
Part III

A Decision-Theoretic Approach
and Bayesian testing
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Chapter 10

Bayesian Inference as a
Decision Problem

The decision-theoretic framework starts with the following situation. We
would like to choose between various possible actions after observing data.
Let Θ denote the set of all possible states of nature (values of parameter),
and let D denote the set of all possible decisions (actions). A loss function
is any function

L : Θ×D → [0,∞);

the idea is that L(θ, d) gives the cost (penalty) associated with decision d if
the true state of the world is θ.

10.1 Inference as a decision problem

Denote by f(x, θ) the sampling distribution, for a sample x ∈ X . Let L(θ, δ)
be our loss function. Often the decision d is to evaluate or estimate a function
h(θ) as accurately as possible.

For point estimation, we want to evaluate h(θ) = θ; our set of decisions
is D = Θ, the parameter space; and L(θ, d) is the loss in reporting d when θ
is true.

For hypothesis testing, if we want to test H0 : θ ∈ Θ0, then our possible
decisions are

D = {accept H0, reject H0}.
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We would like to evaluate the function

h(θ) =

{
1 if θ ∈ Θ0

0 otherwise

as accurately as possible. Our loss function is

L(θ, accept H0) =

{
`00 if θ ∈ Θ0

`01 otherwise

L(θ, reject H0) =

{
`10 if θ ∈ Θ0

`11 otherwise .

Note: `01 is the Type II-error, (accept H0 although false), and `10 is the Type
I-error (reject H0 although true).

10.2 Decision rules and Bayes estimators

In general we would like to find a decision rule: δ : X → D, a function which
makes a decision based on the data. We would like to choose δ such that we
incur only a ”small” loss. In general there is no δ that uniformly mimimizes
L(θ, δ(x)).

In a Bayesian setting, for a prior π and data x ∈ X , the posterior expected
loss of a decision is a function of the data x, defined as

ρ(π, d|x) =

∫
Θ

L(θ, d)π(θ|x)dθ.

For a prior π the integrated risk of a decision rule δ is the real number defined
as

r(π, δ) =

∫
Θ

∫
X

L(θ, δ(x)f(x|θ)dxπ(θ)dθ.

We prefer δ1 to δ2 if and only if r(π, δ1) < r(π, δ2).

Proposition. An estimator minimizing r(π, δ) can be obtained by se-
lecting, for every x ∈ X , the value δ(x) that minimizes ρ(π, δ|x).
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Proof (additional material)

r(π, δ) =

∫
Θ

∫
X

L(θ, δ(x))f(x|θ)dxπ(θ)dθ

=

∫
X

∫
Θ

L(θ, δ(x))π(θ|x)p(x)dθdx =

∫
X

ρ(π, δ|x)p(x)dx

(Recall that p(x) =
∫

Θ
f(x|θ)π(θ)dθ).) This proves the assertion.

A Bayes estimator associated with prior π, loss L, is any estimator δπ

which minimizes r(π, δ): For every x ∈ X it is

δπ = arg min
d

ρ(π, d|x).

Then r(π) = r(π, δπ) is called Bayes risk. This is valid for proper priors, and
for improper priors if r(π) < ∞. If r(π) = ∞ one can define a generalized
Bayes estimator as the minimizer, for every x, of ρ(π, d|x).

Fact: For strictly convex loss functions, Bayes estimators are unique.

10.3 Some common loss functions

In principle the loss function is part of the problem specification.

A very popular choice is squared error loss L(θ, d) = (θ − d)2. This loss
function is convex, and penalizes large deviations heavily.

Proposition. The Bayes estimator δπ associated with prior π under
squared error loss is the posterior mean,

δπ(x) = Eπ(θ|x) =

∫
Θ

θf(x|θ)π(θ)dθ∫
Θ

f(x|θ)π(θ)dθ
.

To see this, recall that for any random variable Y , E((Y − a)2) is mini-
mized by a = EY .

Another common choice for the loss function is absolute error loss L(θ, d) =
|θ − d|.

Proposition: The posterior median is a Bayes estimator under absolute
error loss.
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10.4 Bayesian testing

Let f(x, θ) be our sampling distribution, x ∈ X , θ ∈ Θ, and suppose that
we cant to test H0 : θ ∈ Θ0. Then the set of possible decisions is D =
{accept H0, reject H0} = {1, 0}, where 1 stands for acceptance. We use the
loss function

L(θ, φ) =


0 if θ ∈ Θ0, φ = 1
a0 if θ ∈ Θ0, φ = 0
0 if θ 6∈ Θ0, φ = 0
a1 if θ 6∈ Θ0, φ = 1.

Proposition Under this loss function, the Bayes decision rule associated
with a prior distribution π is

φπ(x) =

{
1 if P π(θ ∈ Θ0|x) > a1

a0+a1

0 otherwise

Note: In the special case that a0 = a1, the rule states that we accept H0

if P π(θ ∈ Θ0|x) > 1
2
.

Proof (additional material) The posterior expected loss is

ρ(π, φ|x) = a0P
π(θ ∈ Θ0|x)1(φ(x) = 0) + a1P

π(θ 6∈ Θ0|x)1(φ(x) = 1)

= a0P
π(θ ∈ Θ0|x) + 1(φ(x) = 1) (a1 − (a0 + a1)P

π(θ ∈ Θ0|x)) ,

and a1 − (a0 + a1)P
π(θ ∈ Θ0|x) < 0 if and only if P π(θ ∈ Θ0|x) > a1

a0+a1
.

Example: X ∼ Bin(n, θ), Θ0 = [0, 1/2), π(θ) = 1; then

P π

(
θ <

1

2
|x
)

=

∫ 1
2

0
θx(1− θ)n−xdθ∫ 1

0
θx(1− θ)n−xdθ

=

(
1
2

)n+1

B(x + 1, n− x + 1)

{
1

x + 1
+ . . . +

(n− x)!x!

(n + 1)!

}
,

which can be evaluated for particular n and x, and compared with the ac-
ceptance level a1

a0+a1
.
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Example: X ∼ N (θ, σ2), σ2 is known, θ ∼ N (µ, τ 2). We already calcu-
lated

π(θ|x) ∼ N (µ(x), w2)

µ(x) =
σ2µ + τ 2x

σ2 + τ 2

w2 =
σ2τ 2

σ2 + τ 2
.

To test H0 : θ < 0:

P π(θ < 0|x) = P π

(
θ − µ(x)

w
< −µ(x)

w

)
= Φ

(
−µ(x)

w

)
Let za0,a1 be the a1

a0+a1
quantile; then we accept H0 if −µ(x) > za0,a1w, or,

equivalently, if

x < −σ2

τ 2
µ−

(
1 +

σ2

τ 2

)
za0,a1w.

For σ2 = 1, µ = 0, τ 2 →∞, we accept H0 if x < −za0,a1 .

Compare this to the frequentist test: Agian σ2 = 1. Accept H0 if x <
z1−α = −zα. This corresponds to a0

a1
= 1

α
− 1. So a0

a1
= 19 for α = 0.05, and

a0

a1
= 99 for α = 0.01, for example.

Note:

• If the prior probability of H0 is 0, then so will be posterior probability.

• Testing H0 : θ = θ0 against H1 : θ > θ0 often really means testing
H0 : θ ≤ θ0 against H1 : θ > θ0, which is natural to test in a Bayesian
setting.

Definition: The Bayes factor for testing H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1

is

Bπ(x) =
P π(θ ∈ Θ0|x)/P π(θ ∈ Θ1|x)

P π(θ ∈ Θ0)/P π(θ ∈ Θ1)
.

It measures the extent to which the data x will change the odds of Θ0 relative
to Θ1.
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If Bπ(x) > 1 the data adds support to H0; if Bπ(x) < 1 the data adds
support to H1; if Bπ(x) = 1 the data does not help to distinguish between
H0 and H1.

Note that the Bayes factor still depends on the prior π.

Special case: If H0 : θ = θ0, H1 : θ = θ1, then

Bπ(x) =
f(x|θ0)

f(x|θ1)

is the likelihood ratio.

More generally,

Bπ(x) =

∫
Θ0

π(θ)f(x|θ)dθ∫
Θ1

π(θ)f(x|θ)dθ

/∫
Θ0

π(θ)dθ∫
Θ1

π(θ)dθ

=

∫
Θ0

π(θ)f(x|θ)/P π(θ ∈ Θ0)dθ∫
Θ1

π(θ)f(x|θ))/P π(θ ∈ Θ1)dθ

=
p(x|θ ∈ Θ0)

p(x|θ ∈ Θ1)

is the ratio of how likely the data is under H0 and how likely the data is
under H1.

Compare this to the frequentist likelihood ratio

Λ(x) =
maxθ∈Θ0 f(x|θ)
maxθ∈Θ1 f(x|θ)

.

In Bayesian statistics we average instead of taking maxima.

Note: with φπ from the Proposition, and ρ0 = P π(θ ∈ Θ0), ρ1 = P π(θ ∈
Θ1),

Bπ(x) =
P π(θ ∈ Θ0|x)/(1− P π(θ ∈ Θ0|x))

ρ0/ρ1

and so

φπ(x) = 1 ⇐⇒ Bπ(x) >
a1

a0

/
ρ0

ρ1

.
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Also, by inverting the equality it follows that

P π(θ ∈ Θ0|x) =

(
1 +

ρ1

ρ0

(Bπ(x))−1

)−1

.

Example: Let X ∼ Bin(n, p), H0 : p = 1/2, H1 : p 6= 1/2. Choose as
prior an atom of size ρ0 at 1/2, otherwise uniform; then

Bπ(x) =
p(x|p = 1/2)

p(x|p ∈ Θ1)
=

(
n
x

)
2−n(

n
x

)
B(x + 1, n− x + 1)

.

So

P

(
p =

1

2
|x
)

=

(
1 +

(1− ρ0)

ρ0

x!(n− x)!

(n− 1)!
2n

)−1

.

If ρ0 = 1/2, n = 5, x = 3: Bπ(x) = 15
8

> 1, then

P

(
p =

1

2
|x
)

=

(
1 +

2

120
25

)−1

=
15

23
;

so the data adds support to H0, the posterior probability of H0 is 15/23 >
1/2.

We could have chosen an alternatively prior: atom of size ρ0 at 1/2,
otherwise Beta(1/2, 1/2); this prior favours 0 and 1. Then we obtain for
n=10:
x P (p = 1

2
|x)

0 0.005
1 0.095
2 0.374
3 0.642
4 0.769
5 0.803

Example: Let X ∼ N (θ, σ2), σ2 is known, H0 : θ = 0. We choose as
prior mass ρ0 at θ = 0, otherwise ∼ N (0, τ 2). Then

(Bπ)−1 =
p(x|θ 6= 0)

p(x|θ = 0)
=

(σ2 + τ 2)−1/2 exp{−x2/(2(σ2 + τ 2))}
σ−1 exp{−x2/(2σ2)}
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and

P (θ = 0|x) =

(
1 +

1− ρ0

ρ0

√
σ2

σ2 + τ 2
exp

(
τ 2x2

2σ2(σ2 + τ 2)

))−1

.

Example: ρ0 = 1/2, τ = σ, put z = x/σ

x P (θ = 0|z)
0 0.586

0.68 0.557
1.28 0.484
1.96 0.351

For τ = 10σ (more diffusive prior)
x P (θ = 0|z)
0 0.768

0.68 0.729
1.28 0.612
1.96 0.366

so x gives stronger support for H0 than under the tighter

prior.

Note: For x fixed, τ 2 →∞, ρ0 > 0, we have

P (θ = 0|x) → 1.

For the noninformative prior π(θ) ∝ 1 we have that

p(x|π(θ) =

∫
(2πσ2)−1/2e−

(x−θ)2

2σ2 dθ

= (2πσ2)−1/2

∫
e−

(θ−x)2

2σ2 dθ

= 1

and so

P (θ = 0|x) =

(
1 +

1− ρ0

ρ0

√
2π exp(x2/2)

)−1

which is not equal to 1.
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Lindley’s paradox: Let X ∼ N (θ, σ2/n), H0 : θ = 0, n is fixed. If x
(σ/

√
n)

is large enough to reject H0 in classical test, then for large enough τ 2 the
Bayes factor will be larger than 1, indicating support for H0.

In contrast, if σ2, τ 2 are fixed, and n → ∞ such that x
(σ/

√
n)

= kα fixed,

which is just significant at level α in classical test, then Bπ(x) →∞.

Results which are just significant at some fixed level in the classical test
will, for large n, actually be much more likely under H0 than under H1.

A very diffusive prior proclaims great scepticism, which may overwhelm
the contrary evidence of the observations.

10.4.1 Least favourable Bayesian answers

The choice of prior affects the result. Suppose that we want to test H0 : θ = θ0

against H1 : θ 6= θ0, and the prior probability on H0 is ρ0 = 1/2. Which
prior g in H1, after observing x, would be least favourable to H0?

Let G be a family of priors on H1; put

B(x, G) = inf
g∈G

f(x|θ0)∫
Θ

f(x|θ)g(θ)dθ

and

P (x, G) =
f(x|θ0)

f(x|θ0) + supg∈G

∫
Θ

f(x|θ)g(θ)dθ
=

(
1 +

1

B(x, G)

)−1

A Bayesian prior g ∈ G on H0 will then have posterior probability at least
P (x, G) on H0 (for ρ0 = 1/2).

If θ̂ is the m.l.e. of θ, and if GA is the set of all prior distributions, then

B(x, GA) =
f(x|θ0)

f(x|θ̂(x))

and

P (x, GA) =

(
1 +

f(x|θ̂(x))

f(x|θ0

)−1
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Other natural families are GS the set of distributions symmetric around θ0,
and GSU the set of unimodal distributions symmetric around θ0.

Example: Let X ∼ N (θ, 1), H0 : θ = θ0, H1 : θ 6= θ0, then we can
calculate

p-value P (x, GA) P (x, GSU)
0.1 0.205 0.392
0.01 0.035 0.109

The Bayesian approach will typically reject H0 less frequently than the
frequentist approach

Consider the general test problem H0 : θ = θ0 against H1 : θ = θ1,
and consider repetitions in which one uses the most powerful test with level
α = 0.01. In frequentist analysis, only 1% of the true H0 will be rejected.
But this does not say anything about the proportion of errors made when
rejecting!

Example: Suppose the probability of type II error is 0.99, and θ0 and θ1

occur equally often, then about half of the rejections of H0 will be in error.

10.4.2 Comparison with frequentist hypothesis testing

Frequentist hypothesis testing:

• Asymmetry between H0, H1: fix type I error, minimize type II error;

• UMP tests do not always exist (general 2-sided tests, e.g.);

• p-values:
- have no intrinsic optimality, space of p-values lacks a decision-theoretic
foundation
- are routinely misinterpreted
- do not take type II error into account;

• confidence regions: are a pre-data measure, can often have very differ-
ent post data coverage probabilities.
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Example: Let X ∼ N (θ, 1/2), H0 : θ = −1, H1 : θ = 1, and suppose
that x = 0. Then the UMP p-value is 0.072, but the p-value for the test of
H1 against H0 takes exactly the same value.

Example: Let X1, . . . , Xn be i.i.d. N (θ, σ2), both θ, σ2 are unknown.
Then a 100(1− α) confidence for θ is

C =

(
x− tα/2

s√
n

, x + tα/2
s√
n

)
.

For n = 2, α = 0.5, the predata coverage probability is 0.5. However, Brown
(Ann.Math.Stat. 38, 1967, 1068-1071) showed that

P (θ ∈ C||x|/s < 1 +
√

2) > 2/3.

Bayesian testing compares the ”probability” of the actual data under the
two hypotheses
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Chapter 11

Hierarchical and empirical
Bayesian methods

11.1 Hierarchical Bayes:

A hierarchical model consists of modelling a parameter θ through randomness
at different levels; for example,

θ|β ∼ π1(θ|β), where β ∼ π2(β);

so that then π(θ) =
∫

π1(θ|β)π2(β)dβ.

When dealing with complicated posterior distributions, rather than eval-
uating the integrals, we might use simulation to approximate the integrals.

For simulation in hierarchical models, we simulate first from β, then,
given β, we simulate from θ. We hope that the distribution of β is easy
to simulate, and also that the conditional distribution of θ given β is easy
to simulate. This approach is particularly useful for MCMC (Markov chain
Monte Carlo) methods, e.g.: see next term.

11.2 Empirical Bayes:

Let x ∼ f(x|θ). The empirical Bayes method chooses a convenient prior
family π(θ|λ) (typically conjugate), where λ is a hyperparameter, so

p(x|λ) =

∫
f(x|θ)π(θ|λ)dθ.

13



Rather than specifying λ, we estimate λ by λ̂, for example by frequentist
methods, based on p(x|λ), and we substitute λ̂ for λ;

π(θ|x, λ̂)

is called a pseudo-posterior. We plug it into Bayes’ Theorem for inference.

The empirical Bayes approach
* is neither fully Bayesian nor fully frequentist;
* depends on λ̂, different λ̂ will lead to different procedures;
* if λ̂ is consistent, then asymptotically will lead to coherent Bayesian anal-
ysis.
* often outperforms classical estimators in empirical terms.

Example: James-Stein estimators
Let Xi ∼ N (θi, 1) be independent given θi, i = 1, . . . , p,where p ≥ 3. In

vector notation: X ∼ N (θ, Ip). Here the vector θ is random; assume that
we have realizations θi, i = 1, . . . , p. The obvious estimate (which is the
least-squares estimate) for θi is θ̂i = xi, leading to

θ̂ = X.

Abbreviate X = x. Our decision rule would hence be δ(x) = x. But this is
not the best rule!

Assume that θi ∼ N (0, τ 2), then p(x|τ 2) = N (0, (1 + τ 2)Ip), and the
posterior for θ given the data is

θ|x ∼ N
(

τ 2

1 + τ 2
x,

1

1 + τ 2
Ip

)
.

Under quadratic loss, the Bayes estimator δ(x) of θ is the posterior mean

τ 2

1 + τ 2
x.

In the empirical Bayes approach, we would use the m.l.e. for τ 2, which is

τ̂ 2 =

(
‖ x ‖2

p
− 1

)
1(‖ x ‖2> p),
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and the empirical Bayes estimator is the estimated posterior mean,

δEB(x) =
τ̂ 2

1 + τ̂ 2
x =

(
1− p

‖ x ‖2

)+

x

is the truncated James-Stein estimator. It can can be shown to outperform
the estimator δ(x) = x.

Alternatively, the best unbiased estimator of 1/(1 + τ 2) is p−2
‖x‖2 , giving

δEB(x) =

(
1− p

‖ x ‖2

)
x.

This is the James-Stein estimator. It can be shown that under quadratic loss
function the James-Stein estimator has smaller integrated risk than δ(x) = x.

Note: both estimators tend to ”shrink” towards 0. It is now known to be
a very general phenomenon that when comparing three or more populations,
the sample mean is not the best estimator. ”Shrinkage” estimators are an
active area of research.

Bayesian computation of posterior probabilities can be very computer-
intensive; see the MCMC and Applied Bayesian Statistics course.
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Chapter 12

Principles of Inference

12.1 The Likelihood Principle

The Likelihood Principle: The information brought by an observation x about
θ is entirely contained in the likelihood function L(θ|x).

From this follows: if x1 and x2 are two observations with likelihoods
L1(θ|x) and L2(θ|x), and if

L1(θ|x) = c(x1, x2)L2(θ|x)

then x1 and x2 must lead to identical inferences.
Example. We know that π(θ|x) ∝ f(x|θ)π(θ). If f1(x|θ) ∝ f2(x|θ) as a

function of θ, then they have the same posterior, so they lead to the same
Bayesian inference.

Example: Binomial versus negative binomial. (a) Let X ∼ Bin(n, θ)
be the number of successes in n independent trials, with p.m.f.

f1(x|θ) =

(
n

x

)
θx(1− θ)n−x

then

π(θ|x) ∝
(

n

x

)
θx(1− θ)n−xπ(θ)

∝ θx(1− θ)n−xπ(θ).
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(b) Let N ∼ NegBin(x, θ) be the number of independent trials until x
successes, with p.m.f.

f2(n|θ) =

(
n− 1

x− 1

)
θx(1− θ)n−x

and

π(θ|x) ∝ θx(1− θ)n−xπ(θ).

Bayesian inference about θ does not depend on whether a binomial or a
negative binomial sampling scheme was used.

M.l.e.’s satisfy the likelihood principle, but many frequentist procedures
do not!

Example: Bin(n, θ)-sampling. We observe (x1, . . . , xn) = (0, . . . , 0, 1).
An unbiased estimate for θ is θ̂ = 1/n. If instead we view n as geometric(θ),
then the only unbiased estimator for θ is θ̂ = 1(n = 1).

Unbiasedness typically violates the likelihood principle: it involves inte-
grals over the sample space, so it depends on the value of f(x|θ) for values
of x other than the observed value.

Example: (a) We observe a Binomial randome variable, n=12; we ob-
serve 9 heads, 3 tails. Suppose that we want to test H0 : θ = 1/2 against
H1 : θ > 1/2. We can calculate that the UMP test has P (X ≥ 9) = 0.075.
(b) If instead we continue tossing until 3 tails recorded, and observe that
N = 12 tosses are needed, then the underlying distribution is negative bino-
mial, and P (N ≥ 12) = 0.0325.

12.2 The conditionality perspective

Example (Cox 1958) A scientist wants to measure a physical quantity θ.
Machine 1 gives measurements X1 ∼ N (θ, 1), but is often busy. Machine 2
gives measurements X1 ∼ N (θ, 100). The availability of machine 1 is beyond
the scientist’s control, independent of object to be measured. Assume that
on any given occasion machine 1 is available with probability 1/2; if available,
the scientist chooses machine 1.
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A standard 95% confidence interval is about (x− 16.4, x + 16.4) because
of the possibility that machine 2 was used.

Conditionality Principle: If two experiments on the parameter θ are avail-
able, and if one of these two experiments is selected with probability 1/2, then
the resulting inference on θ should only depend on the selected experiment.

The conditionality principle is satisfied in Bayesian analysis. In the fre-
quentist approach, we could condition on an ancillary statistic, but such
statistic is not always available.

A related principle is the Stopping rule principle (SRP): A it stopping
rule is a random variable that tells when to stop the experiment; this random
variable depends only on the outcome of the first n experiments (does not
look into the future). The stopping rule principle states that if a sequence of
experiments is directed by a stopping rule, then, given the resulting sample,
the inference about θ should not depend on the nature of the stopping rule.

The likelihood principle implies the SRP. The SRP is satisfied in Bayesian
inference, but it is not always satisfied in frequentist analysis.
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