Bernoulli(p)− p, then

E{XI(X > x)} = p(1− p) for − p < x < 1− p

and is zero elsewhere, so X∗ ∼ Uniform(−p, 1− p)
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Connection with Wasserstein distance

We have for W mean zero, variance 1,

|Eh(W )−Nh| = |E [f ′(W )−Wf (W )] |

= |E [f ′(W )− f ′(W ∗)] |

≤ ||f ′′||E|W −W ∗|,

where || · || is the supremum norm. As ||f ′′|| ≤ 2||h′||

|Eh(W )−Nh| ≤ 2||h′||E|W −W ∗|;

thus

dW (L(W ),N (0, 1)) ≤ 2E|W −W ∗|.
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Construction in the case of W = ∑n
i=1 Xi sum of inde-

pendent mean zero finite variance σ2
i variables: Choose

an index I proportional to the variance, zero bias in that

variable,

W ∗ = W −XI + X∗
I .
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Proof: For any smooth f ,

EWf (W ) =
n∑

i=1
EXif (W )

=
n∑

i=1
EXif (Xi +

∑
t6=i

Xt)

=
n∑

i=1
σ2

i Ef ′(X∗
i +

∑
t6=i

Xt)

= σ2 n∑
i=1

σ2
i

σ2
Ef ′(W −Xi + X∗

i )

= σ2Ef ′(W −XI + X∗
I ) = σ2Ef ′(W ∗),

where we have used independence of Xi and Xt, t 6= i.
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Immediate consequence:

E|W −W ∗| ≤ 1

σ2

n∑
i=1

σ2
i {E|Xi| + E|X∗

i |}

and

Proposition 1 Let X1, . . . , Xn be independent mean

zero variables with variances σ2
1, . . . , σ

2
n and finite third

moments, and let W = (X1 + . . . + Xn)/σ where σ2 =

σ2
1 + . . . + σ2

n. Then for all absolutely continuous test

functions h,

|Eh(W )−Nh| ≤ 2||h′||
σ3

n∑
i=1

E
|Xi| +

1

2
|Xi|3

σ2
i ,
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so in particular, when the variables are identically dis-

tributed with variance 1,

|Eh(W )−Nh| ≤ 3||h′||E|X1|3√
n

.
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General construction: (Goldstein + R. 1997, Gold-

stein 2003)

Let Y ′, Y ′′ be exchangeable pair with distribution F (y′, y′′)

such that

E(Y ′′|F) = (1− λ)Y ′

for someF such that σ(Y ′) ⊂ F , and for some 0 < λ < 1

Let Ŷ ′, Ŷ ′′ have distribution

dG(ŷ′, ŷ′′) =
(ŷ′ − ŷ′′)2

E(Ŷ ′ − Ŷ ′′)2
dF (ŷ′, ŷ′′)
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and let U ∼ U(0, 1) be independent of Ŷ ′, Ŷ ′′, then

Y ∗ = UŶ ′ + (1− U)Ŷ ′′

has the Y ∗-distribution.

If in addition Y ′ = V + T ′ and Y ′′ = V + T ′′ for

some T ′, T ′′, and on the same state space Ŷ ′ = V + T̂ ′

and Ŷ ′′ = V + T̂ ′′ for some T̂ ′, T̂ ′′ with |T̂ ′| ≤ B and

|T̂ ′′| ≤ B, then we can couple such that

|Y ′ − Y ∗| ≤ 3B.
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Example: Simple random sampling

Population of characteristics A with ∑
a∈A a = 0 and

|a| ≤ n−1/2B for all a ∈ A. Let

X ′, X ′′, X2, . . . , Xn

be a simple random sample of size n + 1

Use notation ‖ Z ‖= ∑
z∈Z z, put

Y ′ =‖ X′ ‖, Y ′′ =‖ X′′ ‖

So Y ′ − Y ′′ = X ′ −X ′′

Choose X̂ ′, X̂ ′′ ∝ (x̂′ − x̂′′)2I({x̂′, x̂′′} ∈ A
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Intersection R = {X̂ ′, X̂ ′′} ∩ {X2, . . . , Xn} and

V =‖ {X2, . . . , Xn} \ R ‖; T ′ =‖ X ′ ∩R ‖

Let S be a simple random sample of size |R| from A \

{X̂ ′, X̂ ′′, X2, . . . , Xn} and put T̂ ′ =‖ X̂ ′∩S ‖; similarly

for T ′′, T̂ ′′

As |R| ≤ 2 we have |T̂ ′| ≤ 2n−1/2B and |T̂ ′′| ≤ 2n−1/2B

When third moments vanish, fourth moments exist:

Order n−1 bound
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Also: Berry-Esseen bound, combinatorial central limit

theorem (Goldstein 2004)
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Lecture 2: Other distributions

Recap

Would like bounds on distributional distance

Use test functions to assess distance
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For standard normal distribution N (0, 1), distribu-

tion function Φ(x) Stein (1972, 1986)

1. Z ∼ N (0, 1) if and only if for all smooth functions f

Ef ′(Z) = EZf (Z)

2. For any smooth function h there is a smooth function

f = fh solving the Stein equation

h(x)−
∫
hdΦ = f ′(x)− xf (x)

(and bounds on f in terms of h)
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3. For any random variable W , smooth h

Eh(W )−
∫
hdΦ = Ef ′(W )− EWf (W )

Use Taylor expansion or couplings to quantify weak

dependence

If W ≥ 0,EW > 0 then W s has the W -size biased

distribution if

EWf (W ) = EWEf (W s)

for all f for which both sides exist
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Construction(Goldstein + Rinott 1996)

Suppose W = ∑n
i=1 Xi with Xi ≥ 0, EXi > 0, all i.

Choose index V ∝ EXv. If V = v: replace Xv by Xs
v

having the Xv-size biased distribution, independent, and

if Xs
v = x: adjust X̂u, u 6= v, such that

L(X̂u, u 6= v) = L(Xu, u 6= v|Xv = x)

Then W s = ∑
u 6=V X̂u + Xs

V

Example: Xi ∼ Be(pi) for i = 1, . . . , n

Then W s = ∑
u 6=V X̂u + 1
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3. General situation

Target distribution µ

1. Find characterization: operatorA such that X ∼ µ if

and only if for all smooth functions f , EAf (X) = 0

2. For each smooth function h find solution f = fh of

the Stein equation

h(x)−
∫
hdµ = Af (x)
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3. Then for any variable W ,

Eh(W )−
∫
hdµ = EAf (W )

Usually need to bound f, f ′, or ∆f

Here: h smooth test function; for nonsmooth functions:

see techniques used by Shao, Chen, Rinott and Rotar,

Götze
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The generator approach

Barbour 1989, 1990; Götze 1993

Choose A as generator of a Markov process with sta-

tionary distribution µ, that is:

Let (Xt)t≥0 be a homogeneous Markov process

Put Ttf (x) = E(f (Xt)|X(0) = x)

Generator Af (x) = limt↓0
1
t (Ttf (x)− f (x))
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Facts (see Ethier and Kurtz (1986), for example)

1. µ stationary distribution then X ∼ µ if and only if

EAf (X) = 0 for f for which Af is defined

2. Tth− h = A (
∫ t
0 Tuhdu) and formally

∫
hdµ− h = A

(∫ ∞
0 Tuhdu

)

if the r.h.s. exists
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Examples

1. Ah(x) = h′′(x)−xh′(x) generator of Ornstein-Uhlenbeck

process, stationary distribution N (0, 1)

2. Ah(x) = λ(h(x + 1)−h(x)) + x(h(x− 1)−h(x)) or

Af (x) = λf (x + 1)− xf (x)

Immigration-death process, immigration rate λ, unit

per capita death rate; stationary distribution Poisson(λ)

Advantage: generalisations to multivariate, diffusions, mea-

sure space...
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4. Chisquare distributions

Generator for χ2
p:

Af (x) = xf ′′(x) +
1

2
(p− x)f ′(x)

(Luk 1994: Gamma(r, λ) ) A is the generator of a

Markov process given by the solution of the stochastic

differential equation

Xt = x +
1

2

∫ t
0 (p−Xs)ds +

∫ t
0

√
2XsdBs

where Bs is standard Brownian motion
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Stein equation

(χ2
p) h(x)− χ2

ph = xf ′′(x) +
1

2
(p− x)f ′(x)

where χ2
ph is the expectation of h under the χ2

p-distribution
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Lemma 1 (Pickett 2002)

Suppose h : R → R is absolutely bounded, |h(x)| ≤

ceax for some c > 0 a ∈ R, and the first k deriva-

tives of h are bounded. Then the equation (χ2
p) has a

solution f = fh such that

‖ f (j) ‖≤
√

2π
√

p
‖ h(j−1) ‖

with h(0) = h.

(Improvement over Luk 1994 in 1√
p)
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Example: squared sum (R. + Pickett)

Xi, i = 1, . . . , n i.i.d. mean zero, variance one, exisiting

8th moment

S =
1√
n

n∑
i=1

Xi

and

W = S2

Want

2EWf ′′(W ) + E(1−W )f ′(W )
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Put

g(s) = sf ′(s2)

then

g′(s) = f ′(s2) + 2s2f ′′(s2)

and

2EWf ′′(W ) + E(1−W )f ′(W )

= Eg′(S)− Ef ′(W ) + E(1−W )f ′(W )

= Eg′(S)− ESg(S)

Now proceed as in N (0, 1):

49



Put

Si =
1√
n

∑
j 6=i

Xj

Then by Taylor expansion, some 0 < θ < 1,

ESg(S) =
1√
n

n∑
i=1

EXig(S)

=
1√
n

n∑
i=1

EXig(Si) +
1

n

n∑
i=1

EX2
i g

′(Si) + R1

where

R1 =
1

n3/2

∑
i
EX3

i g
′′(Si)

+
1

2n2

∑
i
EX4

i g
(3)

Si + θ
Xi√
n
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From independence

ESg(S) =
1

n

n∑
i=1

Eg′(Si) + R1

= Eg′(S) + R1 + R2

where

R2 =
1

n3/2

∑
i
EXig

′′(Si)

+
1

2n2

∑
i
EX2

i g
(3)

Si + θ
Xi√
n



=
1

2n2

∑
i
EX2

i g
(3)

Si + θ
Xi√
n



by Taylor expansion, some 0 < θ < 1
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Bounds on R1, R2

Calculate

g′′(s) = 6sf ′′(s2) + 4s3f (3)(s2)

and

g(3)(s) = 24s2f (3)(s2) + 6f ′′(s2) + 8s4f (4)(s2)

so with βi = EX i
1
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1

2n2

∑
i
EX2

i

∣∣∣∣∣∣∣∣g
(3)(Si + θ

Xi√
n

)

∣∣∣∣∣∣∣∣

≤ 24

n
‖ f (3) ‖

1 +
β4

n

 +
6

n
‖ f ′′ ‖

+
8

n
‖ f (4) ‖

6 +
β4

n
+ 4

β2
3√
n

+ 6
β4

n
+

β6

n2



= c(f )
1

n
.

Similarly for 1
2n2

∑
i EX4

i

∣∣∣∣∣g(3)(Si + θ Xi√
n)

∣∣∣∣∣, employ β8
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For 1
n3/2

∑
i EX3

i g
′′(Si) have, for some c(f )

1

n3/2

∑
i
EX3

i g
′′(Si) =

1√
n
β3Eg′′(S) + c(f )

1

n

and

Eg′′(S) = 6ESf ′′(S2) + 4ES3f (3)(S2)

Note that g′′ is antisymmetric, g′′(−s) = −g′′(s), so

for Z ∼ N (0, 1) we have

Eg′′(Z) = 0

(Almost) routine now to show that |Eg′′(S)| ≤ c(f )/
√

n

for some c(f ).
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Combining these bounds show: the bound on the dis-

tance to Chisquare(1) for smooth test functions is of

order 1
n

Also: Pearson’s chisquare statistic
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5. Discrete Gibbs measure (R. + Eichelsbacher)

Let µ be a probability measure with support supp(µ) =

{0, . . . , N}, where N ∈ N0 ∪ {∞}. Write as

µ(k) =
1

Z
exp(V (k))

ωk

k!
, k = 0, 1, . . . , N,

with Z = ∑N
k=0 exp(V (k))ωk

k! , where ω > 0 is fixed

Assume Z exists

Example: Po(λ)

ω = λ, V (k) = −λ, k ≥ 0, Z = 1

or V (k) = 0, ω = λ, Z = eλ
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For a given probability distribution (µ(k))k∈N0

V (k) = log µ(k) + log k! + log Z− k log ω, k = 0, 1, . . . , N,

with V (0) = log µ(0) + log Z

To each such Gibbs measure associate a birth-death

process:
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unit per-capita death rate dk = k

birth rate

bk = ω exp{V (k + 1)− V (k)} = (k + 1)
µ(k + 1)

µ(k)
,

for k, k + 1 ∈ supp(µ)

then invariant measure µ

generator

(Ah)(k) = (h(k + 1)− h(k)) exp{V (k + 1)− V (k)}ω

+k(h(k − 1)− h(k))
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or

(Af )(k) = f (k + 1) exp{V (k + 1)− V (k)}ω − kf (k)
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Examples

1. Poisson-distribution with parameter λ > 0: We use

ω = λ, V (k) = −λ,Z = 1. The Stein-operator is

(Af )(k) = f (k + 1) λ− kf (k)

2. Binomial-distribution with parameters n and 0 <

p < 1: We use ω = p
1−p, V (k) = − log((n− k)!), and

Z = (n!(1− p)n)−1. The Stein-operator is

(Af )(k) = f (k + 1)
p(n− k)

(1− p)
− kf(k).
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Bounds

Solution of Stein equation f for h: f (0) = 0, f (k) = 0

for k 6∈ supp(µ), and

f (j + 1) =
j!

ωj+1
e−V (j+1)

j∑
k=0

eV (k)ω
k

k!

(h(k)− µ(h)) .

Lemma 2 1. Put

M := sup
0≤k≤N−1

max
(
eV (k)−V (k+1),

eV (k+1)−V (k)
)
.
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Assume M < ∞. Then for every j ∈ N0:

|f (j)| ≤ 2 min

1,
√

M√
ω

 .

2. Assume that the birth rates are non-increasing:

eV (k+1)−V (k) ≤ eV (k)−V (k−1),

and death rates are unit per capita. For every j ∈

N0

|∆f (j)| ≤ 1

j
∧ eV (j)

ωeV (j+1)
.
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Example: Poisson-distribution with parameter λ >

0: non-uniform bound

|∆f (k)| ≤ 1

k
∧ 1

λ
,

leads to 1 ∧ 1/λ, see Barbour, Holst, Janson 1992

‖ f ‖≤ 2 min
(
1, 1√

λ

)
.

as in Barbour, Holst, Janson 1992
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Size-Bias coupling

Recall: W ≥ 0, EW > 0 then W ∗ has the W -size

biased distribution if

EWg(W ) = EWEg(W ∗)

for all g for which both sides exist, so

E{e(V (k+1)−V (k) ω g(X + 1)−X g(X)}

= E{e(V (k+1)−V (k) ω g(X + 1)− EXEg(X∗)}

and

EX = ωEeV (X+1)−V (X)
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Lemma 3 Let X ≥ 0 be such that 0 < E(X) < ∞,

let µ be a discrete Gibbs measure. Then X ∼ µ if and

only if for all bounded g

ω EeV (X+1)−V (X)g(X + 1)

= ω EeV (X+1)−V (X)Eg(X∗).

For any W ≥ 0 with 0 < EW < ∞

Eh(W )− µ(h)

= ω{EeV (W+1)−V (W )g(W + 1)

−EeV (W+1)−V (W )Eg(W ∗)}
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where g is the solution of the Stein equation.
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Can also compare two discrete Gibbs distributions by

comparing their birth rates and their death rates (see also

Holmes)

Example: Poisson(λ1) and Poisson(λ2) gives

|Eh(X)−
∫
hdµ| ≤ ‖ f ‖ |λ− λ2|
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6. Final remarks

If X1, X2, . . . , Xn i.i.d., P(Xi = 1) = p = 1−P(Xi =

0), using Stein’s method we can show that

sup
x
|P ((np(1− p))−1/2 n∑

i=1
(Xi − p) ≤ x)

−P (N (0, 1) ≤ x)|

≤ 6

√√√√√√p(1− p)

n

and

sup
x
|P (

n∑
i=1

Xi = x)− P (Po(np) = x)|

≤ min(np2, p)
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So, if p < 36
n+36, the bound on the Poisson approximation

is smaller than the bound on the normal approximation
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• Exchangeable pair couplings, also used for variance

reduction in simulations

• Multivariate, also coupling approaches

• General distributional transformations

• Bounds in the presence of dependence

• In the i.i.d. case: Berry-Esseen inequality not quite

recovered
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