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Overview

1: Network summaries. What are networks? Some examples from
social science and from biology. The need to summarise networks.
Clustering coefficient, degree distribution, shortest path length,
motifs, between-ness, second-order summaries. Roles in networks,
derived from these summary statistics, and modules in networks.
Directed and weighted networks. The choice of summary should
depend on the research question.

2: Models of random networks. Models would provide further
insight into the network structure. Classical Erdös-Renyi
(Bernoulli) random graphs and their random mixtures,
Watts-Strogatz small worlds and the modification by Newman,
Barabasi-Albert scale-free networks, exponential random graph
models.
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3: Fitting a model: parametric methods. Deriving the distribution
of summary statistics. Parametric tests based on the theoretical
distribution of the summary statistics (only available for some of
the models).

4: Statistical tests for model fit: nonparametric methods.
Quantile-quantile plots and other visual methods. Monte-Carlo
tests based on shuffling edges with the number of edges fixed, or
fixing the node degree distribution, or fixing some other summary.
The particular issue of testing for power-law dependence.
Subsampling issues. Tests carried out on the same network are not
independent.
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1 Network summaries

1.1 What are networks?

Networks are just graphs. Often one would think of a network as a
connected graph, but not always. In these lectures we shall use
network and graph interchangeably.

Here are some examples of networks (graphs).
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Marriage relations between Florentine families.

8: Medici
14: Strozzi
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Yeast: A plot of a connected subset of Yeast protein interactions.
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Networks arise in a multitude of contexts, such as

- metabolic networks
- protein-protein interaction networks
- spread of epidemics
- neural network of C. elegans
- social networks
- collaboration networks (Erdös numbers ... )
- Membership of management boards
- World Wide Web
- power grid of the Western US
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The study of networks has a long tradition in social science, where
it is called Social Network Analysis; see also Krista Gile’s talks.
The networks under consideration are typically fairly small. In
contrast, starting at around 1997, statistical physicists have turned
their attention to large-scale properties of networks. Our lectures
will try to get a glimpse on both approaches.
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Research questions include

• How do these networks work? Where could we best manipulate
a network in order to prevent, say, tumor growth?

• How didbiological networks evolve? Could mutation affect
whole parts of the network at once?

• How similar are networks? If we study some organisms very
well, how much does that tell us about other organisms?

• How are networks interlinked?

• What are the building principles of these networks? How is
resilience achieved, and how is flexibility achieved? Could we
learn from real-life networks to build man-made efficient
networks?
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From a statistical viewpoint, questions include

• How to best describe networks?

• How to infer characteristics of nodes in the network?

• How to infer missing links, and how to check whether existing
links are not false positives

• How to compare networks from related organisms?

• How to predict functions from networks?

• How to find relevant sub-structures of a network?

Statistical inference relies on the assumption that there is some
randomness in the data. Before we turn our attention to modelling
such randomness, let’s look at how to describe networks, or graphs,
in general.
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1.2 What are graphs?

A graph consists of nodes (sometimes also called vertices) and edges
(sometimes also called links). We typically think of the nodes as
actors, or proteins, or genes, or metabolites, and we think of an
edge as an interaction between the two nodes at either end of the
edge. Sometimes nodes may possess characteristics which are of
interest (such as structure of a protein, or function of a protein).
Edges may possess different weights, depending on the strength of
the interaction. For now we just assume that all edges have the
same weight, which we set as 1.
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Mathematically, we abbreviate a graph G as G = (V,E), where V

is the set of nodes and E is the set of edges. We use the notation
|S| to denote the number of elements in the set S. Then |V | is the
number of nodes, and |E| is the number of edges in the graph G. If
u and v are two nodes and there is an edge from u to v, then we
write that (u, v) ∈ E, and we say that v is a neighbour of u.

If both endpoints of an edge are the same, then the edge is a loop.
For now we exclude self-loops, as well as multiple edges between
two nodes.

Edges may be directed or undirected. A directed graph, or digraph,
is a graph where all edges are directed. The underlying graph of a
digraph is the graph that results from turning all directed edges
into undirected edges. Here we shall mainly deal with undirected
graphs.
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Two nodes are called adjacent if they are joined by an edge. A
graph can be described by its adjacency matrix A = (au,v). This is
a square |V | × |V | matrix. Each entry is either 0 or 1;

au,v = 1 if and only if (u, v) ∈ E.

As we assume that there are no self-loops, all elements on the
diagonal of the adjacency matrix are 0. If the edges of the graph
are undirected, then the adjacency matrix will be symmetric.

21



The adjacency matrix entries tell us for every node v which nodes
are within distance 1 of v. If we take the matrix produce
A2 = A×A, the entry for (u, v) with u 6= v would be

a(2)(u, v) =
∑
w∈V

au,waw,v.

If a(2)(u, v) 6= 0 then u can be reached from v within two steps; u is
within distance 2 of v. Higher powers can be interpreted similarly.

A complete graph is a graph such that every pair of nodes is joined
by an edge. The adjacency matrix has entry 0 on the diagonal, and
1 everywhere else.
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A bipartite graph is a graph where the node set V is decomposed
into two disjoint subsets, U and W , say, such that there are no
edges between any two nodes in U , and also there are no edges
between any two nodes in W ; all edges have one endpoint in U and
the other endpoint in W . An example is a network of co-authorship
and articles; U could be the set of authors, W the set of articles,
and an author is connected to an article by an edge if the author is
a co-author of that article. The adjacency matrix A can then be
arranged such that it is of the form 0 A1

A2 0

 .
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1.3 Network summaries

The degree deg(v) of a node v is the number of edges which involve
v as an endpoint. The degree is easily calculated from the
adjacency matrix A;

deg(v) =
∑

u

au,v.

The average degree of a graph is then the average of its node
degrees.

(For directed graphs we would define the in-degree as the number of
edges directed at the node, and the out-degree as the number of
edges that go out from that node.)
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The clustering coefficient of a node v is, intuitively, the proportion
of its ”friends” who are friends themselves. Mathematically, it is
the proportion of neighbours of v which are neighbours themselves.
In adjacency matrix notation,

C(v) =

∑
u,w∈V au,vaw,vau,w∑

u,w∈V au,vaw,v
.

The (average) clustering coefficient is defined as

C =
1
|V |

∑
v∈V

C(v).
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Note that ∑
u,w∈V

au,vaw,vau,w

is the number of triangles involving v in the graph. Similarly,∑
u,w∈V

au,vaw,v

is the number of 2-stars centred around v in the graph. The
clustering coefficient is thus the ratio between the number of
triangles and the number of 2-stars. The clustering coefficient
describes how ”locally dense” a graph is. Sometimes the clustering
coefficient is also called the transitivity.

The clustering coefficient in the Florentine family example is
0.1914894; the average clustering coefficient in the Yeast data is
0.1023149.
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In a graph a path from node v0 to node vn is an alternating
sequence of nodes and edges, (v0, e1, v1, e2, . . . , vn−1, en, vn) such
that the endpoints of ei are vi−1 and vi, for i = 1, . . . , n. A graph is
called connected if there is a walk between any pair of nodes in the
graph, otherwise it is called disconnected. The distance `(u, v)
between two nodes u and v is the length of the shortest path
joining them. This path does not have to be unique.

We can calculate the distance `(u, v) from the adjacency matrix A

as the smallest power p of A such that the (u, v)-element of Ap is
not zero.
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In a connected graph, the average shortest path length is defined as

` =
1

|V |(|V | − 1)

∑
u 6=v∈V

`(u, v).

The average shortest path length describes how ”globally
connected” a graph is.

Example: H. Pylori and Yeast protein interaction network
comparison:

n ` C

H.Pylori 686 4.137637 0.016

Yeast 2361 4.376182 0.1023149
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Node degree, clustering coefficient, and shortest path length are the
most common summaries of networks. Other popular summaries,
to name but a few, are: the between-ness of an edge counts the
proportion of shortest paths between any two nodes which pass
through this edge. Similarly, the between-ness of a node is the
proportion of shortest paths between any two nodes which pass
through this node. The connectivity of a connected graph is the
smallest number of edges whose removal results in a disconnected
graph.

29



In addition to considering these general summary statistics, it has
proven fruitful to describe networks in terms of motifs; these are
building- block patterns of networks such as a feed-forward loop,
see the book by Alon. Here we think of a motif as a subgraph with
a fixed number of nodes and with a given topology. In biological
networks, it turns out that motifs seem to be conserved across
species. They seem to reflect functional units which combine to
regulate the cellular behaviour as a whole.
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The decomposition of communities in networks, small subgraphs
which are highly connected but not so highly connected to the
remaining graph, can reveal some structure of the network.
Identifying roles in networks singles out specific nodes with special
properties, such as hub nodes, which are nodes with high degree.
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Summaries based on spectral properties of the adjacency matrix.

If λi are the eigenvalues of the adjacency matrix A, then the
spectral density of the graph is defined as

ρ(λ) =
1
n

∑
i

δ(λ− λi),

where δ(x) is the delta function. For Bernoulli random graphs, if p

is constant as n →∞, then ρ(λ) converges to a semicircle.
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The eigenvalues can be used to compute the kth moments,

Mk =
1
n

∑
i

(λi)k =
1
n

∑
i1,i2,...,ik

ai1,i2ai2,i3 · · · aik−1,ik
.

The quantity nMk is the number of paths returning to the same
node in the graph, passing through k edges, where these paths may
contain nodes that were already visited. Because in a tree-like
graph a return path is only possible going back through already
visited nodes, the presence of odd moments is an indicator for the
presence of cycles in the graph.
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The subgraph centrality

Sci =
∞∑

k=0

(Ak)i,i

k!

measures the ”centrality” of a node based on the number of
subgraphs in which the node takes part. It can be computed as

Sci =
n∑

j=1

vj(i)2eλi ,

where vj(i) is the ith element of the jth eigenvector.
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Entropy-type summaries

The structure of a network is related to its reliability and speed of
information propagation. If a random walk starts on node i going
to node j, the probability that it goes through a given shortest
path π(i, j) between these vertices is

P(π(i, j)) =
1

d(i)

∑
b∈N (π(i,j))

1
d(b)− 1

,

where d(i) is the degree of node i, and N (π(i, j)) is the set of nodes
in the path π(i, j) excluding i and j. The search information is the
total information needed to identify one of all the shortest paths
between i and j,

S(i, j) = − log2

∑
π(i,j)

P(π(i, j)).
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The above network summaries provide an initial go at networks.
Specific networks may require specific concepts. In protein
interaction networks, for example, there is a difference whether a
protein can interact with two other proteins simultaneously (party
hub) or sequentially (date hub). In addition, the research question
may suggest other summaries. For example, in fungal networks,
there are hardly any triangles, so the clustering coefficient does not
make much sense for these networks.
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Excursion: Milgram and the small world effect.

In 1967 the American sociologist Milgram reported a series of
experiments of the following type. A number of people from a
remote US state (Nebraska, say) are asked to have a letter (or
package) delivered to a certain person in Boston, Massachusetts
(such as the wife of a divinity student). The catch is that the letter
can only be sent to someone whom the current holder knew on a
first-name basis. Milgram kept track of how many intermediaries
were required until the letters arrived; he reported a median of six;
see for example http : //www.uaf.edu/northern/bigworld.html.
This made him coin the notion of six degrees of separation, often
interpreted as everyone being six handshakes away from the
President. While the experiments were somewhat flawed (in the
first experiment only 3 letters arrived), the concept of six degrees of
separation has stuck.
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2 Models of random networks

In order to judge whether a network summary is ”unusual” or
whether a motif is ”frequent”, there is an underlying assumption of
randomness in the network.
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Network data are subject to various errors, which can create
randomness, such as

• There may be missing edges in the network. Perhaps a node
was absent (social network) or has not been studied yet
(protein interaction network).

• Some edges may be reported to be present, but that recording
is a mistake. Depending on the method of determining protein
interactions, the number of such false positive interactions can
be substantial, of around 1/3 of all interactions.

• There may be transcription errors in the data.

• There may be bias in the data, some part of the network may
have received higher attention than another part of the
network.
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Often network data are snapshots in time, while the network might
undergo dynamical changes.

In order to understand mechanisms which could explain the
formation of networks, mathematical models have been suggested.
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2.1 Bernoulli (Erdös-Renyi) random graphs

The most standard random graph model is that of Erdös and Renyi
(1959). The (finite) node set V is given, say |V | = n, and an edge
between two nodes is present with probability p, independently of
all other edges. As there are(

n

2

)
=

n(n− 1)
2

potential edges, the expected number of edges is then(
n

2

)
p.

Each node has n− 1 potential neighbours, and each of these n− 1
edges is present with probability p, and so the expected degree of a
node is (n− 1)p. As the expected degree of a node is the same for
all nodes, the average degree is (n− 1)p.
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Similarly, the average number of triangles in the graph is(
n

3

)
p3 =

n(n− 1)(n− 2)
6

p3,

and the average number of 2-stars is(
n

3

)
p2.

Thus, with a bit of handwaving, we would expect an average
clustering coefficient of about(

n
3

)
p3(

n
3

)
p2

= p.
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In a Bernoulli random graphs, your friends are no more likely to be
friends themselves than would be a two complete strangers. This
model is clearly not a good one for social networks. Below is an
example from scientific collaboration networks (N. Boccara,
Modeling Complex Systems, Springer 2004, p.283). We can
estimate p as the fraction of average node degree and n− 1; this
estimate would also be an estimate of the clustering coefficient in a
Bernoulli random graph.
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Network n ave degree C CBernoulli

Los Alamos archive 52,909 9.7 0.43 0.00018

MEDLINE 1,520,251 18.1 0.066 0.000011

NCSTRL 11,994 3.59 0.496 0.0003

Also in real-world graphs often the shortest path length is much
shorter than expected from a Bernoulli random graph with the
same average node degree. The phenomenon of short paths, often
coupled with high clustering coefficient, is called the small world
phenomenon. Remember the Milgram experiments!
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2.2 The Watts-Strogatz model

Watts and Strogatz (1998) published a ground-breaking paper with
a new model for small worlds; the version currently most used is as
follows. Arrange the n nodes of V on a lattice. Then hard-wire
each node to its k nearest neighbours on each side on the lattice,
where k is small. Thus there are nk edges in this hard-wired
lattice. Now introduce random shortcuts between nodes which are
not hard-wired; the shortcuts are chosen independently, all with the
same probability.
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If there are no shortcuts, then the average distance between two
randomly chosen nodes is of the order n, the number of nodes. But
as soon as there are just a few shortcuts, then the average distance
between two randomly chosen nodes has an expectation of order
log n. Thinking of an epidemic on a graph - just a few shortcuts
dramatically increase the speed at which the disease is spread.

It is possible to approximate the node degree distribution, the
clustering coefficient, and the shortest path length reasonably well
mathematically; we may come back to these approximations later.
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While the Watts-Strogatz model is able to replicate a wide range of
clustering coefficient and shortest path length simultaneously, it
falls short of producing the observed types of node degree
distributions. It is often observed that nodes tend to attach to
”popular” nodes; popularity is attractive.
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2.3 ”The” Barabasi-Albert model

In 1999, Barabasi and Albert noticed that the actor collaboration
graph adn the World Wide Web had degree distributions that were
of the type

Prob(degree = k) ∼ Ck−γ

for k →∞. Such behaviour is called power-law behaviour; the
constant γ is called the power-law exponent. Subsequently a
number of networks have been identified which show this type of
behaviour. They are also called scale-free random graphs. To
explain this behaviour, Barabasi and Albert introduced the
preferential attachment model for network growth.

49



Suppose that the process starts at time 1 with 2 nodes linked by m

(parallel) edges. At every time t ≥ 2 we add a new node with m

edges that link the new node to nodes already present in the
network. We assume that the probability πi that the new node will
be connected to a node i depends on the degree deg(i) of i so that

πi =
deg(i)∑
j deg(j)

.

To be precise, when we add a new node we will add edges one at a
time, with the second and subsequent edges doing preferential
attachment using the updated degrees.
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This model has indeed the property that the degree distribution is
approximately power law with exponent γ = 3. Other exponents
can be achieved by varying the probability for choosing a given
node.

Unfortunately the above construction will not result in any
triangles at all. It is possible to modify the construction, adding
more than one edge at a time, so that any distribution of triangles
can be achieved.
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2.4 Erdös-Renyi Mixture Graphs

An intermediate model with not quite so many degrees of freedom
is given by the Erdös-Renyi mixture model, also known as latent
block models in social science (Nowicky and Snijders (2001)). Here
we assume that nodes are of different types, say, there are L

different types. Then edges are constructed independently, such
that the probability for an edge varies only depending on the type
of the nodes at the endpoints of the edge. Robin et al have shown
that this model is very flexible and is able to fit many real-world
networks reasonably well. It does not produce a power-law degree
distribution however.
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2.5 Exponential random graph (p∗) models

Networks have been analysed for ”ages” in the social science
literature, see for example the book by Wasserman and Faust. Here
usually digraphs are studied, and typical research questions are

• Is there a tendency in friendship towards transitivity; are
friends of friends my friends?

• What is the role of explanatory variables such as income on the
position in the network?

• What is the role of friendship in creating behaviour (such as
smoking)?

• Is there a hierarchy in teh network?

• Is the network influenced by other networks for which the
membership overlaps?
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Exponential random graph (p∗) models model the whole adjacency
matrix of a graph simultaneously, making it easy to incorporate
dependence. Suppose that X is our random adjacency matrix. The
general form of the model is

Prob(X = x) =
1
κ

exp{
∑
B

λBzB(x)},

where the summation is over all subsets B of the set of potential
edges,

zB(x) =
∏

(i,j)∈B

xi,j

is the network statistic corresponding to the subset B, κ is a
normalising quantity so that the probabilities sum to 1, and the
parameter λB = 0 for all x unless all the the variables in B are
mutually dependent.
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The simplest such model is that the probability of any edge is
constant across all possible edges, i.e. the Bernoulli graph, for
twhich

Prob(X = x) =
1
κ

exp{λL(x)},

where L(x) is the number of edges in the network x and λ is a
parameter.
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For social networks, Frank and Strauss (1986) introduced Markov
dependence, whereby two possible edges are assumed to be
conditionally dependent if they share a node. For non-directed
networks, the resulting model has parameters relating only to the
configurations stars of various types, and triangles. If the number
L(x) of edges, the number S2(x) of two-stars, the number S3(x) of
three-stars, and the number T (x) of triangles are included, then
the model reads

Prob(X = x) =
1
κ

exp{λ1L(x) + λ2S2(x) + λ3S3(x) + λ4T (x)}.

By setting the parameters to particular values and then simulating
the distribution, we can examine global properties of the network.
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2.6 Specific models for specific networks

Depending on the research question, it may make sense to build a
specific network model. For example, a gene duplication model has
been suggested which would result in a power-law like node degree
distribution. For metabolic pathways, a number of Markov models
have been introduced. When thinking of flows through networks, it
may be a good idea to use weighted networks; the weights could
themselves be random.
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3 Fitting a model: parametric methods

Bernoulli (Erdös-Renyi) random graphs

In the random graph model of Erdös and Renyi (1959), the (finite)
node set V is given, say |V | = n. We denote the set of all potential
edges by E; thus |E| =

(
n
2

)
. An edge between two nodes is present

with probability p, independently of all other edges. Here p is an
unknown parameter.

In classical (frequentist) statistics we often estimate unknown
parameters via the method of maximum likelihood.
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Example: Bernoulli random graphs.

Our data is the network we see. We describe the data using the
adjacency matrix, denote it by x here because it is the realisation
of a random adjacency matrix X. Recall that

xu,v = 1 if and only if there is an edge between u and v.

The likelihood of p being the true value of the edge probability if
we see x is

L(p;x) = (1− p)|E|
(

p

1− p

)∑
(i,j)∈E xi,j

.

If t =
∑

(i,j)∈E xi,j is the total number of edges in the random
graph, then

p̂ =
t

|E|
is our maximum-likelihood estimator.
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Maximum-likelihood estimation also works well in Erdös-Renyi
Mixture graphs when the number of types is known, and it works
well in Watts-Strogatz small world networks when the number k of
nearest neighbours we connect to is known. When the number of
types, or the number of nearest neighbours, is unknown, then
things become messy.

In Barabasi-Albert models, the parameter would be the power
exponent for the node degree, as occurring in the probability for an
incoming node to connect to some node i already in the network.
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In exponential random graphs, unless the network is very small,
maximum-likelihood estimation quickly becomes numerically
unfeasible. Even in a simple model like

Prob(X = x) =
1
κ

exp{λ1L(x) + λ2S2(x) + λ3S3(x) + λ4T (x)}

the calculation of the normalising constant κ becomes numerically
impossible very quickly.
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3.1 Markov Chain Monte Carlo estimation

A Markov chain is a stochastic process where the state at time n

only depends on the state at time n− 1, plus some independent
randomness. It is irreducible if any set of states can be reached
from any other state in a finite number of moves, and it is
reversible if you cannot tell whether it is running forwards in time
or backwards in time. A distribution is stationary for the Markov
chain if, when you start in the stationary distribution, one step
after you cannot tell whether you made any step or not; the
distribution of the chain looks just the same.

If a Markov chain is irreducible and reversible, then it will have a
unique stationary distribution, and no matter in which state you
start the chain, it will eventually converge to this stationary
distribution.
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We make use of this fact by looking at our target distribution, such
as the distribution for X in an exponential random graph model, as
the stationary distribution of a Markov chain.

This Markov chain lives on graphs, and moves are adding or
deleting edges, as well as adding types or reducing types. Finding
suitable Markov chains is an active area of research.

The ergm package has MCMC implemented for parameter
estimation. We need to be aware that there is no guarantee that
the Markov chain has reached its stationary distribution. Also, if
the stationary distribution is not unique, then the results can be
misleading. Unfortunately in exponential random graph models it
is known that in some small parameter regions the stationary
distribution is not unique.
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3.2 Assessing the model fit

Suppose that we have estimated our parameters in our model of
interest. We can now use this model to see whether it does actually
fit the data.

To that purpose we study the (asymptotic) distributions of our
summary statistics node degree, clustering coefficient, and shortest
path length. Then we see whether our observed values are plausible
under the estimated model.
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3.3 The distribution of summary statistics in

Bernoulli random graphs

In a Bernoulli random graph on n nodes, with edge probability p,
the network summaries are pretty well understood.

3.3.1 The degree of a random node

Pick a node v, and denote its degree by D(v), say. The degree is
calculated as the number of neighbours of this node. Each of the
other (n− 1) nodes is connected to our node v with probability p,
independently of all other nodes. Thus the distribution of D(v) is
Binomial with parameters n and p, for each node v.
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Typically we look at relatively sparse graphs, and so a Poisson
approximation applies. If X denotes the random adjacency matrix,
then, in distribution,

D(v) =
∑

u:u 6=v

Xu,v ≈ Poisson((n− 1)p).

Note that the node degrees in a graph are not independent. So
D(v) does not stand for the average node degree.
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How about the average degree of a node? Denote it by D̄. Note
that the average does not only take integer values, so would
certainly not be Poisson distributed. But

D̄ =
1
n

n∑
v=1

D(v) =
2
n

n∑
v=1

∑
u<v

Xu,v,

noting that each edge gets counted twice. As the Xu,v are
independent, we can use a Poisson approximation again, giving that

n∑
v=1

∑
u<v

Xu,v ≈ Poisson

(
n(n− 1)

2
p

)
and so, in distribution,

D̄ ≈ 2
n

Z,

where Z ∼ Poisson
(

n(n−1)
2 p

)
.
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3.3.2 The clustering coefficient of a random node

Here it gets a little tricky already. Recall that the clustering
coefficient of a node v is,

C(v) =

∑
u,w∈V Xu,vXw,vXu,w∑

u,w∈V Xu,vXw,v
.

The ratio of two random sums is not easy to evaluate. If we just
look at ∑

u,w∈V

Xu,vXw,vXu,w

then we see that we have a sum of dependent random variables.

68



Most 3-tuples (u, w, v) and (r, s, t), though, will not share an index,
and hence Xu,vXw,vXu,w and Xr,sXs,tXr,t will be independent.
The dependence among the random variables overall is hence weak,
so that a Poisson approximation applies. As

E
∑

u,w,v∈V

Xu,vXw,vXu,w =
(

n

3

)
p3,

we obtain that, in distribution,∑
u,w.v∈V

Xu,vXw,vXu,w ≈ Poisson

((
n

3

)
p3

)
.

Similarly,

E
∑

u,w∈V

Xu,vXw,v =
(

n

2

)
p2.
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K. Lin (2007) showed that, for the average clustering coefficient

C =
1
n

∑
v

C(v)

it is also true that, in distribution,

C ≈ 1
n
(
n
2

)
p2

Z,

where Z ∼ Poisson
((

n
3

)
p3

)
.
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Example. In the Florentine family data, we observe a total number
of 20 edges, an average node degree of 2.5, and an average
clustering coefficient of 0.1914894, with 16 nodes in total. Under
the null hypothesis that the data come from a Bernoulli random
graph we estimate

p̂ =
20(
16
2

) =
20× 2
16× 15

=
1
6
,

and the average node degree would be

D̄ ≈ 1
8
Z,

where Z ∼ Poisson(20). The probability under the null hypothesis
that D̄ ≥ 2.5 would then be

P (Z ≥ 2.5× 8) = P (Z ≥ 20) ≈ 0.55,

so no reason to reject the null hypothesis.
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3.3.3 Shortest paths: Connectivity in Bernoulli random
graph

Erdös and Renyi (1960) showed the following ”phase transition” for
the connectedness of a Bernoulli random graph.

If p = p(n) = log n
n + c

n + 0
(

1
n

)
then the probability that a Bernoulli

graph, denoted by G(n, p) on n nodes with edge probability p is
connected converges to e−e−c

.
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The diameter of a graph is the maximum diameter of its connected
components; the diameter of a connected component is the longest
shortest path length in that component.

Chung and Lu (2001) showed that, if np ≥ 1 then, asympotically,
the ratio between the diameter and log n

log(np) is at least 1, and
remains bounded above as n →∞.

If np →∞ then the diameter of the graph is (1 + o(1)) log n
log(np) . If

np
log n →∞, then the diameter is concentrated on at most two
values.

In the Physics literature, the value log n
log(np) is used for the average

shortest path length in a Bernoulli random graph. This has hence
to be taken with a lot of grains of salt.
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While we have some idea about how the diameter (and, relatedly,
the shortest path length) behaves, it is an inconvenient statistics for
Bernoulli random graphs, because the graph need not be connected.
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3.4 The distribution of summary statistics in

Watts-Strogatz small worlds

Recall that in this model we arrange the n nodes of V on a lattice.
Then hard-wire each node to its k nearest neighbours on each side
on the lattice, where k is small. Thus there are nk edges in this
hard-wired lattice. Now introduce random shortcuts between nodes
which are not hard-wired; the shortcuts are chosen independently,
all with the same probability φ.

Thus the shortcuts behave like a Bernoulli random graph, but the
graph will necessarily be connected. The degree D(v) of a node v

in the Watts-Strogatz small world is hence distributed as

D(v) = 2k + Binomial(n− 2k − 1, φ),

taking the fixed lattice into account. Again we can derive a Poisson
approximation when p is small; see K.Lin (2007) for the details.
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For the clustering coefficient there is a problem - triangles in the
graph may now appear in clusters. Each shortcut between nodes u

and v which are a distance of k + a ≤ 2k apart on the circle creates
k − a− 1 triangles automatically.

Thus a Poisson approximation will not be suitable; instead we use
a compound Poisson distribution. A compound Poisson distribution
arises as the distribution of a Poisson number of clusters, where the
cluster sizes are independent and have some distribution
themselves. In general there is no closed form for a compound
Poisson distribution.
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The compound Poisson distribution also has to be used when
approximating the number of 4-cycles in the graph, or the number
of other small subgraphs which have the clumping property.

It is also worth noting that when counting the joint distribution of
the number of triangles and the number of 4-cycles, these counts
are not independent, not even in the limit; a bivariate compound
Poisson approximation with dependent components is required. See
Lin (2007) for details.
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3.4.1 The shortest path length

Let D denote shortest distance between two randomly chosen
points, and abbreviate ρ = 2kφ. Then (Barbour + Reinert) show
that uniformly in |x| ≤ 1

4 log(nρ),

P
(
D >

1
ρ

(
1
2

log(nρ) + x

))
=

∫ ∞

0

e−y

1 + e2xy
dy + O

(
(nρ)−

1
5 log2(nρ)

)
if the probability of shortcuts is small. If the probability of
shortcuts is relatively large, then D will be concentrated on one or
two points.

Note that D is the shortest distance between two randomly chosen
points, not the average shortest path. Again the difference can be
considerable (Computer exercise).
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Dependent sampling

Our data are usually just one graph, and we calculate all shortest
paths. But there is much overlap between shortest paths possible,
creating dependence
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Simulation: n = 500, k = 1, φ = 0.01
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Simulation: dependent vs independent

We simulate 100 replicas, and calculate the average shortest path
length in each network. We compare this distribution to the
theoretical approximate distribution; we carry out 100 chi-square
tests:

n k φ E.no mean p-value max p-value

300 1 0.01 3 1.74 E-09 8.97 E-08

0.167 50 0.1978 0.8913

2 0.01 6 0 0

1000 1 0.003 3 1.65E-13 3.30 E-12

0.05 50 0.0101 0.1124

2 0.03 60 0.0146 0.2840
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Thus the two statistics are close if the expected number E.no of
shortcuts is large (or very small); otherwise they are significantly
different.
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3.5 The distribution of summary statistics in

Barabasi-Albert models

The node degree distribution is given by the model directly, as that
is how it is designed.

The clustering coefficient depends highly on the chosen model. In
the original Barabasi-Albert model, when only one new edge is
created at any single time, there will be no triangles (beyond those
from the initial graph). The model can be extended to match any
clustering coefficient, but even if only two edges are attached at the
same time, the distribution of the number of the clustering
coefficient is unknown to date.
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The expected value, however, can be approximated. Fronczak et al.
(2003) studied the models where the network starts to grwo from
an initial cluster of m fully connected nodes. Each new node that is
added to the network created m edges which connect it to
previously added nodes. The probability of a new edge to be
connected to a node v is proportional to the degree d(v) of this
node. If both the number of nodes, n, and m are large, then the
expected average clustering coefficient is

EC =
m− 1

8
(log n)2

n
.
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The average pathlengh ` increases approximately logarithmically
with network size. If γ = 0.5772 denotes the Euler constant, then
Fronczak et al. (2004) show for the mean average shortest path
length that

E` ∼ log n− log(m/2)− 1− γ

log log n + log(m/2)
+

3
2
.

The asymptotic distribution is not understood.
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3.6 The distribution of summary statistics in

exponential random graph models

The distribution of the node degree, clustering coefficient, and the
shortest path length is poorly studied in these models. One reason
is that these models are designed to predict missing edges, and to
infer characteristics of nodes, but their topology itself has not often
been of interest.

The summary statistics appearing in the model try to push the
random networks towards certain behaviour with respect to these
statistics, depending on the sign and the size of their factors θ.
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When only the average node degree and the clustering coefficient
are included in the model, then a strange phenomenon happens.
For many combinations of parameter values the model produces
networks that are either full (every edge exists) or empty (no edge
exists) with probability close to 1. Even for parameters which do
not produce this phenomenon, the distribution of networks
produced by the model is often bimodal: one mode is sparsely
connected and has a high number of triangles, while the other
mode is densely connected but with a low number of triangles.
Again: active research.
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4 Statistical tests for model fit:

nonparametric methods

What if we do not have a suitable test statistic for which we know
the distribution? We need some handle on the distribution, so here
we assume that we can simulate random samples from our null
distribution. There are a number of methods available. It is often a
good idea to use plots to visually assess the fit, first via a
quantile-quantile plot. Then what?
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4.1 Monte-Carlo tests

The Monte Carlo test, attributed to Dwass (1957) and Barnard
(1963), is an exact procedure of virtually universal application and
correspondingly widely used.

Suppose that we would like to base our test on the statistic T0. We
only need to be able to simulate a random sample T01, T02, . . . from
the distribution, call it F0, determined by the null hypothesis. We
assume that F0 is continuous, and, without loss of generality, that
we reject the null hypothesis H0 for large values of T0. Then,
provided that α = m

n+1 is rational, we can proceed as follows.
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1. Observe the actual value t∗ for T0, calculated from the data

2. Simulate a random sample of size n from F0

3. Order the set {t∗, t01, . . . , t0n}

4. Reject H0 if the rank of t∗ in this set (in decreasing order) is
> m.

The basis of this test is that, under H0, the random variable T ∗ has
the same distribution as the remainder of the set and so, by
symmetry,

P(t∗ is among the largest m values ) =
m

n + 1
.
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The procedure is exact however small n might be; increasing n

increases the power of the test. The question of how large n should
be is discussed by Marriott (1979), see also Hall and Titterington
(1989).

An alternative view of the procedure is to count the number M of
simulated values > t∗. Then P̂ = M

n estimates the true significance
level P achieved by the data, i.e.

P = P(T0 > t∗|H0).

In discrete data, we will typically observe ties. We can break ties
randomly, then the above procedure will still be valid.

Unfortunately this test does not lead directly to confidence
intervals.
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For random graphs, Monte Carlo tests often use shuffling edges
with the number of edges fixed, or fixing the node degree
distribution, or fixing some other summary.

Suppose we want to see whether our observed clustering coefficient
is ”unusual” for the type of network we would like to consider.
Then we may draw many networks uniformly at random from all
networks having the same node degree sequence, say. We count
how often a clustering coefficient at least as extreme as ours occurs,
and we use that to test the hypothesis.

In practice these types of test are the most used tests in network
analysis. They are called conditional uniform graph tests.
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Some caveats:

In Bernoulli random graphs, the number of edges asymptotically
determines the number of triangles when the number of edges is
moderately large. Thus conditioning on the number of edges (or
the node degrees, which determine the number of edges) gives
degenerate results. More generally, we have seen that node degrees
and clustering coefficient (and other subgraph counts) are not
independent, nor are they independent of the shortest path length.
By fixing one summary we may not know exactly what we are
testing against.

”Drawing uniformly at random” from complex networks is not as
easy as it sounds. Algorithms may not explore the whole data set.
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”Drawing uniformly at random”, conditional on some summaries
being fixed, is related to sampling from exponential random graphs.
We have seen already that in exponential random graphs there may
be more than one stationary distribution for the Markov chain
Monte Carlo algorithm; this algorithm is similar to the one used for
drawing at random, and so we may have to expect similar
phenomena.
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4.2 Scale-free networks

Barabasi and Albert introduced networks such that the distribution
of node degrees the type

Prob(degree = k) ∼ Ck−γ

for k →∞. Such behaviour is called power-law behaviour; the
constant γ is called the power-law exponent. The networks are also
called scale-free:

If α > 0 is a constant, then

Prob(degree = αk) ∼ C(αk)−γ ∼ C ′k−γ ,

where C ′ is just a new constant. That is, scaling the argument in
the distribution changes the constant of proportionality as a
function of the scale change, but preserves the shape of the
distribution itself.
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If we take logarithms on both sides:

log Prob(degree = k) ∼ log C − γ log k

log Prob(degree = αk) ∼ log C − γ log α− γ log k;

scaling the argument results in a linear shift of the log probabilities
only. This equation also leads to the suggestion to plot the
log relfreq(degree = αk) of the empirical relative degree
frequencies against log k. Such a plot is called a log-log plot. If the
model is correct, then we should see a straight line; the slope would
be our estimate of γ.
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Example: Yeast data.
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These plots have a lot of noise in the tails. As an alternative,
Newman (2005) suggests to plot the log of the empirical cumulative
distribution function instead, or, equivalently, our estimate for

log Prob(degree ≥ k).

If the model is correct, then one can calculate that

log Prob(degree ≥ k) ∼ C ′′ − (γ − 1) log k.

Thus a log-log plot should again give a straight line, but with a
shallower slope. The tails are somewhat less noisy in this plot.
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In both cases, the slope is estimated by least-squares regression: for
our observations, y(k) (which could be log probabilities or log
cumulative probabilities, for example) we find the line a + bk such
that ∑

(y(k)− a− bk)2

is as small as possible.
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As a measure of fit, the sample correlation R2 is computed. For
general observations y(k) and x(k), for k = 0, 1, . . . , n, with
averages ȳ and x̄, it is defined as

R =
∑

k(x(k)− x̄)(y(k)− ȳ)√
(
∑

k(x(k)− x̄)2)(
∑

k(y(k)− ȳ)2)
.

It measures the strength of the linear relationship.

In linear regression, R2 > 0.9 would be rather impressive. However,
the rule of thumb for log-log plots is that

1. R2 > 0.99
2. The observed data (degrees) should cover at least 3 orders of
magnitude.

Examples include the World Wide Web at some stage, when it had
around 109 nodes. The criteria are not often matched.
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A final issue for scale-free networks: It has been shown (Stumpf et
al. (2005) that when the underlying real network is scale-free, then
a subsample on fewer nodes from the network will not be scale-free.
Thus if our subsample looks scale-free, the underlying real network
will not be scale-free.

In biological network analysis, is is debated how useful the concept
of ”scale-free” behaviour is, as many biological networks contain
relatively few nodes.
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For Bernoulli random graphs we have a reasonable grasp on the
distribution of our network summaries, we can use
maximum-likelihood estimation and we can use the distribution of
the summaries for testing hypotheses. For Watts-Strogatz small
worlds some results are available. A main observation is that, in
contrast to Bernoulli random graphs, even for counting triangles a
compound Poisson approximation is needed, rather than a Poisson
approximation. The underlying issue is that triangles (and also
other motifs) occur in clumps.

For random graphs, Monte Carlo tests often use shuffling edges with
the number of edges fixed, or fixing the node degree distribution, or
fixing some other summary. Then we use a Monte Carlo test to see
whether our test statistic is unusual, compared to graphs drawn at
random with the same number of edges, or the same node degree
distribution, say. The results have to be interpreted carefully.
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