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Aim: To review and extend the main ideas in Statistical Inference, both
from a frequentist viewpoint and from a Bayesian viewpoint. This course
serves not only as background to other courses, but also it will provide a
basis for developing novel inference methods when faced with a new situation
which includes uncertainty. Inference here includes estimating parameters
and testing hypotheses.

Overview

• Part 1: Frequentist Statistics

– Chapter 1: Likelihood, sufficiency and ancillarity. The Factoriza-
tion Theorem. Exponential family models.

– Chapter 2: Point estimation. When is an estimator a good estima-
tor? Covering bias and variance, information, efficiency. Methods
of estimation: Maximum likelihood estimation, nuisance parame-
ters and profile likelihood; method of moments estimation. Bias
and variance approximations via the delta method.

– Chapter 3: Hypothesis testing. Pure significance tests, signifi-
cance level. Simple hypotheses, Neyman-Pearson Lemma. Tests
for composite hypotheses. Sample size calculation. Uniformly
most powerful tests, Wald tests, score tests, generalised likelihood
ratio tests. Multiple tests, combining independent tests.

– Chapter 4: Interval estimation. Confidence sets and their con-
nection with hypothesis tests. Approximate confidence intervals.
Prediction sets.

– Chapter 5: Asymptotic theory. Consistency. Asymptotic nor-
mality of maximum likelihood estimates, score tests. Chi-square
approximation for generalised likelihood ratio tests. Likelihood
confidence regions. Pseudo-likelihood tests.

• Part 2: Bayesian Statistics

– Chapter 6: Background. Interpretations of probability; the Bayesian
paradigm: prior distribution, posterior distribution, predictive
distribution, credible intervals. Nuisance parameters are easy.
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– Chapter 7: Bayesian models. Sufficiency, exchangeability. De
Finetti’s Theorem and its intepretation in Bayesian statistics.

– Chapter 8: Prior distributions. Conjugate priors. Noninformative
priors; Jeffreys priors, maximum entropy priors posterior sum-
maries. If there is time: Bayesian robustness.

– Chapter 9: Posterior distributions. Interval estimates, asymp-
totics (very short).

• Part 3: Decision-theoretic approach:

– Chapter 10: Bayesian inference as a decision problem. Deci-
sion theoretic framework: point estimation, loss function, deci-
sion rules. Bayes estimators, Bayes risk. Bayesian testing, Bayes
factor. Lindley’s paradox. Least favourable Bayesian answers.
Comparison with classical hypothesis testing.

– Chapter 11: Hierarchical and empirical Bayes methods. Hierar-
chical Bayes, empirical Bayes, James-Stein estimators, Bayesian
computation.

• Part 4: Principles of inference. The likelihood principle. The condi-
tionality principle. The stopping rule principle.

Books

1. Bernardo, J.M. and Smith, A.F.M. (2000) Bayesian Theory. Wiley.

2. Casella, G. and Berger, R.L. (2002) Statistical Inference. Second Edi-
tion. Thomson Learning.

3. Cox, D.R. and Hinkley, D.V. (1974) Theoretical Statistics. Chapman
and Hall.

4. Garthwaite, P.H., Joliffe, I.T. and Jones, B. (2002) Statistical Inference.
Second Edition. Oxford University Press.

5. Leonard, T. and Hsu, J.S.J. (2001) Bayesian Methods. Cambridge
University Press.
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6. Lindgren, B.W. (1993) Statistical Theory. 4th edition. Chapman and
Hall.

7. O’Hagan, A. (1994) Kendall’s Advanced Theory of Statistics. Vol 2B,
Bayesian Inference. Edward Arnold.

8. Young, G.A. and Smith, R.L. (2005) Essential of Statistical Inference.
Cambridge University Press.

Lecture take place Mondays 11-12 and Wednesdays 9-10. There will be
four problem sheets. Examples classes are held Thursdays 12-1 in weeks 3,
4, 6, and 8.

While the examples classes will cover problems from the problem sheets,
there may not be enough time to cover all the problems. You will benefit
most from the examples classes if you (attempt to) solve the problems on the
sheet ahead of the examples classes.

You are invited to hand in your work on the respective problem sheets
on Tuesdays at 5 pm in weeks 3, 4, 6, and 8. Your marker is Eleni Frangou;
there will be a folder at the departmental pigeon holes.

Additional material may be published at http://stats.ox.ac.uk/~reinert/
stattheory/stattheory.htm.

The lecture notes may cover more material than the lectures.
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Part I

Frequentist Statistics
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Chapter 1

Likelihood, sufficiency and
ancillarity

We start with data x1, x2, . . . , xn, which we would like to use to draw inference
about a parameter θ.
Model: We assume that x1, x2, . . . , xn are realisations of some random vari-
ables X1, X2, . . . , Xn, from a distribution which depends on the parameter
θ.
Often we use the model that X1, X2, . . . , Xn independent, identically dis-
tributed (i.i.d.) from some fX(x, θ) (probability density or probability mass
function). We then say x1, x2, . . . , xn is a random sample of size n from
fX(x, θ) (or, shorter, from f(x, θ)).

1.1 Likelihood

If X1, X2, . . . , Xn i.i.d. ∼ f(x, θ), then the joint density at x = (x1, . . . , xn)
is

f(x, θ) =
n∏
i=1

f(xi, θ).

Inference about θ given the data is based on the Likelihood function
L(θ,x) = f(x, θ); often abbreviated by L(θ). In the i.i.d. model, L(θ,x) =∏n

i=1 f(xi, θ). Often it is more convenient to use the log likelihood `(θ,x) =
logL(θ,x) (or, shorter, `(θ)). Here and in future, the log denotes the natural
logarithm; elog x = x.
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Example: Normal distribution. Assume that x1, . . . , xn is a random
sample from N (µ, σ2), where both µ and σ2 are unknown parameters, µ ∈
R, σ2 > 0. With θ = (µ, σ2), the likelihood is

L(θ) =
∏n

i=1(2πσ2)−1/2 exp
{
− 1

2σ2 (xi − µ)2
}

= (2πσ2)−n/2 exp
{
− 1

2σ2

∑n
i=1(xi − µ)2

}
and the log-likelihood is

`(θ) = −n
2

log(2π)− n log σ − 1

2σ2

n∑
i=1

(xi − µ)2.

Example: Poisson distribution. Assume that x1, . . . , xn is a random
sample from Poisson(θ), with unknown θ > 0; then the likelihood is

L(θ) =
n∏
i=1

(
e−θ

θxi

xi!

)
= e−nθθ

∑n
i=1 xi

n∏
i=1

(xi!)
−1

and the log-likelihood is

`(θ) = −nθ + log(θ)
n∑
i=1

xi −
n∑
i=1

log(xi!).

1.2 Sufficiency

Any function of X is a statistic. We often write T = t(X), where t is a
function. Some examples are the sample mean, the sample median, and the
actual data. Usually we would think of a statistic as being some summary
of the data, so smaller in dimension than the original data.
A statistic is sufficient for the parameter θ if it contains all information about
θ that is available from the data: L(X|T ), the conditional distribution of X
given T , does not depend on θ.

Factorisation Theorem (Casella + Berger, p.250) A statistic T = t(X)
is sufficient for θ if and only if there exists functions g(t, θ) and h(x) such
that for all x and θ

f(x, θ) = g(t(x), θ)h(x).
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Example: Bernoulli distribution. Assume that X1, . . . , Xn are i.i.d.
Bernoulli trials, Be(θ), so f(x, θ) = θx(1 − θ)1−x; let T =

∑n
i=1 Xi denote

number of successes. Recall that T ∼ Bin(n, θ), and so

P (T = t) =

(
n

t

)
θt(1− θ)n−t, t = 0, 1, . . . , n.

Then

P (X1 = x1, . . . , Xn = xn|T = t) = 0 for
n∑
i=1

xi 6= t,

and for
∑n

i=1 xi = t,

P (X1 = x1, . . . , Xn = xn|T = t) =
P (X1 = x1, . . . , Xn = xn)

P (T = t)

=

∏n
i=1

(
θxi(1− θ)(1−xi)

)(
n
t

)
θt(1− θ)n−t

=
θt(1− θ)n−t(
n
t

)
θt(1− θ)n−t

=

(
n

t

)−1

.

This expression is independent of θ, so T is sufficient for θ.

Alternatively, the Factorisation Theorem gives

f(x, θ) =
n∏
i=1

(
θxi(1− θ)(1−xi)

)
= θ

∑n
i=1 xi(1− θ)n−

∑n
i=1 xi

= g(t(x), θ)h(x)

with t =
∑n

i=1 xi; g(t, θ) = θt(1−θ)n−t and h(x) = 1, so T = t(X) is sufficient
for θ.

Example: Normal distribution. Assume that X1, . . . , Xn are i.i.d.
∼ N (µ, σ2); put x = 1

n

∑n
i=1 xi and s2 = 1

n−1

∑n
i=1(xi − x)2, then

f(x, θ) = (2πσ2)−n/2 exp

{
− 1

2σ2

n∑
i=1

(xi − µ)2

}

= exp

{
−n(x− µ)2

2σ2

}
(2πσ2)−

n
2 exp

{
−(n− 1)s2

2σ2

}
.
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If σ2 is known: θ = µ, t(x) = x, and g(t, µ) = exp
{
−n(x−µ)2

2σ2

}
, so X is

sufficient.
If σ2 is unknown: θ = (µ, σ2), and f(x, θ) = g(x, s2, θ), so (X,S2) is sufficient.

Example: Poisson distribution. Assume that x1, . . . , xn are a random
sample from Poisson(θ), with unknown θ > 0. Then

L(θ) = e−nθθ
∑n
i=1 xi

n∏
i=1

(xi!)
−1.

and (exercise)

t(x) =

g(t, θ) =

h(x) =

Example: order statistics. Let X1, . . . , Xn be i.i.d.; the order statis-
tics are the ordered observations X(1) ≤ X(2) ≤ · · · ≤ X(n). Then T =
(X(1), X(2), · · · , X(n)) is sufficient.

1.2.1 Exponential families

Any probability density function f(x|θ) which is written in the form

f(x, θ) = exp

{
k∑
i=1

ciφi(θ)hi(x) + c(θ) + d(x),

}
, x ∈ X ,

where c(θ) is chosen such that
∫
f(x, θ) dx = 1, is said to be in the k-

parameter exponential family. The family is called regular if X does not
depend on θ; otherwise it is called non-regular.

Examples include the binomial distribution, Poisson distributions, normal
distributions, gamma (including exponential) distributions, and many more.

Example: Binomial (n, θ). For x = 0, 1, ..., n,

f(x; θ) =

(
n

x

)
θx(1− θ)n−x

= exp

{
x log

(
θ

1− θ

)
+ log

((
n

x

))
+ n log(1− θ)

}
.

8



Choose k = 1 and

c1 = 1

φ1(θ) = log

(
θ

1− θ

)
h1(x) = x

c(θ) = n log(1− θ)

d(x) = log

((
n

x

))
X = {0, . . . , n}.

Fact: In k-parameter exponential family models,

t(x) = (n,
n∑
j=1

h1(xj), . . . ,
n∑
j=1

hk(xj))

is sufficient.

1.2.2 Minimal sufficiency

A statistic T which is sufficient for θ is minimal sufficient for θ is if can be
expressed as a function of any other sufficient statistic. To find a minimal
sufficient statistic: Suppose f(x,θ)

f(y,θ)
is constant in θ if and only if

t(x) = t(y),

then T = t(X) is minimal sufficient (see Casella + Berger p.255).
In order to avoid issues when the density could be zero, it is the case that

if for any possible values for x and y, we have that the equation

f(x, θ) = φ(x,y)f(y, θ) for all θ

implies that t(x) = t(y), where φ is a function which does not depend on θ,
then T = t(X) is minimal sufficent for θ.

Example: Poisson distribution. Suppose that X1, . . . , Xn are i.i.d.
Po(θ), then f(x, θ) = e−nθθ

∑n
i=1 xi

∏n
i=1(xi!)

−1 and

f(x, θ)

f(y, θ)
= θ

∑n
i=1 xi−

∑n
i=1 yi

n∏
i=1

yi!

xi!
,
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which is constant in θ if and only if

n∑
i=1

xi =
n∑
i=1

yi;

so T =
∑n

i=1 Xi is minimal sufficient (as is X). Note: T =
∑n

i=1 X(i) is a
function of the order statistic.

1.3 Ancillary statistic

If a(X) is a statistics whose distribution does not depend on θ, it is called
an ancillary statistic.

Example: Normal distribution. Let X1, . . . , Xn be i.i.d. N (θ, 1).
Then T = X2 −X1 ∼ N (0, 2) has a distribution which does not depend on
θ; it is ancillary.

When a minimal sufficient statistic T is of larger dimension than θ, then
there will often be a component of T whose distribution is independent of θ.

Example: some uniform distribution (Exercise). Let X1, . . . , Xn be
i.i.d. U [θ − 1

2
, θ + 1

2
] then

(
X(1), X(n)

)
is minimal sufficient for θ, as is

(S,A) =

(
1

2
(X(1) +X(n)), X(n) −X(1)

)
,

and the distribution of A is independent of θ, so A is an ancillary statistic.
Indeed, A measures the accuracy of S; for example, if A = 1 then S = θ with
certainty.
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Chapter 2

Point Estimation

Recall that we assume our data x1, x2, . . . , xn to be realisations of random
variables X1, X2, . . . , Xn from f(x, θ). Denote the expectation with respect
to f(x, θ) by Eθ, and the variance by Varθ.

When we estimate θ by a function t(x1, . . . , xn) of the data, this is called
a point estimate; T = t(X1, . . . , Xn) = t(X) is called an estimator (random).
For example, the sample mean is an estimator of the mean.

2.1 Properties of estimators

T is unbiased for θ if Eθ(T ) = θ for all θ; otherwise T is biased. The bias of
T is

Bias(T ) = Biasθ(T ) = Eθ(T )− θ.

Example: Sample mean, sample variance. Suppose that X1, . . . , Xn

are i.i.d. with unknown mean µ; unknown variance σ2. Consider the estimate
of µ given by the sample mean

T = X =
1

n

n∑
i=1

Xi.

Then

Eµ,σ2(T ) =
1

n

n∑
i=1

µ = µ,
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so the sample mean is unbiased. Recall that

V arµ,σ2(T ) = V arµ,σ2(X) = Eµ,σ2{(X − µ)2)} =
σ2

n
.

If we estimate σ2 by

S2 =
1

n− 1

n∑
i=1

(Xi −X)2,

then

Eµ,σ2(S2)

=
1

n− 1

n∑
i=1

Eµ,σ2{(Xi − µ+ µ−X)2}

=
1

n− 1

n∑
i=1

{
Eµ,σ2{(Xi − µ)2}+ 2Eµ,σ2(Xi − µ)(µ−X)

+Eµ,σ2{(X − µ)2}
}

=
1

n− 1

n∑
i=1

σ2 − 2
n

n− 1
Eµ,σ2{(X − µ)2}+

n

n− 1
Eµ,σ2{(X − µ)2}

= σ2

(
n

n− 1
− 2

n− 1
+

1

n− 1

)
= σ2,

so S2 is an unbiased estimator of σ2. Note: the estimator σ̂2 = 1
n

∑n
i=1(Xi−

X)2 is not unbiased.

Another criterion for estimation is a small mean square error (MSE);
the MSE of an estimator T is defined as

MSE(T ) = MSEθ(T ) = Eθ{(T − θ)2} = V arθ(T ) + (Biasθ(T ))2.

Note: MSE(T ) is a function of θ.

Example: σ̂2 has smaller MSE than S2 (see Casella and Berger, p.304)
but is biased.

If one has two estimators at hand, one being slightly biased but having
a smaller MSE than the second one, which is, say, unbiased, then one may
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well prefer the slightly biased estimator. Exception: If the estimate is to be
combined linearly with other estimates from independent data.

The efficiency of an estimator T is defined as

Efficiencyθ(T ) =
Varθ(T0)

Varθ(T )
,

where T0 has minimum possible variance.

Theorem: Cramér-Rao Inequality, Cramér-Rao lower bound:
Under regularity conditions on f(x, θ), it holds that for any unbiased T ,

Varθ(T ) ≥ (In(θ))−1,

where

In(θ) = Eθ

[(
∂`(θ,X)

∂θ

)2
]

is the expected Fisher information of the sample.

Thus, for any unbiased estimator T ,

Efficiencyθ(T ) =
1

In(θ)Varθ(T )
.

Assume that T is unbiased. T is called efficient (or a minimum variance
unbiased estimator) if it has the minimum possible variance. An unbiased
estimator T is efficient if Varθ(T ) = (In(θ))−1.

Often T = T (X1, . . . , Xn) is efficient as n→∞: then it is called asymp-
totically efficient.

The regularity conditions are conditions on the partial derivatives of
f(x, θ) with respect to θ; and the domain may not depend on θ; for example
U [0, θ] violates the regularity conditions.

Under more regularity: the first three partial derivatives of f(x, θ) with
respect to θ are integrable with respect to x; and again the domain may not
depend on θ; then

In(θ) = Eθ

[
−∂

2`(θ,X)

∂θ2

]
.
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Notation: We shall often omit the subscript in In(θ), when it is clear
whether we refer to a sample of size 1 or of size n. For a random sample,

In(θ) = nI1(θ).

Calculation of the expected Fisher information:

In(θ) = Eθ

[(
∂`(θ,X)

∂θ

)2
]

=

∫
f(x, θ)

[(
∂ log f(x, θ)

∂θ

)2
]
dx

=

∫
f(x, θ)

[
1

f(x, θ)

(
∂f(x, θ)

∂θ

)]2

dx

=

∫
1

f(x, θ)

[(
∂f(x, θ)

∂θ

)2
]
dx.

Example: Normal distribution, known variance For a random sam-
ple X from N (µ, σ2), where σ2 is known, and θ = µ,

`(θ) = −n
2

log(2π)− n log σ − 1

2σ2

n∑
i=1

(xi − µ)2;

∂`

∂θ
=

1

σ2

n∑
i=1

(xi − µ) =
n

σ2
(x− µ)

and

In(θ) = Eθ

[(
∂`(θ,X

∂θ

)2
]

=
n2

σ4
Eθ(X − µ)2 =

n

σ2
.

Note: Varθ(X) = σ2

n
, so X is an efficient estimator for µ. Also note that

∂2`

∂θ2
= − n

σ2
;
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a quicker method yielding the expected Fisher information.

In future we shall often omit the subscript θ in the expectation and in
the variance.

Example: Exponential family models in canonical form
Recall that one-parameter (i.e., scalar θ) exponential family density has the
form

f(x; θ) = exp {φ(θ)h(x) + c(θ) + d(x)} , x ∈ X .

Choosing θ and x to make φ(θ) = θ and h(x) = x is called the canonical
form;

f(x; θ) = exp{θx+ c(θ) + d(x)}.

For the canonical form

EX = µ(θ) = −c′(θ), and VarX = σ2(θ) = −c′′(θ).

Exercise: Prove the mean and variance results by calculating the moment-
generating function Eexp(tX) = exp{c(θ)−c(t+θ)}. Recall that you obtain
mean and variance by differentiating the moment-generating function (how
exactly?)

Example: Binomial (n, p). Above we derived the exponential family
form with

c1 = 1

φ1(p) = log

(
p

1− p

)
h1(x) = x

c(p) = n log(1− p)

d(x) = log

((
n

x

))
X = {0, . . . , n}.

To write the density in canonical form we put

θ = log

(
p

1− p

)
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(this transformation is called the logit transformation); then

p =
eθ

1 + eθ

and

φ(θ) = θ

h(x) = x

c(θ) = −n log
(
1 + eθ

)
d(x) = log

((
n

x

))
X = {0, . . . , n}

gives the canonical form. We calculate the mean

−c′(θ) = n
eθ

1 + eθ
= µ(θ) = np

and the variance

−c′′(θ) = n

{
eθ

1 + eθ
− e2θ

(1 + eθ)2

}
= σ2(θ) = np(1− p).

Now suppose X1, . . . , Xn are i.i.d., from the canonical density. Then

`(θ) = θ
∑

xi + nc(θ) +
∑

d(xi),

`′(θ) =
∑

xi + nc′(θ) = n(x+ c′(θ)).

Since `′′(θ) = nc′′(θ), we have that In(θ) = E(−`′′(θ)) = −nc′′(θ).

Example: Binomial (n, p) and

θ = log

(
p

1− p

)
then (exercise)

I1(θ) =
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2.2 Maximum Likelihood Estimation

Now θ may be a vector. A maximum likelihood estimate, denoted θ̂(x), is a
value of θ at which the likelihood L(θ,x) is maximal. The estimator θ̂(X)
is called MLE (also, θ̂(x) is sometimes called mle). An mle is a parameter
value at which the observed sample is most likely.

Often it is easier to maximise log likelihood: if derivatives exist, then
set first (partial) derivative(s) with respect to θ to zero, check that second
(partial) derivative(s) with respect to θ less than zero.

An mle is a function of a sufficient statistic:

L(θ,x) = f(x, θ) = g(t(x), θ)h(x)

by the factorisation theorem, and maximizing in θ depends on x only through
t(x).

An mle is usually efficient as n→∞.

Invariance property: An mle of a function φ(θ) is φ(θ̂) (Casella + Berger
p.294). That is, if we define the likelihood induced by φ as

L∗(λ, x) = sup
θ:φ(θ)=λ

L(θ, x),

then one can calculate that for λ̂ = φ(θ̂),

L∗(λ̂, x) = L(θ̂, x).

Examples: Uniforms, normal

1. X1, . . . , Xn i.i.d. ∼ U [0, θ]:

L(θ) = θ−n1[x(n),∞)(θ),

where x(n) = max1≤i≤n xi; so θ̂ = X(n)

2. X1, . . . , Xn i.i.d. ∼ U [θ − 1
2
, θ + 1

2
], then any θ ∈ [x(n) − 1

2
, x(1) + 1

2
]

maximises the likelihood (Exercise)

3. X1, . . . , Xn i.i.d. ∼ N (µ, σ2), then (Exercise) µ̂ = X, σ̂2 = 1
n

∑n
i=1(Xi−

X)2. So σ̂2 is biased, but Bias(σ̂2)→ 0 as n→∞.
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Iterative computation of MLEs

Sometimes the likelihood equations are difficult to solve. Suppose θ̂(1) is
an initial approximation for θ̂. Using Taylor expansion gives

0 = `′(θ̂) ≈ `′(θ̂(1)) + (θ̂ − θ̂(1))`′′(θ̂(1)),

so that

θ̂ ≈ θ̂(1) − `′(θ̂(1))

`′′(θ̂(1))
.

Iterate this procedure (this is called the Newton-Raphson method) to get

θ̂(k+1) = θ̂(k) − (`′′(θ̂(k)))−1`′(θ̂(k)), k = 2, 3, . . . ;

continue the iteration until |θ̂(k+1) − θ̂(k)| < ε for some small ε.

As E
{
−`′′(θ̂(1))

}
= In(θ̂(1)) we could instead iterate

θ̂(k+1) = θ̂(k) + I−1
n (θ̂(k))`′(θ̂(k)), k = 2, 3, . . .

until |θ̂(k+1) − θ̂(k)| < ε for some small ε. This is Fisher’s modification of the
Newton-Raphson method.

Repeat with different starting values to reduce the risk of finding just a
local maximum.

Example: Suppose that we observe x from the distribution
Binomial(n, θ). Then

`(θ) = x ln(θ) + (n− x) ln(1− θ) + log

(
n

x

)
`′(θ) =

x

θ
− n− x

1− θ
=

x− nθ
θ(1− θ)

`′′(θ) = − x
θ2
− n− x

(1− θ)2

I1(θ) =
n

θ(1− θ)
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Assume that n = 5, x = 2, ε = 0.01 (in practice rather ε = 10−5); and
start with an initial guess θ̂(1) = 0.55. Then Newton-Raphson gives

`′(θ̂(1)) ≈ −3.03

θ̂(2) ≈ θ̂(1) − (`′′(θ̂(1)))−1`′(θ̂(1)) ≈ 0.40857

`′(θ̂(2)) ≈ −0.1774

θ̂(3) ≈ θ̂(2) − (`′′(θ̂(2)))−1`(θ̂(2)) ≈ 0.39994.

Now |θ̂(3) − θ̂(2)| < 0.01 so we stop.
Using instead Fisher scoring gives

I−1
1 (θ)`′(θ) =

x− nθ
n

=
x

n
− θ

and so

θ + I−1
1 (θ)`′(θ) =

x

n

for all θ. To compare: analytically, θ̂ = x
n

= 0.4.

2.3 Profile likelihood

Often θ = (ψ, λ), where ψ contains the parameters of interest and λ contains
the other unknown parameters: nuisance parameters. Let λ̂ψ be the MLE
for λ for a given value of ψ. Then the profile likelihood for ψ is

LP (ψ) = L(ψ, λ̂ψ)

(in L(ψ, λ) replace λ by λ̂ψ); the profile log-likelihood is `P (ψ) = log[LP (ψ)].
For point estimation, maximizing LP (ψ) with respect to ψ gives the same

estimator ψ̂ as maximizing L(ψ, λ) with respect to both ψ and λ (but possibly
different variances)

Example: Normal distribution. Suppose that X1, . . . , Xn are i.i.d.
from N (µ, σ2) with µ and σ2 unknown. Given µ, σ̂2

µ = (1/n)
∑

(xi − µ)2,
and given σ2, µ̂σ2 = x. Hence the profile likelihood for µ is

LP (µ) = (2πσ̂2
µ)−n/2 exp

{
− 1

2σ̂2
µ

n∑
i=1

(xi − µ)2

}

=

[
2πe

n

∑
(xi − µ)2

]−n/2
,
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which gives µ̂ = x; and the profile likelihood for σ2 is

LP (σ2) = (2πσ2)−n/2 exp

{
− 1

2σ2

∑
(xi − x)2

}
,

gives (Exercise)
σ̂2
µ =

2.4 Method of Moments (M.O.M)

The idea is to match population moments to sample moments in order to
obtain estimators. Suppose that X1, . . . , Xn are i.i.d. ∼ f(x; θ1, . . . , θp).
Denote by

µk = µk(θ) = E(Xk)

the kth moment and by

Mk =
1

n

∑
(Xi)

k

the kth sample moment. In general, µk = µk(θ1, . . . , θp). Solve the equation

µk(θ) = Mk

for k = 1, 2, . . . , until there are sufficient equations to solve for θ1, . . . , θp
(usually p equations for the p unknowns). The solutions θ̃1, . . . , θ̃p are the
method of moments estimators.

They are often not as efficient as MLEs, but may be easier to calculate.
They could be used as initial estimates in an iterative calculation of MLEs.

Example: Normal distribution. Suppose that X1, . . . , Xn are i.i.d.
N (µ, σ2); µ and σ2 are unknown. Then

µ1 = µ; M1 = X

”Solve”
µ = X

so
µ̃ = X.

Furthermore

µ2 = σ2 + µ2; M2 =
1

n

n∑
i=1

X2
i
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so solve

σ2 + µ2 =
1

n

n∑
i=1

X2
i ,

which gives

σ̃2 = M2 −M2
1 =

1

n

n∑
i=1

(Xi −X)2

(which is not unbiased for σ2).

Example: Gamma distribution. Suppose that X1, . . . , Xn are i.i.d.
Γ(ψ, λ);

f(x;ψ, λ) =
1

Γ(ψ)
λψxψ−1e−λx for x ≥ 0.

Then µ1 = EX = ψ/λ and

µ2 = EX2 = ψ/λ2 + (ψ/λ)2.

Solving

M1 = ψ/λ, M2 = ψ/λ2 + (ψ/λ)2

for ψ and λ gives

ψ̃ = X
2/

[n−1

n∑
i=1

(Xi −X)2], and λ̃ = X
/

[n−1

n∑
i=1

(Xi −X)2].

2.5 Bias and variance approximations: the

delta method

Sometimes T is a function of one or more averages whose means and variances
can be calculated exactly; then we may be able to use the following simple
approximations for mean and variance of T :

Suppose T = g(S) where ES = β and VarS = V . Taylor expansion gives

T = g(S) ≈ g(β) + (S − β)g′(β).
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Taking the mean and variance of the r.h.s.:

ET ≈ g(β), VarT ≈ [g′(β)]2V.

If S is an average so that the central limit theorem (CLT) applies to it,
i.e., S ≈ N(β, V ), then

T ≈ N(g(β), [g′(β)]2V )

for large n.
If V = v(β), then it is possible to choose g so that T has approximately

constant variance in θ: solve [g′(β)]2v(β) = constant.

Example: Exponential distribution. X1, . . . , Xn i.i.d. ∼ exp( 1
µ
),

mean µ. Then S = X has mean µ and variance µ2/n. If T = logX then
g(µ) = log(µ), g′(µ) = µ−1, and so VarT ≈ n−1, which is independent of µ:
this is called a variance stabilization.

If the Taylor expansion is carried to the second-derivative term, we obtain

ET ≈ g(β) +
1

2
V g′′(β).

In practice we use numerical estimates for β and V if unknown.

When S, β are vectors (V a matrix), with T still a scalar: Let
(
g′(β)

)
i

=
∂g/∂βi and let g′′(β) be the matrix of second derivatives, then Taylor expan-
sion gives

VarT ≈ [g′(β)]TV g′(β)

and

ET ≈ g(β) +
1

2
trace[g′′(β)V ].

2.5.1 Exponential family models in canonical form and
asymptotic normality of the MLE

Recall that a one-parameter (i.e., scalar θ) exponential family density in
canonical form can be written as

f(x; θ) = exp{θx+ c(θ) + d(x)},
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and EX = µ(θ) = −c′(θ), as well as VarX = σ2(θ) = −c′′(θ). Suppose
X1, . . . , Xn are i.i.d., from the canonical density. Then

`′(θ) =
∑

xi + nc′(θ) = n(x+ c′(θ)).

Since µ(θ) = −c′(θ),
`′(θ) = 0 ⇐⇒ x = µ(θ̂),

and we have already calculated that In(θ) = E(−`′′(θ)) = −nc′′(θ). If µ is
invertible, then

θ̂ = µ−1(x).

The CLT applies to X so, for large n,

X ≈ N (µ(θ),−c′′(θ)/n).

With the delta-method, S ≈ N (a, b) implies that

g(S) ≈ N
(
g(a), b[g′(a)]2

)
for continuous g, and small b. For S = X, with g(·) = µ−1(·) we have
g′(·) = (µ′(µ−1(·))−1, thus

θ̂ ≈ N
(
θ, I−1

n (θ)
)

:

the M.L.E. is asymptotically normal.

Note: The approximate variance equals the Cramér-Rao lower bound:
quite generally the MLE is asymptotically efficient.

Example: Binomial(n, p). With θ = log
(

p
1−p

)
we have µ(θ) = n eθ

1+eθ
,

and we calculate

µ−1(t) = log

( t
n

1− t
n

)
.

Note that here we have a sample, x, of size 1. This gives

θ̂ = log

( x
n

1− x
n

)
,

as expected from the invariance of mle’s. We hence know that θ̂ is approxi-
mately normally distributed.
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2.6 Excursions

2.6.1 Minimum Variance Unbiased Estimation

There is a pretty theory about how to construct minimum variance unbiased
estimators (MVUE) based on sufficient statistics. The key underlying result
is the Rao-Blackwell Theorem (Casella+Berger p.316). We do not have time
to go into detail during lectures, but you may like to read up on it.

2.6.2 A more general method of moments

Consider statistics of the form 1
n

∑n
i=1 h(Xi). Find the expected value as a

function of θ
1

n

n∑
i=1

Eh(Xi) = r(θ).

Now obtain an estimate for θ by solving r(θ) = 1
n

∑n
i=1 h(Xi) for θ.

2.6.3 The delta method and logistic regresstion

For logistic regression, the outcome of an experiment is 0 or 1, and the
outcome may depend on some explanatory variables. We are interested in

P (Yi = 1|x) = π(x|β).

The outcome for each experiment is in [0, 1]; in order to apply some normal
regression model we use the logit transform,

logit(p) = log

(
p

1− p

)
which is now spread over the whole real line. The ratio p

1−p is also called the

odds. A (Generalised linear) model then relates the logit to the regressors in
a linear fashion;

logit(π(x|β)) = log

(
π(x|β)

1− π(x|β)

)
= xTβ.

The coefficients β describe how the odds for π change with change in the
explanatory variables. The model can now be treated like an ordinary linear
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regression, X is the design matrix, β is the vector of coefficients. Transform-
ing back,

P (Yi = 1|x) = exp(xTβ)
/(

1 + exp(xTβ)
)
.

The invariance property gives that the MLE of π(x|β), for any x, is π(x|β̂),
where β̂ is the MLE obtained in the ordinary linear regression from a sample
of responses y1, . . . , yn with associated covariate vectors x1, . . . , xn. We know
that β̂ is approximately normally distributed, and we would like to infer
asymptotic normality of π(x|β̂).

(i) If β is scalar: Calculate that

∂

∂β
π(xi|β) =

∂

∂β
exp(xiβ)

/
(1 + exp(xiβ))

= xie
xiβ (1 + exp(xiβ))−1 − (1 + exp(xiβ))−2 xie

xiβexiβ

= xiπ(xi|β)− xi(π(xi|β))2

= xiπ(xi|β)(1− π(xi|β))

and the likelihood is

L(β) =
n∏
i=1

π(xi|β) =
n∏
i=1

exp(xiβ)
/

(1 + exp(xiβ)) .

Hence the log likelihood has derivative

`′(β) =
n∑
i=1

1

π(xi|β)
xiπ(xi|β)(1− π(xi|β))

=
n∑
i=1

xi(1− π(xi|β))

so that

`′′(β) = −
n∑
i=1

x2
iπ(xi|β))(1− π(xi|β)).

Thus β̂ ≈ N (β, I−1
n

(
β)
)

where In(β) =
∑
x2
iπi(1− πi) with πi = π(xi|β).
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So now we know the parameters of the normal distribution which approx-
imates the distribution of β̂. The delta method with g(β) = eβx/(1 + eβx),
gives

g′(β) = xg(β)(1− g(β))

and hence we conclude that π = π(x|β̂) ≈ N
(
π, π2(1− π)2x2I−1(β)

)
.

(ii) If β is vector: Similarly it is possible to calculate that β̂ ≈ N
(
β, I−1

n (β)
)

where [In(β)]kl = E (−∂2`/∂βk∂βl). The vector version of the delta method
then gives

π(x|β̂) ≈ N
(
π, π2(1− π)2xT I−1(β)x

)
with π = π(x|β) and In(β) = XTRX. Here X is the design matrix, and

R = Diag (πi(1− πi), i = 1, . . . , n)

where πi = π(xi|β). Note that this normal approximation is likely to be poor
for π near zero or one.
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Chapter 3

Hypothesis Testing

3.1 Pure significance tests

We have data x = (x1, . . . , xn) from f(x, θ), and a hypothesis H0 which
restricts f(x, θ). We would like to know: Are the data consistent with H0?

H0 is called the null hypothesis. It is called simple if it completely specifies
the density of x; it is called composite otherwise.

A pure significance test is a means of examining whether the data are
consistent with H0 where the only distribution of the data that is explicitly
formulated is that under H0. Suppose that for a test statistic T = t(X),
the larger t(x), the more inconsistent the data with H0. For simple H0, the
p-value of x is then

p = P (T ≥ t(x)|H0).

Small p indicate more inconsistency with H0.

For composite H0: If S is sufficient for θ then the distribution of X
conditional on S is independent of θ; when S = s, the p-value of x is

p = P (T ≥ t(x)|H0;S = s).

Example: Dispersion of Poisson distribution. Let H0: X1, . . . , Xn

i.i.d. ∼ Poisson(µ), with unknown µ. Under H0, Var(Xi) = E(Xi) = µ and
so we would expect T = t(X) = S2/X to be close to 1. The statistic T is
also called the dispersion index.
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We suspect that the Xi’s may be over-dispersed, that is, Var(Xi) > EXi:
discrepancy with H0 would then correspond to large T . Recall that X is suf-
ficient for the Poisson distribution; the p-value under the Poisson hypothesis
is then p = P (S2/X ≥ t(x)|X = x;H0), which makes p independent of the
unknown µ. Given X = x and H0 we have that

S2/X ≈ χ2
n−1/(n− 1)

(see Chapter 5 later) and so the p-value of the test satisfies

p ≈ P (χ2
n−1/(n− 1) ≥ t(x)).

Possible alternatives toH0 guide the choice and interpretation of T . What
is a ”best” test?

3.2 Simple null and alternative hypotheses:

The Neyman-Pearson Lemma

The general setting here is as follows: we have a random sample X1, . . . , Xn

from f(x; θ), and two hypotheses:

a null hypothesis H0 : θ ∈ Θ0

an alternative hypothesis H1 : θ ∈ Θ1

where Θ1 = Θ \ Θ0; Θ denotes the whole parameter space. We want to
choose a rejection region or critical region R such that

reject H0 ⇐⇒ X ∈ R.

Now suppose that H0 : θ = θ0, and H1 : θ = θ1 are both simple. The
Type I error is: reject H0 when it is true;

α = P (reject H0|H0),

this is also known as size of the test. The Type II error is: accept H0 when
it is false;

β = P (accept H0|H1).
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The power of the test is 1− β = P (accept H1|H1).

Usually we fix α (e.g., α = 0.05, 0.01, etc.), and we look for a test which
minimizes β: this is called a most powerful or best test of size α.

Intuitively: we reject H0 in favour of H1 if likelihood of θ1 is much larger
than likelihood of θ0, given the data.

Neyman-Pearson Lemma: (see, e.g., Casella and Berger, p.366). The
most powerful test at level α of H0 versus H1 has rejection region

R =

{
x :

L(θ1; x)

L(θ0; x)
≥ kα

}
where the constant kα is chosen so that

P (X ∈ R|H0) = α.

This test is called the the likelihood ratio (LR) test.

Often we simplify the condition L(θ1; x)/L(θ0; x) ≥ kα to

t(x) ≥ cα,

for some constant cα and some statistic t(x); determine cα from the equation

P (T ≥ cα|H0) = α,

where T = t(X); then the test is “reject H0 if and only if T ≥ cα”. For data
x the p-value is p = P (T ≥ t(x)|H0).

Example: Normal means, one-sided. Suppose that we have a ran-
dom sample X1, . . . , Xn ∼ N(µ, σ2), wioth σ2 known; let µ0 and µ1 be given,
and assume that µ1 > µ0. We would like to test H0 : µ = µ0 against H1 :
µ = µ1. Using the Neyman-Pearson Lemma, the best test is a likelihood ratio
test. To calculate the test, we note that

L(µ1; x)

L(µ0; x)
≥ k ⇔ `(µ1; x)− `(µ0; x) ≥ log k

⇔ −
∑[

(xi − µ1)2 − (xi − µ0)2
]
≥ 2σ2 log k

⇔ (µ1 − µ0)x ≥ k′

⇔ x ≥ c (since µ1 > µ0),

29



where k′, c are constants, independent of x. Hence we choose t(x) = x, and
for size α test we choose c so that P (X ≥ c|H0) = α; equivalently, such that

P

(
X − µ0

σ/
√
n
≥ c− µ0

σ/
√
n

∣∣∣∣ H0

)
= α.

Hence we want
(c− µ0)/(σ/

√
n) = z1−α,

(where Φ(z1−α) = 1− α with Φ being standard normal c.d.f.), i.e.

c = µ0 + σz1−α/
√
n.

So the most powerful test of H0 versus H1 at level α becomes “reject H0 if
and only if X ≥ µ0 + σz1−α/

√
n”.

Recall the notation for standard normal quantiles: If Z ∼ N (0, 1) then

P(Z ≤ zα) = α and P(Z ≥ z(α)) = α,

and note that z(α) = z1−α. Thus

P(Z ≥ z1−α) = 1− (1− α) = α.

Example: Bernoulli, probability of success, one-sided. Assume
that X1, . . . , Xn are i.i.d. Bernoulli(θ) then L(θ) = θr(1 − θ)n−r where r =∑
xi. We would like to test H0 : θ = θ0 against H1 : θ = θ1, where θ0 and θ1

are known, and θ1 > θ0. Now θ1/θ0 > 1, (1− θ1)/(1− θ0) < 1, and

L(θ1; x)

L(θ0; x)
=

(
θ1

θ0

)r (
1− θ1

1− θ0

)n−r
and so L(θ1; x)/L(θ0; x) ≥ kα ⇐⇒ r ≥ rα.

So the best test rejects H0 for large r. For any given critical value rc,

α =
n∑

j=rc

(
n

j

)
θj0(1− θ0)n−j

gives the p-value if we set rc = r(x) =
∑
xi, the observed value.
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Note: The distribution is discrete, so we may not be able to achieve a
level α test exactly (unless we use additional randomization). For example,
if R ∼ Binomial(10, 0.5), then P (R ≥ 9) = 0.011, and P (R ≥ 8) = 0.055,
so there is no c such that P (R ≥ c) = 0.05. A solution is to randomize: If
R ≥ 9 reject the null hypothesis, if R ≤ 7 accept the null hypothesis, and if
R = 8 flip a (biased) coin to achieve the exact level of 0.05.

3.3 Composite alternative hypotheses

Suppose that θ scalar, H0 : θ = θ0 is simple, and we test against a composite
alternative hypotheses; this could be one-sided:

H−1 : θ < θ0 or H+
1 : θ > θ0;

or a two-sided alternative H1 : θ 6= θ0. The power function of a test depends
on the true parameter θ, and is defined as

power(θ) = P (X ∈ R|θ);

the probability of rejecting H0 as a function of the true value of the param-
eter θ; it depends on α, the size of the test. Its main uses are comparing
alternative tests, and choosing sample size.

3.3.1 Uniformly most powerful tests

A test of size α is uniformly most powerful (UMP) if its power function is
such that

power(θ) ≥ power′(θ)

for all θ ∈ Θ1, where power′(θ) is the power function of any other size-α test.

Consider testingH0 againstH+
1 . For exponential family problems, usually

for any θ1 > θ0 the rejection region of the LR test is independent of θ1. At
the same time, the test is most powerful for every single θ1 which is larger
than θ0. Hence the test derived for one such value of θ1 is UMP for H0 versus
H+

1 .

Example: normal mean, composite one-sided alternative. Sup-
pose that X1, . . . , Xn ∼ N(µ, σ2) are i.i.d., with σ2 known. We want to test
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H0 : µ = µ0 against H+
1 : µ > µ0. First pick an arbitrary µ1 > µ0. We have

seen that the most powerful test of µ = µ0 versus µ = µ1 has a rejection
region of the form

X ≥ µ0 + σz1−α/
√
n

for a test of size α. This rejection region is independent of µ1, hence the test
which rejects H0 when X ≥ µ0 + σz1−α/

√
n is UMP for H0 versus H+

1 . The
power of the test is

power(µ) = P
(
X ≥ µ0 + σz1−α/

√
n
∣∣ µ)

= P
(
X ≥ µ0 + σz1−α/

√
n
∣∣ X ∼ N(µ, σ2/n)

)
= P

(X − µ
σ/
√
n
≥ µ0 − µ

σ/
√
n

+ z1−α
∣∣ X ∼ N(µ, σ2/n)

)
= P

(
Z ≥ z1−α −

µ− µ0

σ/
√
n

∣∣ Z ∼ N(0, 1)
)

= 1− Φ
(
z1−α − (µ− µ0)

√
n/σ

)
.

The power increases from 0 up to α at µ = µ0 and then to 1 as µ increases.
The power increases as α increases.

Sample size calculation in the Normal example
Suppose want to be near-certain to reject H0 when µ = µ0 + δ, say, and have
size 0.05. Suppose we want to fix n to force power(µ) = 0.99 at µ = µ0 + δ:

0.99 = 1− Φ(1.645− δ
√
n/σ)

so that 0.01 = Φ(1.645 − δ
√
n/σ). Solving this equation (use tables) gives

−2.326 = 1.645− δ
√
n/σ, i.e.

n = σ2(1.645 + 2.326)2/δ2

is the required sample size.

UMP tests are not always available. If not, options include a

1. Wald test

2. locally most powerful test (score test)

3. generalised likelihood ratio test.

32



3.3.2 Wald tests

The Wald test is directly based on the asymptotic normality of the m.l.e.
θ̂ = θ̂n, often θ̂ ≈ N

(
θ, I−1

n (θ)
)

if θ is the true parameter. Also it is often

true that asymptotically, we may replace θ by θ̂ in the Fisher information,

θ̂ ≈ N
(
θ, I−1

n (θ̂)
)
.

So we can construct a test based on

W =

√
In(θ̂)(θ̂ − θ0) ≈ N (0, 1).

If θ is scalar, squaring gives
W 2 ≈ χ2

1,

so equivalently we could use a chi-square test.
For higher-dimensional θ we can base a test on the quadratic form

(θ̂ − θ0)T In(θ̂)(θ̂ − θ0)

which is approximately chi-square distributed in large samples.

If we would like to test H0 : g(θ) = 0, where g is a (scalar) differentiable
function, then the delta method gives as test statistic

W = g(θ̂){G(θ̂)(In(θ̂))−1G(θ̂)T}−1g(θ̂),

where G(θ) = ∂g(θ)
∂θ

T
.

An advantage of the Wald test is that we do not need to evaluate the
likelihood under the null hypothesis, which can be awkward if the null hy-
pothesis contains a number of restrictions on a multidimensional parameter.
All we need is (an approximation) of θ̂, the maximum-likelihood-estimator.
But there is also a disadvantage:

Example: Non-invariance of the Wald test

Suppose that θ̂ is scalar and approximately N (θ, In(θ)−1)-distributed,
then for testing H0 : θ = 0 the Wald statistic becomes

θ̂

√
In(θ̂),
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which would be approximately standard normal. If instead we tested H0 :
θ3 = 0, then the delta method with g(θ) = θ3, so that g′(θ) = 3θ2, gives

V ar(g(θ̂)) ≈ 9θ̂4(In(θ̂))−1

and as Wald statistic
θ̂

3

√
In(θ̂).

3.3.3 Locally most powerful test (Score test)

We consider first the problem to test H0 : θ = θ0 against H1 : θ = θ0 + δ. for
some small δ > 0. We have seen that the most powerful test has a rejection
region of the form

`(θ0 + δ)− `(θ0) ≥ k.

Taylor expansion gives

`(θ0 + δ) ≈ `(θ0) + δ
∂`(θ0)

∂θ

i.e.

`(θ0 + δ)− `(θ0) ≈ δ
∂`(θ0)

∂θ
.

So a locally most powerful (LMP) test has as rejection region

R =

{
x :

∂`(θ0)

∂θ
≥ kα

}
.

This is also called the score test : ∂`/∂θ is known as the score function.
Under certain regularity conditions,

Eθ

[
∂`

∂θ

]
= 0, Varθ

[
∂`

∂θ

]
= In(θ).

As ` is usually a sum of independent components, so is ∂`(θ0)/∂θ, and the
CLT (Central Limit Theorem) can be applied.

Example: Cauchy parameter. Suppose that X1, . . . , Xn is a random
sample from Cauchy (θ), having density

f(x; θ) =
[
π
(
1 + (x− θ)2

)]−1
for −∞ < x <∞.
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Test H0 : θ = θ0 against H+
1 : θ > θ0. Then

∂`(θ0; x)

∂θ
= 2

∑{
xi − θ0

1 + (xi − θ0)2

}
.

Fact: Under H0, the expression ∂`(θ0; X)/∂θ has mean 0, variance In(θ0) =
n/2. The CLT applies, ∂`(θ0; X)/∂θ ≈ N (0, n/2) under H0, so for the LMP
test,

P (N (0, n/2) ≥ kα) = P

(
N (0, 1) ≥ kα

√
2

n

)
≈ α.

This gives kα ≈ z1−α
√
n/2, and as rejection region with approximate size α

R =

{
x : 2

∑(
xi − θ0

1 + (xi − θ0)2

)
>

√
n

2
z1−α

}
.

The score test has the advantage that we only need the likelihood under
the null hypothesis. It is also not generally invariant under reparametrisation.

The multidimensional version of the score test is as follows: Let U =
∂`/∂θ be the score function, then the score statistic is

UT In(θ0)−1U.

Compare with a chi-square distribution.

3.3.4 Generalised likelihood ratio (LR) test

For testing H0 : θ = θ0 against H+
1 : θ > θ0, the generalised likelihood ratio

test uses as rejection region

R =

{
x :

maxθ≥θ0 L(θ; x)

L(θ0; x)
≥ kα

}
.

If L has one mode, at the m.l.e. θ̂, then the likelihood ratio in the definition
of R is either 1, if θ̂ ≤ θ0, or L(θ̂; x)/L(θ0; x), if θ̂ > θ0 (and similarly for
H−1 , with fairly obvious changes of signs and directions of inequalities).

The generalised LRT is invariant to a change in parametrisation.
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3.4 Two-sided tests

Test H0 : θ = θ0 against H1 : θ 6= θ0. If the one-sided tests of size α have
symmetric rejection regions

R+ = {x : t > c} and R− = {x : t < −c},

then a two-sided test (of size 2α) is to take the rejection region to

R = {x : |t| > c};

this test has as p-value p = P (|t(X)| ≥ t|H0).

The two-sided (generalised) LR test uses

T = 2 log

[
maxθ L(θ; X)

L(θ0; X)

]
= 2 log

[
L(θ̂; X)

L(θ0; X)

]

and rejects H0 for large T .

Fact: T ≈ χ2
1 under H0 (to be seen in Chapter 5).

Where possible, the exact distribution of T or of a statistic equivalent
to T should be used.

If θ is a vector: there is no such thing as a one-sided alternative hypoth-
esis. For the alternative θ 6= θ0 we use a LR test based on

T = 2 log

[
L(θ̂; X)

L(θ0; X)

]
.

Under H0, T ≈ χ2
p where p = dimension of θ (see Chapter 5).

For the score test we use as statistic

`′(θ0)T [In(θ0)]−1`′(θ0),

where In(θ) is the expected Fisher information matrix:

[In(θ)]jk = E[−∂2`/∂θj∂θk].
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If the CLT applies to the score function, then this quadratic form is again
approximately χ2

p under H0 (see Chapter 5).

Example: Pearson’s Chi-square statistic. We have a random sample
of size n, with p categories; P(Xj = i) = πi, for i = 1, . . . , p, j = 1, . . . , n. As∑
πi = 1, we take θ = (π1, . . . , πp−1). The likelihood function is then∏

πnii

where ni = # observations in category i (so
∑
ni = n). We think of

n1, . . . , np as realisations of random counts N1, . . . , Np. The m.l.e. is θ̂ =
n−1(n1, . . . , np−1). Test H0 : θ = θ0, where θ0 = (π1,0, . . . , πp−1,0), against
H1 : θ 6= θ0.

The score vector is vector of partial derivatives of

`(θ) =

p−1∑
i=1

ni log πi + np log

(
1−

p−1∑
k=1

πk

)
with respect to π1, . . . , πp−1:

∂`

∂πi
=
ni
πi
− np

1−
∑p−1

k=1 πk
.

The matrix of second derivatives has entries

∂2`

∂πi∂πk
= −niδik

π2
i

− np

(1−
∑p−1

i=1 πi)
2
,

where δik = 1 if i = k, and δik = 0 if i 6= k. Minus the expectation of this,
using Eθ0(Ni) = nπi, gives

In(θ) = nDiag(π−1
1 , . . . , π−1

p−1) + n11Tπ−1
p ,

where 1 is a (p− 1)-dimensional vector of ones.
Compute

`′(θ0)T [In(θ0)]−1`′(θ0) =

p∑
i=1

(ni − nπi,0)2

nπi,0
;

this statistic is called the chi-squared statistic, T say. The CLT for the score
vector gives that T ≈ χ2

p−1 under H0.
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Note: the form of the chi-squared statistic is∑
(Oi − Ei)2/Ei

where Oi and Ei refer to observed and expected frequencies in category i:
This is known as Pearson’s chi-square statistic.

3.5 Composite null hypotheses

Let θ = (ψ, λ), where λ is a nuisance parameter. We want a test which
does not depend on the unknown value of λ. Extending two of the previous
methods:

3.5.1 Generalised likelihood ratio test: Composite null
hypothesis

Suppose that we want to test H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1 = Θ\Θ0. The
(generalised) LR test uses the likelihood ratio statistic

T =
max
θ∈Θ

L(θ; X)

max
θ∈Θ0

L(θ; X)

and rejects H0 for large values of T .

Now θ = (ψ, λ). Assuming that ψ is scalar, test H0 : ψ = ψ0 against
H+

1 : ψ > ψ0. The LR statistic T is

T =
max
ψ≥ψ0,λ

L(ψ, λ)

max
λ

L(ψ0, λ)
=

max
ψ≥ψ0

LP (ψ)

LP (ψ0)
,

where LP (ψ) is the profile likelihood for ψ. For H0 against H1 : ψ 6= ψ0,

T =
max
ψ,λ

L(ψ, λ)

max
λ

L(ψ0, λ)
=
L(ψ̂, λ̂)

LP (ψ0)
.

Often (see Chapter 5):
2 log T ≈ χ2

p
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where p is the dimension of ψ.
An important requirement for this approach is that the dimension of λ

does not depend on n.

Example: Normal distribution and Student t-test. Suppose that
X is a random sample of size n, from N(µ, σ2), where both µ and σ are
unknown; we would like to test H0 : µ = µ0. Ignoring an irrelevant additive
constant,

`(θ) = −n log σ − n(x− µ)2 + (n− 1)s2

2σ2
.

Maximizing this w.r.t. σ with µ fixed gives

`P (µ) = −n
2

log

(
(n− 1)s2 + n(x− µ)2

n

)
.

If our alternative is H+
1 : µ > µ0 then we maximize `P (µ) over µ ≥ µ0:

if x ≤ µ0 then the maximum is at µ = µ0; if x > µ0 then the maximum is at
µ = x. So log T = 0 when x ≤ µ0 and is

−n
2

log

(
(n− 1)s2

n

)
+
n

2
log

(
(n− 1)s2 + n(x− µ0)2

n

)
=

n

2
log

(
1 +

n(x− µ0)2

(n− 1)s2

)
when x > µ0. Thus the LR rejection region is of the form

R = {x : t(x) ≥ cα},

where

t(x) =

√
n(x− µ0)

s
.

This statistic is called Student-t statistic. Under H0, t(X) ∼ tn−1, and for a
size α test set cα = tn−1,1−α; the p-value is p = P(tn−1 ≥ t(x)). Here we use
the quantile notation P(tn−1 ≥ tn−1,1−α) = α.

The two-sided test of H0 against H1 : µ 6= µ0 is easier, as unconstrained
maxima are used. The size α test has rejection region

R = {x : |t(x)| ≥ tn−1,1−α/2}.
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3.5.2 Score test: Composite null hypothesis

Now θ = (ψ, λ) with ψ scalar, test H0 : ψ = ψ0 against H+
1 : ψ > ψ0 or

H−1 : ψ < ψ0. The score test statistic is

T =
∂`(ψ0, λ̂0; X)

∂ψ
,

where λ̂0 is the MLE for λ when H0 is true. Large positive values of T
indicate H+

1 , and large negative values indicate H−1 . Thus the rejection
regions are of the form T ≥ k+

α when testing against H+
1 , and T ≤ k−α when

testing against H−1 .

Recall the derivation of the score test,

`(θ0 + δ)− `(θ0) ≈ δ
∂`(θ0)

∂θ
= δT.

If δ > 0, i.e. for H+
1 , we reject if T is large; if δ < 0, i.e. for H−1 , we reject if

T is small.

Sometimes the exact null distribution of T is available; more often we
use that T ≈ normal (by CLT, see Chapter 5), zero mean. To find the
approximate variance:

1. compute In(ψ0, λ)

2. invert to I−1
n

3. take the diagonal element corresponding to ψ

4. invert this element

5. replace λ by the null hypothesis MLE λ̂0.

Denote the result by v, then Z = T/
√
v ≈ N (0, 1) under H0.

A considerable advantage is that the unconstrained MLE ψ̂ is not re-
quired.

Example: linear or non-linear model? We can extend the linear
model Yj = (xTj β) + εj, where ε1, . . . , εn i.i.d. N (0, σ2), to a non-linear model

Yj = (xTj β)ψ + εj
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with the same ε’s. Test H0 : ψ = 1: usual linear model, against, say,
H−1 : ψ < 1. Here our nuisance parameters are λT = (βT , σ2).

Write ηj = xTj β, and denote the usual linear model fitted values by η̂j0 =

xTj β̂0, where the estimates are obtained under H0. As Yj ∼ N (ηj, σ
2), we

have up to an irrelevant additive constant,

`(ψ, β, σ) = −n log σ − 1

2σ2

∑
(yj − ηψj )2,

and so
∂`

∂ψ
=

1

σ2

∑
(yj − ηψj )ηψj log ηj,

yielding that the null MLE’s are the usual LSEs (least-square estimates),
which are

β̂0 = (XTX)−1XTY, σ̂2 = n−1
∑

(Yj − xTj β̂0)2.

So the score test statistic becomes

T =
1

σ̂2

∑
(Yj − η̂j0)(η̂j0 log η̂j0).

We reject H0 for large negative values of T .

Compute the approximate null variance (see below):

In(ψ0, β, σ) =
1

σ2

 ∑
u2
j

∑
ujx

T
j 0∑

ujxj
∑
xjx

T
j 0

0 0 2n


where uj = ηj log ηj. The (1, 1) element of the inverse of In has reciprocal(

uTu− uTX(XTX)−1XTu
) /
σ2,

where uT = (u1, . . . , un). Substitute η̂j0 for ηj and σ̂2 for σ2 to get v. For
the approximate p-value calculate z = t/

√
v and set p = Φ(z).

Calculation trick: To compute the (1, 1) element of the inverse of In above:
if

A =

(
a xT

x B

)
41



where a is a scalar, x is an (n− 1)× 1 vector and B is an (n− 1)× (n− 1)
matrix, then (A−1)11 = 1/(a− xTB−1x).

Recall also:

∂

∂ψ
ηψ =

∂

∂ψ
eψ ln η = ln ηeψ ln η = ηψ ln η.

For the (1, 1)-entry of the information matrix, we calculate

∂2`

∂ψ2
=

1

σ2

∑{
(−ηψj log ηj)η

ψ
j log ηj + (yj − ηψj )ηψj (log ηj)

2
}
,

and as Yj ∼ N (ηj, σ
2) we have

E

{
− ∂

2`

∂ψ2

}
=

1

σ2

∑
ηψj log ηjη

ψ
j log ηj =

1

σ2

∑
u2
j ,

as required. The off-diagonal terms in the information matrix can be calcu-
lated in a similar way, using that ∂

∂β
η = xTj .

3.6 Multiple tests

When many tests applied to the same data, there is a tendency for some
p-values to be small: Suppose P1, . . . , Pm are the random P -values for m
independent tests at level α (before seeing the data); for each i, suppose that
P (Pi ≤ α) = α if the null hypothesis is true. But then the probability that at
least one of the null hypothesis is rejected if m independent tests are carried
out is

1− P ( none rejected) = 1− (1− α)m.

Example: If α = 0.05 and m = 10, then

P ( at least one rejected |H0 true ) = 0.4012.

Thus with high probability at least one ”significant” result will be found
even when all the null hypotheses are true.
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Bonferroni: The Bonferroni inequality gives that

P (minPi ≤ α|H0) ≤
m∑
i=1

P (Pi ≤ α|H0) ≤ mα.

A cautious approach for an overall level α is therefore to declare the most
significant of m test results as significant at level p only if min pi ≤ p/m.

Example: If α = 0.05 and m = 10, then reject only if the p-value is less
than 0.005.

3.7 Combining independent tests

Suppose we have k independent experiments/studies for the same null hy-
pothesis. If only the p-values are reported, and if we have continuous distribu-
tion, we may use that under H0 each p-value is U [0, 1] uniformly distributed
(Exercise). This gives that

−2
k∑
i=1

logPi ∼ χ2
2k

(exactly) under H0, so

pcomb = P(χ2
2k ≥ −2

∑
log pi).

If each test is based on a statistic T such that Ti ≈ N (0, vi), then the
best combination statistic is

Z =
∑

(Ti/vi)/
√∑

v−1
i .

If H0 is a hypothesis about a common parameter ψ, then the best com-
bination of evidence is ∑

`P,i(ψ),

and the combined test would be derived from this (e.g., an LR or score test).
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Advice
Even though a test may initially be focussed on departures in one direc-

tion, it is usually a good idea not to totally disregard departures in the other
direction, even if they are unexpected.

Warning:
Not rejecting the null hypothesis does not mean that the null hypothesis

is true! Rather it means that there is not enough evidence to reject the null
hypothesis; the data are consistent with the null hypothesis.

The p-value is not the probability that the null hypothesis is true.

3.8 Nonparametric tests

Sometimes we do not have a parametric model available, and the null hy-
pothesis is phrased in terms of arbitrary distributions, for example concerning
only the median of the underlying distribution. Such tests are called non-
parametric or distribution-free; treating these would go beyond the scope of
these lectures.
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Chapter 4

Interval estimation

The goal for interval estimation is to specify the accurary of an estimate. A
1− α confidence set for a parameter θ is a set C(X) in the parameter space
Θ, depending only on X, such that

Pθ
(
θ ∈ C(X)

)
= 1− α.

Note: it is not θ that is random, but the set C(X) is.

For a scalar θ we would usually like to find an interval

C(X) = [l(X), u(X)]

so that Pθ
(
θ ∈ [l(X), u(X)]

)
= 1 − α. Then [l(X), u(X)] is an interval esti-

mator or confidence interval for θ; and the observed interval [l(x), u(x)] is
an interval estimate. If l is −∞ or if u is +∞, then we have a one-sided
estimator/estimate. If l is −∞, we have an upper confidence interval, if u is
+∞, we have an lower confidence interval.

Example: Normal, unknown mean and variance. Let X1, . . . , Xn

be a random sample from N (µ, σ2), where both µ and σ2 are unknown. Then
(X − µ)/(S/

√
n) ∼ tn−1 and so

1− α = Pµ,σ2

(∣∣∣∣X − µS/
√
n

∣∣∣∣ ≤ tn−1,1−α/2

)
= Pµ,σ2(X − tn−1,1−α/2S/

√
n ≤ µ ≤ X + tn−1,1−α/2S/

√
n),

and so the (familiar) interval with end points

X ± tn−1,1−α/2S/
√
n

is a 1− α confidence interval for µ.
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4.1 Construction of confidence sets

4.1.1 Pivotal quantities

A pivotal quantity (or pivot) is a random variable t(X, θ) whose distribution
is independent of all parameters, and so it has the same distribution for all θ.

Example: (X − µ)/(S/
√
n) in the example above has tn−1-distribution if

the random sample comes from N (µ, σ2).

We use pivotal quantities to construct confidence sets, as follows. Suppose
θ is a scalar. Choose a, b such that

Pθ(a ≤ t(X, θ) ≤ b) = 1− α.

Manipulate this equation to give Pθ
(
l(X) ≤ θ ≤ u(X)

)
= 1 − α (if t is a

monotonic function of θ); then [l(X), u(X)] is a 1− α confidence interval for
θ.

Example: Exponential random sample. Let X1, . . . , Xn be a ran-
dom sample from an exponential distribution with unknown mean µ. Then
we know that nX/µ ∼ Gamma(n, 1). If the α-quantile of Gamma(n, 1) is
denoted by gn,α then

1− α = Pµ(nX/µ ≥ gn,α) = Pµ(µ ≤ nX/gn,α).

Hence [0, nX/gn,α] is a 1− α confidence interval for µ. Alternatively, we say
that nX/gn,α is the upper 1− α confidence limit for µ.

4.1.2 Confidence sets derived from point estimators

Suppose θ̂(X) is an estimator for a scalar θ, from a known distribution. Then
we can take our confidence interval as

[θ̂ − a1−α, θ̂ + b1−α]

where a1−α and b1−α are chosen suitably.
If θ̂ ∼ N(θ, v), perhaps approximately, then for a symmetric interval

choose
a1−α = b1−α = z1−α/2

√
v.
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Note: [θ̂ − a1−α, θ̂ + b1−α] is not immediately a confidence interval for
θ if v depends on θ: in that case replace v(θ) by v(θ̂), which is a further
approximation.

4.1.3 Approximate confidence intervals

Sometimes we do not have an exact distribution available, but normal ap-
proximation is known to hold.

Example: asymptotic normality of m.l.e. . We have seen that,
under regularity, θ̂ ≈ N

(
θ, I−1(θ)

)
. If θ is scalar, then (under regularity)

θ̂ ± z1−α/2/

√
In(θ̂)

is an approximate 1− α confidence interval for θ.

Sometimes we can improve the accuracy by applying (monotone) trans-
formation of the estimator, using the delta method, and inverting the trans-
formation to get the final result.

As a guide line for transformations, in general a normal approximation
should be used on a scale where a quantity ranges over (−∞,∞).

Example: Bivariate normal distribution. Let (Xi, Yi), i = 1, . . . , n,
be a random sample from a bivariate normal distribution, with unknown
mean vector and covariance matrix. The parameter of interest is ρ, the
bivariate normal correlation. The MLE for ρ is the sample correlation

R =

∑n
i=1(Xi −X)(Yi − Y )√∑n

i=1(Xi −X)2
∑n

i=1(Yi − Y )2

,

whose range is [−1, 1]. For large n,

R ≈ N(ρ, (1− ρ2)2/n),

using the expected Fisher information matrix to obtain an approximate vari-
ance (see the section on asymptotic theory).

But the distribution of R is very skewed, the approximation is poor un-
less n is very large. For a variable whose range is (−∞,∞), we use the
tranformation

Z =
1

2
log[(1 +R)/(1−R)];
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this transformation is called the Fisher z transformation. By the delta
method,

Z ≈ N(ζ, 1/n)

where ζ = 1
2

log[(1 + ρ)/(1 − ρ)]. So a 1 − α confidence interval for ρ can
be calculated as follows: for ζ compute the interval limits Z ± z1−α/2/

√
n,

then transform these to the ρ scale using the inverse transformation ρ =
(e2ζ − 1)/(e2ζ + 1).

4.1.4 Confidence intervals derived from hypothesis tests

Define C(X) to be the set of values of θ0 for which H0 would not be rejected
in size-α tests of H0 : θ = θ0. Here the form of the 1 − α confidence set
obtained depends on the alternative hypotheses.
Example: to produce an interval with finite upper and lower limits use H1 :
θ 6= θ0; to find an upper confidence limit use H−1 : θ < θ0.

Example: Normal, known variance, unknown mean. LetX1, . . . , Xn

be i.i.d. N(µ, σ2), where σ2 known. For H0 : µ = µ0 versus H1 : µ 6= µ0 the
usual test has an acceptance region of the form∣∣∣∣X − µ0

σ/
√
n

∣∣∣∣ ≤ z1−α/2.

So the values of µ0 for which H0 is accepted are those in the interval

[X − z1−α/2σ/
√
n,X + z1−α/2σ/

√
n];

this interval is a 100(1− α)% confidence interval for µ.

For H0 : µ = µ0 versus H−1 : µ < µ0 the UMP test accepts H0 if

X ≥ µ0 − z1−ασ/
√
n

i.e., if
µ0 ≤ X + z1−ασ/

√
n.

So an upper 1− α confidence limit for µ is X + z1−ασ/
√
n.
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4.2 Hypothesis test from confidence regions

Conversely, we can also construct tests based on confidence interval:
For H0 : θ = θ0 against H1 : θ 6= θ0, if C(X) is 100(1 − α)% two-sided

confidence region for θ, then for a size α test reject H0 if θ0 6= C(X): The
confidence region is the acceptance region for the test.

If θ is a scalar: For H0 : θ = θ0 against H−1 : θ < θ0, if C(X) is 100(1−α)%
upper confidence region for θ, then for a size α test reject H0 if θ0 6= C(X).

Example: Normal, known variance. Let X1, . . . , Xn ∼ N(µ, σ2) be
i.i.d., where σ2 is known. For H0 : µ = µ0 versus H1 : µ 6= µ0 the usual
100(1− α)% confidence region is

[X − z1−α/2σ/
√
n,X + z1−α/2σ/

√
n],

so reject H0 if ∣∣∣∣X − µ0

σ/
√
n

∣∣∣∣ > z1−α/2.

To test H0 : µ = µ0 versus H−1 : µ < µ0: an upper 100(1−α)% confidence
region is X + z1−α/2σ/

√
n, so reject H0 if

µ0 > X + z1−ασ/
√
n

i.e. if
X < µ0 − z1−ασ/

√
n.

We can also construct approximate hypothesis test based on approximate
confidence intervals. For example, we use the asymptotic normality of m.l.e.
to derive a Wald test.

4.3 Prediction Sets

What is a set of plausible values for a future data value? A 1− α prediction
set for an unobserved random variable Xn+1 based on the observed data
X = (X1, . . . , Xn) is a random set P (X) for which

P(Xn+1 ∈ P (X)) = 1− α.
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Sometimes such a set can be derived by finding a prediction pivot t(X, Xn+1)
whose distribution does not depend on θ. If a setR is such that P(t(X, Xn+1) ∈
R) = 1− α, then a 1− α prediction set is

P (X) = {Xn+1 : t(X, Xn+1) ∈ R}.

Example: Normal, unknown mean and variance. LetX1, . . . , Xn ∼
N(µ, σ2) be i.i.d., where both µ and σ2 are unknown. A possible prediction
pivot is

t(X, Xn+1) =
Xn+1 −X

S
√

1 + 1
n

.

As X ∼ N(µ, σ
2

n
) and Xn+1 ∼ N(µ, σ2) is independent of X, it follows that

Xn+1 − X ∼ N(0, σ2(1 + 1/n)), and so t(X, Xn+1) has tn−1 distribution.
Hence a 1− α prediction interval is

{Xn+1 : |t(X, Xn+1)| ≤ tn−1,1−α/2}

=

{
Xn+1 : X − S

√
1 +

1

n
tn−1,1−α/2 ≤ Xn+1 ≤ X + S

√
1 +

1

n
tn−1,1−α/2

}
.
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Chapter 5

Asymptotic Theory

What happens as n→∞?

Let θ = (θ1, . . . , θp) be the parameter of interest, let `(θ) be the log-
likelihood. Then `′(θ) is a vector, with jth component ∂`/∂θj, and In(θ) is
the Fisher information matrix, whose (j, k) entry is Eθ (−∂2`/∂θj∂θk).

5.1 Consistency

A sequence of estimators Tn for θ, where Tn = tn(X1, . . . , Xn), is said to be
consistent if, for any ε > 0,

Pθ(|Tn − θ| > ε)→ 0 as n→∞.

In that case we also say that Tn converges to θ in probability.

Example: the sample mean. Let Xn be and i.i.d. sample of size n,
with finite variance, mean θ then, by the weak law of large numbers, Xn is
consistent for θ.

Recall: The weak law of large numbers states: Let X1, X2, . . . be a se-
quence of independent random variables with E(Xi) = µ and V ar(Xi) = σ2,
and let Xn = 1

n

∑n
i=1Xi. Then, for any ε > 0,

P (|Xn − µ| > ε)→ 0 as n→∞.
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A sufficient condition for consistency is thatBias(Tn)→ 0 and Var(Tn)→
0 as n→∞. (Use the Chebyshev inequality to show this fact).

Subject to regularity conditions, MLEs are consistent.

5.2 Distribution of MLEs

Assume that X1, . . . , Xn are i.i.d. where θ scalar, and θ̂ = θ̂(X) is the m.l.e.;
assume that θ̂ exists and is unique. In regular problems, θ̂ is solution to the
likelihood equation `′(θ) = 0. Then Taylor expansion gives

0 = `′(θ̂) ≈ `′(θ) + (θ̂ − θ)`′′(θ)

and so

−`′′(θ)
In(θ)

(θ̂ − θ) ≈ `′(θ)

In(θ)
. (5.1)

For the left hand side of (5.1):

−`′′(θ)/In(θ) =
∑

Yi/(nµ)

where
Yi = ∂2/∂θ2{log f(Xi; θ)}

and µ = E(Yi). The weak law of large numbers gives that

−`′′(θ)/In(θ)→ 1

in probability, as n→∞. So

θ̂ − θ ≈ `′(θ)

In(θ)
.

For the right hand side of (5.1),

`′(θ) =
∑

∂/∂θ{log f(Xi; θ)}

is the sum of i.i.d. random variables. By the CLT, `′(θ) is approximately
normal with mean E[`′(θ)] = 0 and variance Var(`′(θ)) = In(θ), and hence
`′(θ) ≈ N(0, In(θ)) or

`′(θ)/I(θ) ≈ N(0, [In(θ)]−1). (5.2)
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Combining:
θ̂ − θ ≈ N(0, [In(θ)]−1).

Result:

θ̂ ≈ N(θ, [In(θ)]−1) (5.3)

is the approximate distribution of the MLE.

The above argument generalises immediately to θ being a vector: if θ
has p components, say, then θ̂ is approximately multivariate normal in p-
dimensions with mean vector θ and covariance matrix [In(θ)]−1.

In practice we often use In(θ̂) in place of In(θ).
A corresponding normal approximation applies to any monotone trans-

formation of θ̂ by the delta method, as seen before.

Back to our tests:
1. Wald test
2. Score test (LMP test)
3. Generalised LR test.

A normal approximation for the Wald test follows immediately from (5.3).

5.3 Normal approximation for the LMP/score

test

Test H0 : θ = θ0 against H+
1 : θ > θ0 (where θ is a scalar:) We reject H0

if `′(θ) is large (in contrast, for H0 versus H−1 : θ < θ0, small values of `′(θ)
would indicate H−1 ). The score test statistic is `′(θ)/

√
In(θ). From (5.2) we

obtain immediately that

`′(θ)/
√
In(θ) ≈ N (0, 1).

To find an (approximate) rejection region for the test: use the normal ap-
proximation at θ = θ0, since the rejection region is calculated under the
assumption that H0 is true.

53



5.4 Chi-square approximation for the gener-

alised likelihood ratio test

Test H0 : θ = θ0 against H1 : θ 6= θ0, where θ is scalar. Reject H0 if
L(θ̂; X)/L(θ; X) is large; equivalently, reject for large

2 logLR = 2[`(θ̂)− `(θ)].

We use Taylor expansion around θ̂:

`(θ̂)− `(θ) ≈ −(θ − θ̂)`′(θ̂)− 1
2
(θ − θ̂)2`′′(θ̂).

Setting `′(θ̂) = 0, we obtain

`(θ̂)− `(θ) ≈ −1
2
(θ − θ̂)2`′′(θ̂).

By the consistency of θ̂, we may approximate

`′′(θ̂) ≈ −In(θ)

to get

2[`(θ̂)− `(θ)] ≈ (θ − θ̂)2In(θ) =

(
θ − θ̂√
I−1
n (θ)

)2

.

From (5.2), the asymptotic normality of θ̂, and as χ2
1 variable is the square

of a N(0, 1) variable, we obtain that

2 logLR = 2[`(θ̂)− `(θ)] ≈ χ2
1.

We can calculate a rejection region for the test of H0 versus H1 under this
approximation.

For θ = (θ1, . . . , θp), testing H0 : θ = θ0 versus H1 : θ 6= θ0, the dimension

of the normal limit for θ̂ is p, hence the degrees of freedom of the related
chi-squared variables are also p:

`′(θ)T [In(θ)]−1`′(θ) ≈ χ2
p

and
2 logLR = 2[`(θ̂)− `(θ)] ≈ χ2

p.
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5.5 Profile likelihood

Now θ = (ψ, λ), and λ̂ψ is the MLE of λ when ψ fixed. Recall that the profile

log-likelihood is given by `P (ψ) = `(ψ, λ̂ψ).

5.5.1 One-sided score test

We test H0 : ψ = ψ0 against H+
1 : ψ > ψ0; we reject H0 based on large values

of the score function T = `′ψ(ψ, λ̂ψ). Again T has approximate mean zero.
For the approximate variance of T , we expand

T ≈ `′ψ(ψ, λ) + (λ̂ψ − λ)`′′ψ,λ(ψ, λ).

From (5.1),
θ̂ − θ ≈ I−1

n `′.

We write this as(
ψ̂ − ψ
λ̂− λ

)
≈
(
Iψ,ψ Iψ,λ
Iψ,λ Iλ,λ

)−1(
`′ψ
`′λ

)
.

Here `′ψ = ∂`/∂ψ, `′λ = ∂`/∂λ, `′′ψ,λ = ∂2`/∂ψ∂λ, Iψ,ψ = E[−`′′ψ,ψ] etc. Now

substitute λ̂ψ − λ ≈ I−1
λ,λ`

′
λ and put

`′′ψ,λ ≈ −Iψ,λ.

Calculate

V (T ) ≈ Iψ,ψ + (I−1
λ,λ)

2I2
ψ,λIλ,λ − 2I−1

λ,λIψ,λIψ,λ

to get

T ≈ `′ψ − I−1
λ,λIψ,λ`

′
λ ≈ N(0, 1/Iψ,ψn ),

where Iψ,ψn = (Iψ,ψ − I2
ψ,λI

−1
λ,λ)

−1 is the top left element of I−1
n . Estimate

the Fisher information by substituting the null hypothesis values. Finally
calculate the practical standardized form of T as

Z =
T√

Var(T )
≈ `′ψ(ψ, λ̂ψ)[Iψ,ψn (ψ, λ̂ψ)]1/2 ≈ N(0, 1).

Similar results for vector-valued ψ and vector-valued λ hold, with obvious
modifications, provided that the dimension of λ is fixed (i.e., independent of
the sample size n).
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5.5.2 Two-sided likelihood ratio tests

Assume that ψ and λ are scalars. We use similar arguments as above, in-
cluding Taylor expansion, for

2 logLR = 2
[
`(ψ̂, λ̂)− `(ψ, λ̂ψ)

]
to obtain

2 logLR ≈ (ψ̂ − ψ)2/Iψ,ψn ≈ χ2
1, (5.4)

where Iψ,ψn = (Iψ,ψ−I2
ψ,λI

−1
λ,λ)

−1 is the top left element of I−1
n . The chi-squared

approximation above follows from ψ̂ − ψ ≈ normal.

(Details can be found in the additional material at the end of this section.)

In general, if θ is p-dimensional, then 2 logLR ≈ χ2
p.

Note: This result applies to the comparison of nested models, i.e., where
one model is a special case of the other, but it does not apply to the com-
parison of non-nested models.

5.6 Connections with deviance

In GLM’s, the deviance is usually 2 logLR for two nested models, one the
saturated model with a separate parameter for every response and the other
the GLM (linear regression, log-linear model, etc.) For normal linear models
the deviance equals the RSS. The general chi-squared result above need not
apply to the deviance, because λ has dimension n−p where p is the dimension
of the GLM.

But the result does apply to deviance differences: Compare the GLM fit
with p parameters (comprising θ = (ψ, λ)) to a special case with only q (< p)
parameters (i.e., with ψ omitted), then 2 logLR for that comparison is the
deviance difference, and in the null case (special case correct) ≈ χ2

p−q.
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5.7 Confidence regions

We can construct confidence regions based on the asymptotic normal distri-
butions of the score statistic and the MLE, or on the chi-square approxima-
tion to the likelihood ratio statistic, or to the profile likelihood ratio statistic.
These are equivalent in the limit n→∞, but they may display slightly dif-
ferent behaviour for finite samples.

Example: Wald-type interval. Based on the asymptotic normality
of a p-dimensional θ̂, an approximate 1− α confidence region is

{θ : (θ̂ − θ)T In(θ̂)(θ̂ − θ) ≤ χ2
p,1−α}.

As an alternative to using In(θ̂) we could use Jn(θ̂), the observed information
or observed precision evaluated at θ̂, where [Jn(θ)]jk = −∂2`/∂θj∂θk.

An advantage of the first type of region is that all values of θ inside
the confidence region have higher likelihood than all values of θ outside the
region.

Example: normal sample, known variance. Let X1, . . . , Xn ∼
N(µ, σ2) be i.i.d, with σ2 known. The log LR difference is

`(µ̂; x)− `(µ; x) = − 1

2σ2

[∑
(xi − x)2 −

∑
(xi − µ)2

]
=

n(x− µ)2

2σ2
,

so an approximate confidence interval is given by the values of µ satisfying

n(X − µ)2

2σ2
≤ 1

2
χ2

1,1−α or

∣∣∣∣X − µσ/
√
n

∣∣∣∣ ≤ z1−α/2,

which gives the same interval as in Chapter 4. In this case the approximate
χ2 result is, in fact, exact.

5.8 Additional material: Derivation of (5.4)

Assume ψ and λ scalars, then(
ψ̂ − ψ
λ̂− λ

)
≈
(
Iψ,ψ Iψ,λ
Iψ,λ Iλ,λ

)−1(
`′ψ
`′λ

)
.
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Similarly we have that

λ̂ψ − λ ≈ I−1
λ,λ`

′
λ.

As
`′λ ≈ Iψ,λ(ψ̂ − ψ) + Iλ,λ(λ̂− λ),

we obtain

λ̂ψ − λ ≈ λ̂− λ+ Iψ,λI
−1
λ,λ(ψ̂ − ψ).

Taylor expansion gives

2 logLR = 2
[
`(ψ̂, λ̂)− `(ψ, λ̂ψ)

]
= 2

[
`(ψ̂, λ̂)− `(ψ, λ)

]
− 2

[
`(ψ, λ̂ψ)− `(ψ, λ)

]
≈ (ψ − ψ̂, λ− λ̂)In(ψ − ψ̂, λ− λ̂)T − (0, λ− λ̂ψ)In(0, λ− λ̂ψ)T .

Substituting for λ̂ψ − λ gives

2 logLR ≈ (ψ̂ − ψ)2/Iψ,ψn ≈ χ2
1,

where Iψ,ψn = (Iψ,ψ − I2
ψ,λI

−1
λ,λ)

−1 is the top left element of I−1
n . This is what

we wanted to show.
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Part II

Bayesian Statistics
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Chapter 6

Bayesian Statistics:
Background

Frequency interpretation of probability

In the frequency interpretation of probability, the probability of an event
is limiting proportion of times the event occurs in an infinite sequence of
independent repetitions of the experiment. This interpretation assumes that
an experiment can be repeated!

Problems with this interpretation:
Independence is defined in terms of probabilities; if probabilities are de-

fined in terms of independent events, this leads to a circular definition.
How can we check whether experiments were independent, without doing

more experiments?
In practice we have only ever a finite number of experiments.

Subjective probability

Let P (A) denote your personal probability of an event A; this is a nu-
merical measure of the strength of your degree of belief that A will occur, in
the light of available information.

Your personal probabilities may be associated with a much wider class
of events than those to which the frequency interpretation pertains. For
example:
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- non-repeatable experiments (e.g. that England will win the World Cup
next time)

- propositions about nature (e.g. that this surgical procedure results in
increased life expectancy) .

All subjective probabilities are conditional, and may be revised in the
light of additional information. Subjective probabilities are assessments in
the light of incomplete information; they may even refer to events in the past.

Axiomatic development

Coherence:
Coherence states that a system of beliefs should avoid internal inconsis-

tencies. Basically, a quantitative, coherent belief system must behave as if
it was governed by a subjective probability distribution. In particular this
assumes that all events of interest can be compared.

Note: different individuals may assign different probabilities to the same
event, even if they have identical background information.

(See Chapters 2 and 3 in Bernardo and Smith for fuller treatment of
foundational issues.)

Bayes Theorem

Let B1, B2, . . . , Bk be a set of mutually exclusive and exhaustive events.
For any event A with P (A) > 0,

P (Bi|A) =
P (Bi ∩ A)

P (A)

=
P (A|Bi)P (Bi)∑k
j=1 P (A|Bj)P (Bj)

.

Equivalently we write

P (Bi|A) ∝ P (A|Bi)P (Bi).

Terminology
P (Bi) is the prior probability of Bi;
P (A|Bi) is the likelihood of A given Bi;
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P (Bi|A) is the posterior probability of Bi;
P (A) is the predictive probability of A implied by the likelihoods and the

prior probabilities.

Example: Two events. Assume we have two events B1, B2, then

P (B1|A)

P (B2|A)
=
P (B1)

P (B2)
× P (A|B1)

P (A|B2)
.

If the data is relatively more probable under B1 than under B2, our belief in
B1 compared to B2 is increased, and conversely.

If B2 = Bc
1:

P (B1|A)

P (Bc
1|A)

=
P (B1)

P (Bc
1)
× P (A|B1)

P (A|Bc
1)
.

It follows that: posterior odds = prior odds × likelihood ratio.

Parametric models
A Bayesian statistical model consists of
1.) A parametric statistical model f(x|θ) for the data x, where θ ∈ Θ a

parameter; x may be multidimensional. - Note that we write f(x|θ) instead
of f(x, θ) do emphasise the conditional character of the model. 2.) A prior
distribution π(θ) on the parameter.

Note: The parameter θ is now treated as random!

The posterior distribution of θ given x is

π(θ|x) =
f(x|θ)π(θ)∫
f(x|θ)π(θ)dθ

Shorter, we write: π(θ|x) ∝ f(x|θ)π(θ) or posterior ∝ prior × likeli-
hood .

Nuisance parameters

Let θ = (ψ, λ), where λ is a nuisance parameter. Then π(θ|x) = π((ψ, λ)|x).
We calculate the marginal posterior of ψ:

π(ψ|x) =

∫
π(ψ, λ|x)dλ
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and continue inference with this marginal posterior. Thus we just integrate
out the nuisance parameter.

Prediction

The (prior) predictive distribution of x on the basis π is

p(x) =

∫
f(x|θ)π(θ)dθ.

Suppose data x1 is available, and we want to predict additional data:

p(x2|x1) =
p(x2, x1)

p(x1)

=

∫
f(x2, x1|θ)π(θ)dθ∫
f(x1|θ)π(θ)dθ

=

∫
f(x2|θ, x1)

f(x1|θ)π(θ)∫
f(x1|θ)π(θ)dθ

dθ

=

∫
f(x2|θ)

f(x1|θ)π(θ)∫
f(x1|θ)π(θ)dθ

dθ

=

∫
f(x2|θ)π(θ|x1)dθ.

Note that x2 and x1 are assumed conditionally independent given θ. They
are not, in general, unconditionally independent.

Example

(Bayes) A billard ball W is rolled from left to right on a line of length 1
with a uniform probability of stopping anywhere on the line. It stops at p.
A second ball O is then rolled n times under the same assumptions, and X
denotes the number of times that the ball O stopped on the left of W . Given
X, what can be said about p?

Our prior is θ(p) = 1 for 0 ≤ p ≤ 1; our model is

P (X = x|p) =

(
n

x

)
px(1− p)n−x

for x = 0, . . . , n
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We calculate the predictive distribution, for x = 0, . . . , n

P (X = x) =

∫ 1

0

(
n

x

)
px(1− p)n−xdp

=

(
n

x

)
B(x+ 1, n− x+ 1)

=

(
n

x

)
x!(n− x)!

(n+ 1)!
=

1

n+ 1
,

where B is the beta function,

B(α, β) =

∫ 1

0

pα−1(1− p)β−1dp =
Γ(α)Γ(β)

Γ(α + β)
.

We calculate the posterior distribution:

π(p|x) ∝ 1×
(
n

x

)
px(1− p)n−x

∝ px(1− p)n−x,

so

π(p|x) =
px(1− p)n−x

B(x+ 1, n− x+ 1)
;

this is the Beta(x+ 1, n− x+ 1)-distribution.
In particular the posterior mean is

E(p|x) =

∫ 1

0

p
px(1− p)n−x

B(x+ 1, n− x+ 1)
dp

=
B(x+ 2, n− x+ 1)

B(x+ 1, n− x+ 1)

=
x+ 1

n+ 2
.

(For comparison: the mle is x
n
.)

Further, P (O stops to the left of W on the next roll |x) is Bernoulli-
distributed with probability of success E(p|x) = x+1

n+2
.
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Example: exponential model, exponential prior
Let X1, . . . , Xn be a random sample with density f(x|θ) = θe−θx for

x ≥ 0, and assume π(θ) = µe−µθ for θ ≥ 0; and some known µ. Then

f(x1, . . . , xn|θ) = θne−θ
∑n
i=1 xi

and hence the posterior distribution is

π(θ|x) ∝ θne−θ
∑n
i=1 xiµe−µθ

∝ θne−θ(
∑n
i=1 xi+µ),

which we recognize as Gamma(n+ 1, µ+
∑n

i=1 xi).

Example: normal model, normal prior

Let X1, . . . , Xn be a random sample from N (θ, σ2), where σ2 is known,
and assume that the prior is normal, π(θ) ∼ N (µ, τ 2), where µ, τ 2 is known.
Then

f(x1, . . . , xn|θ) = (2πσ2)−
n
2 exp

{
−1

2

n∑
i=1

(xi − θ)2

σ2

}
,

so we calculate for the posterior that

π(θ|x) ∝ exp

{
−1

2

(
n∑
i=1

(xi − θ)2

σ2
+

(θ − µ)2

τ 2

)}
=: e−

1
2
M .

We can calculate (Exercise)

M = a

(
θ − b

a

)2

− b2

a
+ c,

a =
n

σ2
+

1

τ 2
,

b =
1

σ2

∑
xi +

µ

τ 2
,

c =
1

σ2

∑
x2
i +

µ2

τ 2
.
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So it follows that the posterior is normal,

π(θ|x) ∼ N
(
b

a
,

1

a

)
Exercise: the predictive distribution for x is N (µ, σ2 + τ 2).

Note: The posterior mean for θ is

µ1 =
1
σ2

∑
xi + µ

τ2

n
σ2 + 1

τ2

.

If τ 2 is very large compared to σ2, then the posterior mean is approximately x.
If σ2/n is very large compared to τ 2, then the posterior mean is approximately
µ.

The posterior variance for θ is

φ =
1

n
σ2 + 1

τ2

< min

{
σ2

n
, τ 2

}
,

which is smaller than the original variances.

Credible intervals
A (1 − α) (posterior) credible interval is an interval of θ−values within

which 1− α of the posterior probability lies. In the above example:

P

(
−zα/2 <

θ − µ1√
φ

< zα/2

)
= 1− α

is a (1− α) (posterior) credible interval for θ.
The equality is correct conditionally on x, but the rhs does not depend

on x, so the equality is also unconditionally correct.
If τ 2 →∞ then φ− σ2

n
→ 0, and µ1 − x→ 0, and

P

(
x− zα/2

σ√
n
< θ < x+ zα/2

σ√
n

)
= 1− α,

which gives the usual 100(1−α)% confidence interval in frequentist statistics.

Note: The interpretation of credible intervals is different to confidence
intervals: In frequentist statistics, x±zα/2 σ√

n
applies before x is observed; the

randomness relates to the distribution of x, whereas in Bayesian statistics,
the credible interval is conditional on the observed x; the randomness relates
to the distribution of θ.
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Chapter 7

Bayesian Models

Sufficiency

A sufficient statistic captures all the useful information in the data.
Definition: A statistic t = t(x1, . . . , xn) is parametric sufficient for θ if

π(θ|x) = π(θ|t(x)).

Note: then we also have

p(xnew|x) = p(xnew|t(x)).

Factorization Theorem: t(x) is parametric sufficient if and only if

π(θ|x) =
h(t(x), θ)π(θ)∫
h(t(x), θ)π(θ)dθ

for some function h.
Recall: For classical suffiency, the factorization theorem gave as necessary

and sufficient condition that

f(x, θ) = h(t(x), θ)g(x).

Theorem: Classical sufficiency is equivalent to parametric sufficiency.
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To see this: assume classical sufficiency, then

π(θ|x) =
f(x|θ)π(θ)∫
f(x|θ)π(θ)dθ

=
h(t(x), θ)g(x)π(θ)∫
h(t(x), θ)g(x)π(θ)dθ

=
h(t(x), θ)π(θ)∫
h(t(x), θ)π(θ)dθ

depends on x only through t(x), so π(θ|x) = π(θ|t(x)).
Conversely, assume parametric sufficiency, then

f(x|θ)π(θ)

f(x)
= π(θ|x) = π(θ|t(x)) =

f(t(x)|θ)π(θ)

f(t(x))

and so

f(x|θ) =
f(t(x)|θ)
f(t(x))

f(x)

which implies classical sufficiency.

Example: A k-parameter exponential family is given by

f(x|θ) = exp

{
k∑
i=1

ciφi(θ)hi(x) + c(θ) + d(x)

}
, x ∈ X

where

e−c(θ) =

∫
exp

{
k∑
i=1

ciφi(θ)hi(x) + d(x)

}
dx <∞.

The family is called regular if X does not depend on θ; otherwise it is called
non-regular.

Fact: In k-parameter exponential family models,

t(x) = (n,
n∑
j=1

h1(xj), . . . ,
n∑
j=1

hk(xj))

is sufficient.
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Exchangeability

X1, . . . , Xn are (finitely) exchangeable if

P (X1 ∈ E1, . . . , Xn ∈ En) = P (Xσ(i) ∈ E1, . . . , Xσ(n) ∈ En)

for any permutation σ of {1, 2, . . . , n}, and any (measureable) sets E1, . . . , En.
An infinite sequence X1, X2, . . . is exchangeable if every finite sequence is
(finitely) exchangeable

Intuitively: a random sequence is exchangeable if the random quantities
do not arise, for example, in a time ordered way.

Every independent sequence is exchangeable, but NOT every exchange-
able sequence is independent.

Example: A simple random sample from a finite population (sampling
without replacement) is exchangeable, but not independent.

Theorem (de Finetti). If X1, X2, . . . is exchangeable, with probability
measure P , then there exists a prior measure Q on the set of all distributions
(on the real line) such that, for any n, the joint distribution function of
X1, . . . Xn has the form ∫ n∏

i=1

F (xi)dQ(F ),

where F1, . . . , Fn are distributions, and

Q(E) = lim
n→∞

P (Fn ∈ E),

where Fn(x) = 1
n

∑n
i=1 1(Xi ≤ x) is the empirical c.d.f..

Thus each exchangeable sequence arises from a 2-stage randomization:
(a) pick F according to Q;
(b) conditional on F , the observations are i.i.d. .

De Finetti’s Theorem tells us that subjective beliefs which are consistent
with (infinite) exchangeability must be of the form

(a) There are beliefs (a priori) on the ”parameter” F; representing your
expectations for the behaviour of X1, X2, . . .;
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(b) conditional on F the observations are i.i.d. .
In Bayesian statistics, we can think of the prior distribution on the pa-

rameter θ as such an F . If a sample is i.i.d. given θ, then the sample is
exchangeable.

Example. Suppose X1, X2, . . . are exchangeable 0-1 variables. Then
the distribution of Xi is uniquely defined by p = P (Xi = 1); the set of all
probability distributions on {0, 1} is equivalent to the interval [0, 1]. The
measure Q puts a probability on [0, 1]; de Finetti gives

p(x1, . . . , xn) =

∫
p
∑n
i=1 xi(1− p)n−

∑n
i=1 xidQ(p).

Not all finitely exchangeable sequences can be imbedded in an infinite
exchangeable sequence.

Exercise: X1, X2 such that

P (Xi = 1, X2 = 0) = P (X1 = 0, X2 = 1) =
1

2

cannot be embedded in an exchangeable sequence X1, X2, X3.

For further reading on de Finetti’s Theorem, see Steffen Lauritzen’s grad-
uate lecture at www.stats.ox.ac.uk/~steffen/teaching/grad/definetti.
pdf.
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Chapter 8

Prior Distributions

Let Θ be a parameter space. How do we assign prior probabilities on Θ?
Recall: we need a coherent belief system.

In a discrete parameter space we assign subjective probabilities to each
element of the parameter space, which is in principle straightforward.

In a continuous parameter space:

1. Histogram approach:
Say, Θ is an interval of R. We can discretize Θ, assess the total mass

assigned to each subinterval, and smoothen the histogram.

2. Relative likelihood approach:
Again, say, Θ is an interval of R. We assess the relative likelihood that θ

will take specific values. This relative likelihood is proportional to the prior
density. If Θ is unbounded, normalization can be an issue.

3. Particular functional forms: conjugate priors. A family F of
prior distributions for θ is closed under sampling from a model f(x|θ) if for
every prior distribution π(θ) ∈ F , the posterior π(θ|x) is also in F .

When this happens, the common parametric form of the prior and pos-
terior are called a conjugate prior family for the problem. Then we also say
that the family F of prior distributions is conjugate to this class of models
{f(x|θ), θ ∈ Θ}.

Often we abuse notation and call an element in the family of conjugate
priors a conjugate prior itself.
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Example: We have seen already: if X ∼ N (θ, σ2) with σ2 known; and
if θ ∼ N (µ, τ 2), then the posterior for θ is also normal. Thus the family of
normal distributions forms a conjugate prior family for this normal model.

Example: Regular k-parameter exponential family. If

f(x|θ) = exp{
k∑
i=1

ciφi(θ)hi(x) + c(θ) + d(x)}, x ∈ X

then the family of priors of the form

π(θ|τ) = (K(τ))−1exp{
k∑
i=1

ciτiφi(θ) + τ0c(θ)},

where τ = (τ0, . . . , τk) is such that

K(τ) =

∫
Θ

eτ0c(θ)exp{
k∑
i=1

ciτiφi(θ)}dθ <∞,

is a conjugate prior family. The parameters τ are called hyperparameters.

Example: Bernoulli distribution: Beta prior

f(x|θ) = θx(1− θ)1−x = (1− θ)exp
{
x log

(
θ

1− θ

)}
so k = 1 and

d(x) = 0, c(θ) = log(1− θ), h1(x) = x,

φ1(θ) = log

(
θ

1− θ

)
,

π(θ|τ) ∝ (1− θ)τ0exp
{
τ1 log

(
θ

1− θ

)}
=

1

K(τ0, τ1)
θτ1(1− θ)τ0−τ1 .

This density will have a finite integral if and only if τ1 > −1 and τ0 − τ1 >
−1, in which case it is the Beta(τ1 + 1, τ0 − τ1 + 1)-distribution. Thus the
family of Beta distributions forms a conjugate prior family for the Bernoulli
distribution.
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Example: Poisson distribution: Gamma prior. Here again k = 1,

d(x) = − log((x!)), c(θ) = −θ
h1(x) = x, φ1(θ) = log θ,

and an element of the family of conjugate priors is given by

π(θ|τ) =
1

K(τ0, τ1)
θτ1e−θτ0 .

The density will have a finite integral if and only if τ1 > −1 and τ0 > 0, in
which case it is the Gamma(τ1 + 1, τ0) distribution.

Example: Normal, unknown variance: normal-gamma prior. For
the normal distribution with mean µ, we let the precision be λ = σ−2, then
θ = (µ, λ)

d(x) = −1

2
log(2π), c(µ, λ) = −λµ

2

2
+ log(

√
λ)

(h1(x), h2(x)) = (x, x2), (φ1(µ, λ), φ2(µ, λ)) = (µλ,−1

2
λ)

and an element of the family of conjugate priors is given by

π(µ, λ|τ0, τ1, τ2)

∝ λ
τ0
2 exp

{
−1

2
λµ2τ0 + λµτ1 −

1

2
λτ2

}
∝ λ

τ0+1
2
−1exp

{
−1

2

(
τ2 −

τ 2
1

τ0

)
λ

}
λ

1
2 exp

{
−λτ0

2

(
µ− τ1

τ0

)2
}
.

The density can be interpreted as follows: Use a Gamma((τ0 + 1)/2, (τ2 −
τ 2

1 /τ0)/2) prior for λ. Conditional on λ, we have a normal N (τ1/τ0, 1/(λτ0))
for µ. This is called a normal-gamma distribution for (µ, λ); it will have a
finite integral if and only if τ2 > τ 2

1 /τ0 and τ0 > 0.

Fact: In regular k-parameter exponential family models, the fam-
ily of conjugate priors is closed under sampling. Moreover, if π(θ|τ0, . . . , τk)
is in the above conjugate prior family, then

π(θ|x1, . . . , xn, τ0, . . . , τk) = π(θ|τ0 + n, τ1 +H1(x), . . . , τk +Hk(x)),
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where

Hi(x) =
n∑
j=1

hi(xj).

Recall that (n,H1(x), . . . , Hk(x)) is a sufficient statistic. Note that indeed
the posterior is of the same parametric form as the prior.

The predictive density for future observations y = y1, . . . , ym is

p(y|x1, . . . , xn, τ0, . . . , τk)

= p(y|τ0 + n, τ1 +H1(x), . . . , τk +Hk(x))

=
K(τ0 + n+m, τ1 +H1(x, y), . . . , τk +Hk(x, y))

K(τ0 + n, τ1 +H1(x), . . . , τk +Hk(x))
e
∑m
`−1 d(y`),

where

Hi(x, y) =
n∑
j=1

hi(xj) +
m∑
`=1

hi(y`).

This form is particularly helpful for inference: The effect of the data
x1, . . . , xn is that the labelling parameters of the posterior are changed from
those of the prior, (τ0, . . . , τk) by simply adding the sufficient statistics

(t0, . . . , tk) = (n,
n∑
i=1

h1(xj), . . . ,
n∑
i=1

hk(xj))

to give the parameters (τ0 + t0, . . . , τk + tk) for the posterior.

Mixtures of priors from this conjugate prior family also lead to a simple
analysis (Exercise).

Noninformative priors

Often we would like a prior that favours no particular values of the pa-
rameter over others. If Θ finite with |Θ| = n, then we just put mass 1

n
at

each parameter value. If Θ is infinite, there are several ways in which one
may seek a noninformative prior.

Improper priors are priors which do not integrate to 1. They are inter-
preted in the sense that posterior ∝ prior × likelihood. Often they arise as
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natural limits of proper priors. They have to be handled carefully in order
not to create paradoxes!

Example: Binomial, Haldane’s prior. Let X ∼ Bin(n, p), with n
fixed, and let π be a prior on p. Haldane’s prior is

π(p) ∝ 1

p(1− p)
;

we have that
∫ 1

0
π(p) dp =∞. This prior gives as marginal density

p(x) ∝
∫ 1

0

(p(1− p))−1

(
n

x

)
px(1− p)n−xdp,

which is not defined for x = 0 or x = n. For all other values of x we obtain
the Beta(x, n− x)-distribution. The posterior mean is

x

x+ n− x
=
x

n
.

For x = 0, n: we could think of

π ≈ πα,β ∼ Beta(α, β),

where α, β > 0 are small. Then the posterior is Beta(α + x, β + n − x).
Now let α, β ↓ 0: then πα,β converges to π. Note that the posterior mean
converges to x/n for all values of x.

Noninformative priors for location parameters

Let Θ,X be subsets of Euclidean space. Suppose that f(x|θ) is of the
form f(x− θ): this is called a location density, θ is called location parameter.

For a noninformative prior for θ: suppose that we observe y = x + c,
where c fixed. If η = θ + c then y has density f(y|η) = f(y − η), and so a
noninformative priors should be the same (as we assume that we have the
same parameter space).

Call π the prior for the (x, θ)-problem, and π∗ the prior for the (y, η)-
problem. Then we want that for any (measureable) set A∫

A

π(θ)dθ =

∫
A

π∗(θ)dθ =

∫
A−c

π(θ)dθ =

∫
A

π(θ − c)dθ,
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yielding
π(θ) = π(θ − c)

for all θ. Hence π(θ) = π(0) constant; usually we choose π(θ) = 1 for all θ.
This is an improper prior.

Noninformative priors for scale parameters

A (one-dimensional) scale density is a density of the form

f(x|σ) =
1

σ
f
(x
σ

)
for σ > 0; σ is called scale parameter. Consider y = cx, for c > 0; put
η = cσ, then y has density f(y|η) = 1

η
f
(
x
σ

)
. Noninformative priors for σ and

η should be the same (assuming the same parameter space), so we want that
for any (measureable) set A∫

A

π(σ)dσ =

∫
c−1A

π(σ)dσ =

∫
A

π(c−1σ)c−1dσ,

yielding
π(σ) = c−1π(c−1σ)

for all σ > 0; π(c) = c−1π(1); hence π(σ) ∝ 1
σ
. Usually we choose π(σ) = 1

σ
.

This is an improper prior.

Jeffreys Priors

Example: Binomial model. Let X ∼ Bin(n, p).A plausible noninfor-
mative prior would be p ∼ U [0, 1], but then

√
p has higher density near 1

than near 0. Thus “ignorance” about p seems to lead to “knowledge” about√
p, which is paradoxical. We would like the prior to be invariant under

reparametrization.

Recall: under regularity conditions, the Fisher information equals

I(θ)− Eθ
(
∂2logf(x|θ)

∂2θ

)
.

Under the same regularity assumptions, we define the Jeffreys prior as

π(θ) ∝ I(θ)
1
2 .
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Here I(θ) = I1(θ). This prior may or may not be improper.

Reparametrization: Let h be monotone and differentiable. The chain rule
gives

I(θ) = I(h(θ))

(
∂h

∂θ

)2

.

For the Jeffreys prior π(θ), we have

π(h(θ)) = π(θ)

∣∣∣∣∂h∂θ
∣∣∣∣−1

∝ I(θ)
1
2

∣∣∣∣∂h∂θ
∣∣∣∣−1

= I(h(θ))
1
2 ;

thus the prior is indeed invariant under reparametrization.

The Jeffreys prior favours values of θ for which I(θ) is large. Hence
minimizes the effect of the prior distribution relative to the information in
the data.

Exercise: The above non-informative priors for scale and location corre-
spond to Jeffreys priors.

Example: Binomial model, Jeffreys prior. Let X ∼ Bin(n, p);
where n is known, so that f(x|p) =

(
n
x

)
px(1− p)n−x. Then

∂2logf(x|p)
∂2p

= − x
p2
− n− x

(1− p)2
.

Take expectation and multiply by minus 1: I(p) = n
p

+ n
(1−p) = n

p(1−p) Thus
the Jeffreys prior is

π(p) ∝ (p(1− p))−
1
2 ,

which we recognize as the Beta(1/2, 1/2)-distribution. This is a proper prior.

If θ is multivariate, the Jeffreys prior is

π(θ) ∝ [detI(θ)]
1
2 ,

which is still invariant under reparametrization.

Example: Normal model, Jeffreys prior. Let X ∼ N (µ, σ2), where
θ = (µ, σ). We abbreviate

ψ(x, µ, σ) = − log σ − (x− µ)2

2σ2
;

77



then

I(θ) = −Eθ

(
∂2

∂µ2ψ(x, µ, σ) ∂2

∂µ∂σ
ψ(x, µ, σ)

∂2

∂µ∂σ
ψ(x, µ, σ) ∂2

∂σ2ψ(x, µ, σ)

)

= −Eθ

(
− 1
σ2 −2(x−µ)

σ3

−2(x−µ)
σ3

1
σ2 − 3(x−µ)2

σ4

)
=

(
1
σ2 0
0 2

σ2

)
.

So

π(θ) ∝
(

1

σ2
× 2

σ2

) 1
2

∝ 1

σ2

is the Jeffreys prior.

Note: N (µ, σ2) is a location-scale density, so we could take a uniform
prior for µ, 1/σ-prior for σ; this would yield

π(θ) =
1

σ
.

Thie prior is *not* equal to the Jeffreys prior.

Maximum Entropy Priors

Assume first that Θ is discrete. The entropy of π is defined as

E(π) = −
∑

Θ

π(θi)log(π(θi))

(where 0log(0) = 0). It measures the amount of uncertainty in an observa-
tion.

If Θ is finite, with n elements, then E(π) is largest for the uniform distri-
bution, and smallest if π(θi) = 1 for some θi ∈ Θ.

Suppose we are looking for a prior π, taking partial information in terms
of functions g1, . . . , gm into account, where this partial information can be
written as

Eπgk(θ) = µk, k = 1, . . . ,m.

We would like to choose the distribution with the maximum entropy under
these constraints: This distribution is

π̃(θi) =
exp (

∑m
k=1 λkgk(θi))∑

i exp (
∑m

k=1 λkgk(θi))
,
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where the λi are determined by the constraints.

Example: prior information on the mean. Let Θ = {0, 1, 2, . . .}.
The prior mean of θ is thought to be 5. We write this as a constraint:
m = 1, g1(θ) = θ, µ1 = 5. So

π̃(θ) =
eλ1θ∑∞
j=0 e

λ1j
=
(
eλ1
)θ (

1− eλ1
)

is the maximum-entropy prior. We recognize it as the distribution of (ge-
ometric - 1). Its mean is e−λ1 − 1, so setting the mean equal to 5 yields
eλ1 = 1

6
, and λ1 = − log 6.

If Θ is continuous, then π(θ) is a density. The entropy of π relative to a
particular reference distribution with density π0 is defined as

E(π) = −Eπ
(

log
π(θ)

π0(θ)

)
= −

∫
Θ

π(θ)log
π(θ)

π0(θ)
dθ.

The case that Θ is discrete corresponds to π0 being discrete uniform.

How do we choose π0? We would like to choose the “natural” invariant
noninformative prior. Assume that we have partial information in terms of
functions g1, . . . , gm:∫

gk(θ)π(θ)dθ = µk, k = 1, . . . ,m.

We choose the distribution with the maximum entropy under these con-
straints (when it exists):

π̃(θ) =
π0(θ)exp (

∑m
k=1 λkgk(θ))∫

Θ
π0(θ)exp (

∑m
k=1 λkgk(θ)) dθ

,

where the λi are determined by the constraints.

Example: location parameter, known mean, known variance.
Let Θ = R, and let θ be location parameter; we choose as reference prior
π0(θ) = 1. Suppose that mean and variance are known:

g1(θ) = θ, µ1 = µ; g2(θ) = (θ − µ)2, µ2 = σ2.
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Then we choose

π̃(θ) =
exp (λ1θ + λ2(θ − µ)2)∫∞

−∞ exp (λ1θ + λ2(θ − µ)2) dθ

∝ exp(λ1θ + λ2θ
2) ∝ exp(λ2(θ − α)2),

for a suitable α (here the λ’s may not be the same). So π̃ is normal; the
constraints give π̃ is N (µ, σ2).

Example: location parameter, known mean. Suppose that in the
previous example only the prior mean, not the prior variance, is specified; so

π̃(θ) =
exp (λ1θ)∫∞

−∞ exp (λ1θ) dθ
,

and the integral is infinite, so the distribution does not exist.

Additional Material: Bayesian Robustness

To check how much the conclusions change for different priors, we can
carry out a sensitivity analysis.

Example: Normal or Cauchy?
Suppose Θ = R, and X ∼ N (θ, 1), where θ is known to be either standard

normal or standard Cauchy. We calculate the posterior means under both
models:

obs. x post. mean (N ) post. mean (C)
0 0 0
1 0.69 0.55
2 1.37 1.28
4.5 3.09 4.01
10 6.87 9.80

For small x the posterior mean does not change very much, but for large
x it does.

Example: Normal model; normal or contaminated class of pri-
ors. Assume that X ∼ N (θ, σ2), where σ2 known, and π0 ∼ N (µ, τ 2). An
alternative class of priors is Γ, constructed as follows: Let

Q = {qk; qk ∼ U|(µ− k, µ+ k)},
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then put
Γ = {π : π = (1− ε)π0 + εq, some q ∈ Q}.

The Γ is called an ε-contamination class of priors. Let C = (c1, c2) be an
interval. Put P0 = P (θ ∈ C|x, π0) and Qk = P (θ ∈ C|x, qk). Then (by
Bayes’ rule) for π ∈ Γ we have

P (θ ∈ C|x) = λk(x)P0 + (1− λk(x))Qk,

where

λk(x) =

(
1 +

ε

1− ε
× p(x|qk)
p(x|π0)

)−1

,

and p(x|q) is the predictive density of x when the prior is q.

The predictive density p(x|π0) is N (µ, σ2 + τ 2),

p(x|qk) =

∫ µ+k

µ−k

1

σ
φ

(
x− θ
σ

)
1

2k
dθ

and

Qk =
1

p(x|qk)

∫ c∗∗

c∗

1

σ
φ

(
x− θ
σ

)
1

2k
dθ

where c∗ = max{c, µ−k} and c∗∗ = min{c2, µ+k} (φ is the standard normal
density).

Numerical example: Let ε = 0.1, σ2 = 1, τ 2 = 2, µ = 0, x = 1, and
C = (−0.93, 2.27) is the 95% credible region for π0. Then we calculate

inf
π∈Γ

P (θ ∈ C|x, π) = 0.945,

achieved at k = 3.4, and

sup
π∈Γ

P (θ ∈ C|x, π) = 0.956,

achieved at k = 0.93. So in this sense the inference is very robust.
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Chapter 9

Posterior Distributions

Point estimates
Some natural summaries of distributions are the mean, the median, and

the mode. The mode is most likely value of θ, so it is the maximum Bayesian
likelihood estimator.

For summarizing spread, we use the inter-quartile range (IQR), the vari-
ance, etc.

Interval estimates
If π is the density for a parameter θ ∈ Θ, then a region C ⊂ Θ such that∫

C

π(θ)dθ = 1− α

is called a 100(1− α)% credible region for θ with respect to π.
If C is an interval: it is called a credible interval. Here we take credible

regions with respect to the posterior distribution; we abbreviate the posterior
by π, abusing notation.

A 100(1 − α)% credible region is not unique. Often it is natural to give
the smallest 100(1 − α)% credible region, especially when the region is an
interval. We say that C ⊂ Θ is a 100(1 − α)% highest probability density
region (HPD) with respect to π if

(i)
∫
C
π(θ)dθ = 1− α; and

(ii) π(θ1) ≥ π(θ2) for all θ1 ∈ C, θ2 6∈ C except possibly for a subset of Θ
having π-probability 0.
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A 100(1− α)% HPD has minimum volume over all 100(1− α)% credible
regions.

The full posterior distribution itself is often more informative than cred-
ible regions, unless the problem is very complex.

Asymptotics

When n is large, then under suitable regularity conditions, the posterior
is approximately normal, with mean the m.l.e. θ̂, and variance (nI1(θ̂))−1.

This asymptotics requires that the prior is non-zero in a region surround-
ing the m.l.e..

Since, under regularity, the m.l.e. is consistent; if the data are i.i.d. from
f(x|θ0) and if the prior is non-zero around θ0, then the posterior will become
more and more concentrated around θ0. In this sense Bayesian estimation is
automatically consistent.
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Part III

A Decision-Theoretic Approach
and Bayesian testing

84



Chapter 10

Bayesian Inference as a
Decision Problem

10.1 The decision-theoretic set-up

In Decision Theory we choose between various possible actions after observ-
ing data. We denote by Θ the set of all possible states of nature (values of
parameter); D is the set of all possible decisions (actions). With a decision
and a state of nature comes an associated loss. A loss function is any function

L : Θ×D → [0,∞)

L(θ, d) gives the cost (penalty) associated with decision d if the true state
of the world is θ. We use the notation f(x, θ) for the sampling distribution,
for a sample x ∈ X ; π(θ) denotes a prior distribution, and L(θ, d) a loss
function. Often the decision d is to evaluate or estimate a function h(θ) as
accurately as possible.

For Point estimation: h(θ) = θ and D = Θ; finally L(θ, d) loss in report-
ing d when θ is true.

For Hypothesis testing: for testing H0 : θ ∈ Θ0, the decision set it

D = {accept H0, reject H0},

and

h(θ) =

{
1 if θ ∈ Θ0

0 otherwise .
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The general loss function is

L(θ, accept H0) =

{
`00 if θ ∈ Θ0

`01 otherwise

L(θ, reject H0) =

{
`10 if θ ∈ Θ0

`11 otherwise .

Note: `01 is the Type II-error, (accept H0 although false), `10 is the Type
I-error (reject H0 although true).

A Decision rule: δ : X → D maps observations to decisions. We aim to
choose δ such that the incurred loss is small. In general there is no δ that
uniformly mimimizes L(θ, δ(x)).

Bayesian setting
For a prior π and data x ∈ X , the posterior expected loss of a decision is

ρ(π, d|x) =

∫
Θ

L(θ, d)π(θ|x)dθ,

which is a function of x. For a prior π, the integrated risk of a decision rule
δ is

r(π, δ) =

∫
Θ

∫
X
L(θ, δ(x)f(x|θ)dxπ(θ)dθ,

which is a real number. We prefer δ1 to δ2 if and only if r(π, δ1) < r(π, δ2).

Proposition. An estimator minimizing r(π, δ) can be obtained by se-
lecting, for every x ∈ X , the value δ(x) that minimizes ρ(π, δ|x).

Proof (additional material)

r(π, δ) =

∫
Θ

∫
X
L(θ, δ(x))f(x|θ)dxπ(θ)dθ

=

∫
X

∫
Θ

L(θ, δ(x))π(θ|x)p(x)dθdx

=

∫
X
ρ(π, δ|x)p(x)dx

(Recall that p(x) =
∫

Θ
f(x|θ)π(θ)dθ.)
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A Bayes estimator associated with prior π, loss L, is any estimator δπ

which minimizes r(π, δ): For every x ∈ X it is

δπ = argmin
d
ρ(π, d|x);

then r(π) = r(π, δπ) is called Bayes risk. This is valid for proper priors, and
for improper priors if r(π) < ∞. If r(π) = ∞ one can define a generalised
Bayes estimator as the minimizer, for every x, of ρ(π, d|x).

Fact: For strictly convex loss functions, Bayes estimators are unique.

Some common loss functions

Loss functions are part of the problem specification. The Squared error
loss: L(θ, d) = (θ − d)2 is convex, and penalises large deviations heavily.

Proposition The Bayes estimator δπ associated with prior π under squared
error loss is the posterior mean,

δπ(x) = Eπ(θ|x) =

∫
Θ
θf(x|θ)π(θ)dθ∫

Θ
f(x|θ)π(θ)dθ

.

Reason: for any random variable Y , E((Y −a)2) is minimized by a = EY .

The Absolute error loss is L(θ, d) = |θ − d|.

Proposition: The posterior median is a Bayes estimator under absolute
error loss.

10.2 Bayesian testing

Suppose that we want to H0 : θ ∈ Θ0, so that

D = {accept H0, reject H0} = {1, 0},

where 1 stands for acceptance. We choose as loss function

L(θ, φ) =


0 if θ ∈ Θ0, φ = 1
a0 if θ ∈ Θ0, φ = 0
0 if θ 6∈ Θ0, φ = 0
a1 if θ 6∈ Θ0, φ = 1.
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Proposition Under this loss function, the Bayes decision rule associated
with a prior distribution π is

φπ(x) =

{
1 if P π(θ ∈ Θ0|x) > a1

a0+a1

0 otherwise .

Note the special case: If a0 = a1, then we accept H0 if P π(θ ∈ Θ0|x) > 1
2
.

Proof (additional material) The posterior expected loss is

ρ(π, φ|x) = a0P
π(θ ∈ Θ0|x)1(φ(x) = 0)

+a1P
π(θ 6∈ Θ0|x)1(φ(x) = 1)

= a0P
π(θ ∈ Θ0|x) + 1(φ(x) = 1)

(a1 − (a0 + a1)P π(θ ∈ Θ0|x)) ,

and a1 − (a0 + a1)P π(θ ∈ Θ0|x) < 0 if and only if P π(θ ∈ Θ0|x) > a1

a0+a1
.

Example: X ∼ Bin(n, θ), Θ0 = [0, 1/2), π(θ) = 1

P π

(
θ <

1

2
|x
)

=

∫ 1
2

0
θx(1− θ)n−xdθ∫ 1

0
θx(1− θ)n−xdθ

=

(
1
2

)n+1

B(x+ 1, n− x+ 1)

{
1

x+ 1
+ . . .+

(n− x)!x!

(n+ 1)!

}
This expression can be evaluated for particular n and x, and compared with
the acceptance level a1

a0+a1
.

Example: X ∼ N (θ, σ2), with σ2 known, and θ ∼ N (µ, τ 2). Then we
have already calculated that π(θ|x) ∼ N (µ(x), w2) with

µ(x) =
σ2µ+ τ 2x

σ2 + τ 2
and w2 =

σ2τ 2

σ2 + τ 2
.

For testing H0 : θ < 0 we calculate

P π(θ < 0|x) = P π

(
θ − µ(x)

w
< −µ(x)

w

)
= Φ

(
−µ(x)

w

)
.
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Let za0,a1 be the a1

a0+a1
quantile: then we accept H0 if −µ(x) > za0,a1w, or,

equivalently, if

x < −σ
2

τ 2
µ−

(
1 +

σ2

τ 2

)
za0,a1w.

For σ2 = 1, µ = 0, τ 2 →∞: we accept H0 if x < −za0,a1

Compare to the frequentist test: Accept H0 if x < z1−α = −zα. This
corresponds to

a0

a1

=
1

α
− 1.

So a0

a1
= 19 for α = 0.05; and a0

a1
= 99 for α = 0.01.

Note:
1) If the prior probability of H0 is 0, then so will be posterior probability.
2) Testing H0 : θ = θ0 against H1 : θ > θ0 often really means testing

H0 : θ ≤ θ0 against H1 : θ > θ0, which is natural to test in a Bayesian
setting.

Definition: The Bayes factor for testing H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1

is

Bπ(x) =
P π(θ ∈ Θ0|x)/P π(θ ∈ Θ1|x)

P π(θ ∈ Θ0)/P π(θ ∈ Θ1)
.

The Bayes factor measures the extent to which the data x will change
the odds of Θ0 relative to Θ1. If Bπ(x) > 1 the data adds support to H0.
If Bπ(x) < 1 the data adds support to H1. If Bπ(x) = 1 the data does not
help to distinguish between H0 and H1.

Note: the Bayes factor still depends on the prior π.

Special case: H0 : θ = θ0, H1 : θ = θ1, then

Bπ(x) =
f(x|θ0)

f(x|θ1)

which is the likelihood ratio.
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More generally,

Bπ(x) =

∫
Θ0
π(θ)f(x|θ)dθ∫

Θ1
π(θ)f(x|θ)dθ

/∫
Θ0
π(θ)dθ∫

Θ1
π(θ)dθ

=

∫
Θ0
π(θ)f(x|θ)/P π(θ ∈ Θ0)dθ∫

Θ1
π(θ)f(x|θ))/P π(θ ∈ Θ1)dθ

=
p(x|θ ∈ Θ0)

p(x|θ ∈ Θ1)

is the ratio of how likely the data is under H0 and how likely the data is
under H1.

Compare: the frequentist likelihood ratio is

Λ(x) =
supθ∈Θ0

f(x|θ)
supθ∈Θ1

f(x|θ)
.

Note: with φπ from the Proposition, and ρ0 = P π(θ ∈ Θ0), ρ1 = P π(θ ∈
Θ1), we obtain

Bπ(x) =
P π(θ ∈ Θ0|x)/(1− P π(θ ∈ Θ0|x))

ρ0/ρ1

and so

φπ(x) = 1 ⇐⇒ Bπ(x) >
a1

a0

/
ρ0

ρ1

.

Also, by inverting the equality it follows that

P π(θ ∈ Θ0|x) =

(
1 +

ρ1

ρ0

(Bπ(x))−1

)−1

.

Example: X ∼ Bin(n, p), H0 : p = 1/2, H1 : p 6= 1/2 Choose as prior
an atom of size ρ0 at 1/2, otherwise uniform on [0, 1]. Then

Bπ(x) =
p(x|p = 1/2)

p(x|p ∈ Θ1)
=

(
n
x

)
2−n(

n
x

)
B(x+ 1, n− x+ 1)

.
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So

P

(
p =

1

2
|x
)

=

(
1 +

(1− ρ0)

ρ0

x!(n− x)!

(n− 1)!
2n
)−1

.

If ρ0 = 1/2, n = 5, x = 3, then Bπ(x) = 15
8
> 1, and

P

(
p =

1

2
|x
)

=

(
1 +

2

120
25

)−1

=
15

23
.

The data adds support to H0, the posterior probability of H0 is 15/23 > 1/2.

Alternatively had we chosen as prior an atom of size ρ0 at 1/2, otherwise
Beta(1/2, 1/2), then this prior favours 0 and 1; for n=10 we would obtain
x P (p = 1

2
|x)

0 0.005
1 0.095
2 0.374
3 0.642
4 0.769
5 0.803

Example: X ∼ N (θ, σ2), σ2 known, H0 : θ = 0 Choose as prior: mass
ρ0 at θ = 0, otherwise ∼ N (0, τ 2). Then

(Bπ)−1 =
p(x|θ 6= 0)

p(x|θ = 0)

=
(σ2 + τ 2)−1/2 exp{−x2/(2(σ2 + τ 2))}

σ−1 exp{−x2/(2σ2)}
and

P (θ = 0|x) =

(
1 +

1− ρ0

ρ0

√
σ2

σ2 + τ 2
exp

(
τ 2x2

2σ2(σ2 + τ 2)

))−1

.

Example: ρ0 = 1/2, τ = σ, put z = x/σ

x P (θ = 0|z)
0 0.586

0.68 0.557
1.28 0.484
1.96 0.351
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For τ = 10σ (a more diffusive prior)
x P (θ = 0|z)
0 0.768

0.68 0.729
1.28 0.612
1.96 0.366

so x gives stronger support for H0 than under tighter prior.

Note: For x fixed, τ 2 →∞, ρ0 > 0, we have

P (θ = 0|x)→ 1.

For a noninformative prior π(θ) ∝ 1 we have that

p(x|π(θ) =

∫
(2πσ2)−1/2e−

(x−θ)2

2σ2 dθ = (2πσ2)−1/2

∫
e−

(θ−x)2

2σ2 dθ = 1

and so

P (θ = 0|x) =

(
1 +

1− ρ0

ρ0

√
2π exp(x2/2)

)−1

which is not equal to 1.

Lindley’s paradox: Suppose that X ∼ N (θ, σ2/n), H0 : θ = 0, n is fixed.
If x

(σ/
√
n)

is large enough to reject H0 in classical test, then for large enough

τ 2 the Bayes factor will be larger than 1, indicating support for H0.
If σ2, τ 2 are fixed, n→∞ such that x

(σ/
√
n)

= kα fixed, is just significant

at level α in classical test, then Bπ(x)→∞.

Results which are just significant at some fixed level in the classical test
will, for large n, actually be much more likely under H0 than under H1.

A very diffusive prior proclaims great scepticism, which may overwhelm
the contrary evidence of the observations.

10.3 Least favourable Bayesian answers

Suppose that we want to test H0 : θ = θ0, H1 : θ 6= θ0, and the prior
probability on H0 is ρ0 = 1/2. What is the prior g in H1, which is, after
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observing x, least favourable to H0? Let G be a family of priors on H1; put

B(x,G) = inf
g∈G

f(x|θ0)∫
Θ
f(x|θ)g(θ)dθ

and

P (x,G) =
f(x|θ0)

f(x|θ0) + supg∈G
∫

Θ
f(x|θ)g(θ)dθ

=

(
1 +

1

B(x,G)

)−1

A Bayesian prior g ∈ G on H0 will then have posterior probability at least
P (x,G) on H0 (for ρ0 = 1/2). If θ̂ is the m.l.e. of θ, GA the set of all prior
distributions, then

B(x,GA) =
f(x|θ0)

f(x|θ̂(x))

and

P (x,GA) =

(
1 +

f(x|θ̂(x))

f(x|θ0

)−1

.

Other natural families are GS, the set of distributions symmetric around θ0,
and GSU , the set of unimodal distributions symmetric around θ0.

Example: Normal, unit variance. Let X ∼ N (θ, 1), H0 : θ = θ0,
H1 : θ 6= θ0. Then

p-value P (x,GA) P (x,GSU)
0.1 0.205 0.392
0.01 0.035 0.109

The Bayesian approach will typically reject H0 less frequently.

10.4 Comparison with frequentist hypothesis

testing

In frequentist hypothesis setting, there is an asymmetry between H0, H1:
we fix type I error, then minimize the type II error. UMP tests do not
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always exist. Furthermore the concept of p-values can be confusing: they
have no intrinsic optimality, the space of p-values lacks a decision-theoretic
foundation, They are routinely misinterpreted, and they do not take the type
II error into account. Confidence regions are a pre-data measure, and can
often have very different post data coverage probabilities.

Example. Consider testing H0 : θ = θ0 against H1 : θ = θ1. Consider
repetitions in which one uses the most powerful test with level α = 0.01. In
frequentist tests: only 1% of the true H0 will be rejected. But this does not
say anything about the proportion of errors made when rejecting!

Example. Suppose in a test probability of type II error is 0.99, and θ0

and θ1 occur equally often, then about half of the rejections of H0 will be in
error.

Example: X ∼ N (θ, 1/2), H0 : θ = −1, H1 : θ = 1. We observe x = 0:
the UMP test has p-value 0.072, but the p-value for the test of H1 against
H0 takes exactly the same value.

Example: X1, . . . , Xn i.i.d. N (θ, σ2), both θ, σ2 are unknown. The
interval

C =

(
x− tα/2

s√
n
, x+ tα/2

s√
n

)
for n = 2, α = 0.5: has pre-data coverage probability 0.5. However, Brown
(Ann.Math.Stat. 38, 1967, 1068-1071) showed that

P (θ ∈ C||x|/s < 1 +
√

2) > 2/3.

The Bayesian approach compares the ”probability” of the actual data
under the two hypotheses.
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Chapter 11

Hierarchical and empirical
Bayesian methods

A hierarchical Bayesian model consists of modelling a parameter θ through
randomness at different levels; for example,

θ|β ∼ π1(θ|β), where β ∼ π2(β);

so that then π(θ) =
∫
π1(θ|β)π2(β)dβ.

When dealing with complicated posterior distributions, rather than eval-
uating the integrals, we might use simulation to approximate the integrals.
For simulation in hierarchical models, we simulate first from β, then, given
β, we simulate from θ. We hope that the distribution of β is easy to simulate,
and also that the conditional distribution of θ given β is easy to simulate.
This approach is particularly useful for MCMC (Markov chain Monte Carlo)
methods, e.g.: see next term.

Let x ∼ f(x|θ). The empirical Bayes method chooses a convenient prior
family π(θ|λ) (typically conjugate), where λ is a hyperparameter, so that

p(x|λ) =

∫
f(x|θ)π(θ|λ)dθ.

Rather than specifying λ, we estimate λ by λ̂, for example by frequentist
methods, based on p(x|λ), and we substitute λ̂ for λ;

π(θ|x, λ̂)
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is called a pseudo-posterior. We plug it into Bayes’ Theorem for inference.

The empirical Bayes approach is neither fully Bayesian nor fully frequentist.
It depends on λ̂; different λ̂ will lead to different procedures. If λ̂ is consistent,
then asymptotically it will lead to a coherent Bayesian analysis. It often
outperforms classical estimators in empirical terms.

Example: James-Stein estimators Let Xi ∼ N (θi, 1) be independent
given θi, i = 1, . . . , p,where p ≥ 3. In vector notation: X ∼ N (θ, Ip). Here
the vector θ is random; assume that we have realizations θi, i = 1, . . . , p.
The obvious estimate for θi is θ̂i = xi, leading to

θ̂ = X.

Assume that θi ∼ N (0, τ 2), then p(x|τ 2) = N (0, (1+τ 2)Ip), and the posterior
for θ given the data is

θ|x ∼ N
(

τ 2

1 + τ 2
x,

1

1 + τ 2
Ip

)
.

Under quadratic loss, the Bayes estimator δ(x) of θ is the posterior mean

τ 2

1 + τ 2
x.

In the empirical Bayes approach, we would use the m.l.e. for τ 2, which is

τ̂ 2 =

(
‖ x ‖2

p
− 1

)
1(‖ x ‖2> p),

where ‖ x ‖2=
∑

i x
2
i . The empirical Bayes estimator is the estimated poste-

rior mean,

δEB(x) =
τ̂ 2

1 + τ̂ 2
x =

(
1− p

‖ x ‖2

)+

x

is the truncated James-Stein estimator. It can can be shown to outperform
the estimator δ(x) = x.

Alternatively, the best unbiased estimator of 1/(1 + τ 2) is p−2
‖x‖2 , giving

δEB(x) =

(
1− p

‖ x ‖2

)
x.
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This is the James-Stein estimator. It can be shown that under quadratic loss
function the James-Stein estimator outperforms δ(x) = x.

Note: both estimators tend to ”shrink” towards 0. It is now known to be
a very general phenomenon that when comparing three or more populations,
the sample mean is not the best estimator. Shrinkage estimators are an active
area of research.

Bayesian computation of posterior probabilities can be very computer-
intensive; see the MCMC and Applied Bayesian Statistics course.
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Part IV

Principles of Inference
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The Likelihood Principle

The Likelihood Principle states that the information brought by an ob-
servation x about θ is entirely contained in the likelihood function L(θ|x).
From this follows that, if if x1 and x2 are two observations with likelihoods
L1(θ|x) and L2(θ|x), and if

L1(θ|x) = c(x1, x2)L2(θ|x)

then x1 and x2 must lead to identical inferences.

Example. We know that π(θ|x) ∝ f(x|θ)π(θ). If f1(x|θ) ∝ f2(x|θ) as a
function of θ, then they have the same posterior, so they lead to the same
Bayesian inference.

Example: Binomial versus negative binomial. (a) LetX ∼ Bin(n, θ)
be the number of successes in n independent trials, with p.m.f.

f1(x|θ) =

(
n

x

)
θx(1− θ)n−x

then

π(θ|x) ∝
(
n

x

)
θx(1− θ)n−xπ(θ) ∝ θx(1− θ)n−xπ(θ).

(b) Let N ∼ NegBin(x, θ) be the number of independent trials until x
successes, with p.m.f.

f2(n|θ) =

(
n− 1

x− 1

)
θx(1− θ)n−x

and
π(θ|x) ∝ θx(1− θ)n−xπ(θ).

Bayesian inference about θ does not depend on whether a binomial or a
negative binomial sampling scheme was used.

M.l.e.’s satisfy the likelihood principle, but many frequentist procedures
do not!

Example: Bin(n, θ)-sampling. We observe (x1, . . . , xn) = (0, . . . , 0, 1).
An unbiased estimate for θ is θ̂ = 1/n. If instead we view n as geometric(θ),
then the only unbiased estimator for θ is θ̂ = 1(n = 1).
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Unbiasedness typically violates the likelihood principle: it involves inte-
grals over the sample space, so it depends on the value of f(x|θ) for values
of x other than the observed value.

Example: (a) We observe a Binomial randome variable, n=12; we ob-
serve 9 heads, 3 tails. Suppose that we want to test H0 : θ = 1/2 against
H1 : θ > 1/2. We can calculate that the UMP test has P (X ≥ 9) = 0.075.
(b) If instead we continue tossing until 3 tails recorded, and observe that
N = 12 tosses are needed, then the underlying distribution is negative bino-
mial, and P (N ≥ 12) = 0.0325.

The conditionality perspective

Example (Cox 1958). A scientist wants to measure a physical quantity θ.
Machine 1 gives measurements X1 ∼ N (θ, 1), but is often busy. Machine 2
gives measurements X1 ∼ N (θ, 100). The availability of machine 1 is beyond
the scientist’s control, independent of object to be measured. Assume that
on any given occasion machine 1 is available with probability 1/2; if available,
the scientist chooses machine 1. A standard 95% confidence interval is about
(x− 16.4, x+ 16.4) because of the possibility that machine 2 was used.

Conditionality Principle: If two experiments on the parameter θ are avail-
able, and if one of these two experiments is selected with probability 1/2, then
the resulting inference on θ should only depend on the selected experiment.

The conditionality principle is satisfied in Bayesian analysis. In the fre-
quentist approach, we could condition on an ancillary statistic, but such
statistic is not always available.

A related principle is the Stopping rule principle (SRP): A it stopping
rule is a random variable that tells when to stop the experiment; this random
variable depends only on the outcome of the first n experiments (does not
look into the future). The stopping rule principle states that if a sequence of
experiments is directed by a stopping rule, then, given the resulting sample,
the inference about θ should not depend on the nature of the stopping rule.

The likelihood principle implies the SRP. The SRP is satisfied in Bayesian
inference, but it is not always satisfied in frequentist analysis.
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