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Aim: To review and extend the main ideas in Statistical Inference, both
from a frequentist viewpoint and from a Bayesian viewpoint. This course
serves not only as background to other courses, but also it will provide a
basis for developing novel inference methods when faced with a new situation
which includes uncertainty. Inference here includes estimating parameters
and testing hypotheses.

Overview

• Part 1: Frequentist Statistics

– Chapter 1: Likelihood, sufficiency and ancillarity. The Factoriza-
tion Theorem. Exponential family models.

– Chapter 2: Point estimation. When is an estimator a good estima-
tor? Covering bias and variance, information, efficiency. Methods
of estimation: Maximum likelihood estimation, nuisance parame-
ters and profile likelihood; method of moments estimation. Bias
and variance approximations via the delta method.

– Chapter 3: Hypothesis testing. Pure significance tests, signifi-
cance level. Simple hypotheses, Neyman-Pearson Lemma. Tests
for composite hypotheses. Sample size calculation. Uniformly
most powerful tests, Wald tests, score tests, generalized likelihood
ratio tests. Multiple tests, combining independent tests.

– Chapter 4: Interval estimation. Confidence sets and their con-
nection with hypothesis tests. Approximate confidence intervals.
Prediction sets.

– Chapter 5: Asymptotic theory. Consistency. Asymptotic nor-
mality of maximum likelihood estimates, score tests. Chi-square
approximation for generalized likelihood ratio tests. Likelihood
confidence regions. Pseudo-likelihood tests.

• Part 2: Bayesian Statistics

– Chapter 6: Background. Interpretations of probability; the Bayesian
paradigm: prior distribution, posterior distribution, predictive
distribution, credible intervals. Nuisance parameters are easy.
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– Chapter 7: Bayesian models. Sufficiency, exchangeability. De
Finetti’s Theorem and its intepretation in Bayesian statistics.

– Chapter 8: Prior distributions. Conjugate priors. Noninformative
priors; Jeffreys priors, maximum entropy priors posterior sum-
maries. If there is time: Bayesian robustness.

– Chapter 9: Posterior distributions. Interval estimates, asymp-
totics (very short).

• Part 3: Decision-theoretic approach:

– Chapter 10: Bayesian inference as a decision problem. Deci-
sion theoretic framework: point estimation, loss function, deci-
sion rules. Bayes estimators, Bayes risk. Bayesian testing, Bayes
factor. Lindley’s paradox. Least favourable Bayesian answers.
Comparison with classical hypothesis testing.

– Chapter 11: Hierarchical and empirical Bayes methods. Hierar-
chical Bayes, empirical Bayes, James-Stein estimators, Bayesian
computation.

• Chapter 12: Principles of inference. The likelihood principle. The
conditionality principle. The stopping rule principle.

Books

1. Bernardo, J.M. and Smith, A.F.M. (2000) Bayesian Theory. Wiley.

2. Casella, G. and Berger, R.L. (2002) Statistical Inference. Second Edi-
tion. Thomson Learning.

3. Cox, D.R. and Hinkley, D.V. (1974) Theoretical Statistics. Chapman
and Hall.

4. Garthwaite, P.H., Joliffe, I.T. and Jones, B. (2002) Statistical Inference.
Second Edition. Oxford University Press.

5. Leonard, T. and Hsu, J.S.J. (2001) Bayesian Methods. Cambridge
University Press.
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6. Lindgren, B.W. (1993) Statistical Theory. 4th edition. Chapman and
Hall.

7. O’Hagan, A. (1994) Kendall’s Advanced Theory of Statistics. Vol 2B,
Bayesian Inference. Edward Arnold.

8. Young, G.A. and Smith, R.L. (2005) Essential of Statistical Inference.
Cambridge University Press.

Lectures: Mondays 10-11 and Wednesdays 10-11.

There will be four problem sheets.
Examples classes: Fridays 12-1 weeks 2, 4, 6, and 8.

While the examples classes will cover problems from the problem sheets,
there may not be enough time to cover all the problems. You will benefit
most from the examples classes if you (attempt to) solve the problems on the
sheet ahead of the examples classes.

You are invited to hand in your work on the respective problem sheets on
Wednesdays at 5 pm in weeks 2, 4, 6, and 8. Your marker is Yuqiang Zhou;
there will be a folder at the departmental pigeon holes.

A condensed version of the slides will be published at
www.stats.ox.ac.uk/ reinert/stattheory/stattheory.htm.
The lecture notes may cover more material than the lectures.
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Part I

Frequentist Statistics
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Chapter 1

1. Likelihood, sufficiency and
ancillarity

Data x1, x2, . . . , xn → inference about parameter θ
Model: x1, x2, . . . , xn realisations of random variables X1, X2, . . . , Xn

Often: X1, X2, . . . , Xn independent, identically distributed (i.i.d.) from some
fX(x, θ) (probability density or probability mass function). We then say
x1, x2, . . . , xn is a random sample of size n from fX(x, θ) (or, shorter, from
f(x, θ))

1.1 Likelihood

If X1, X2, . . . , Xn i.i.d. ∼ f(x, θ), then joint density at x = (x1, . . . , xn) is

f(x, θ) =
n∏
i=1

f(xi, θ)

Inference about θ given the data:

Likelihood function L(θ,x) = f(x, θ); often abbreviated by L(θ)

If i.i.d.: L(θ,x) =
∏n

i=1 f(xi, θ)

Often more convenient: log likelihood `(θ,x) = logL(θ,x) (or, shorter, `(θ))
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Example: Normal distribution
x1, . . . , xn random sample from N (µ, σ2), where both µ and σ2 unknown

parameters, µ ∈ R, σ2 > 0. With θ = (µ, σ2),

L(θ) =
∏n

i=1(2πσ
2)−1/2 exp

{
− 1

2σ2 (xi − µ)2
}

= (2πσ2)−n/2 exp
{
− 1

2σ2

∑n
i=1(xi − µ)2

}
and

`(θ) = −n
2

log(2π)− n log σ − 1

2σ2

n∑
i=1

(xi − µ)2

Example: Poisson distribution
x1, . . . , xn random sample from Poisson(θ), unknown θ > 0

L(θ) =
n∏
i=1

(
e−θ

θxi

xi!

)
= e−nθθ

∑n
i=1 xi

n∏
i=1

(xi!)
−1

and

`(θ) = −nθ + log(θ)
n∑
i=1

xi −
n∑
i=1

log(xi!)

1.2 Sufficiency

Any function T of X is a statistic.

Examples: the sample mean, the sample median, the actual data.

Usually we would think of a statistic as being some summary of the data, so
smaller in dimension than the original data.

A statistic is sufficient for the parameter θ if it contains all information about
θ that is available from the data: L(X|T ), the conditional distribution of X
given T , does not depend on θ.
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Factorisation Theorem (Casella + Berger, p.250)
T = t(X) is sufficient for θ if and only if there exists functions g(t, θ) and

h(x) such that for all x and θ

f(x, θ) = g(t(x), θ)h(x).

Example: Bernoulli distribution. X1, . . . , Xn i.i.d. Be(θ), so f(x, θ) =
θx(1− θ)1−x; T =

∑n
i=1Xi number of successes. Recall: T ∼ Bin(n, θ);

P (T = t) =

(
n

t

)
θt(1− θ)n−t, t = 0, 1, . . . , n.

Then

P (X1 = x1, . . . , Xn = xn|T = t) = 0 for
n∑
i=1

xi 6= t,

and for
∑n

i=1 xi = t,

P (X1 = x1, . . . , Xn = xn|T = t) =
P (X1 = x1, . . . , Xn = xn)

P (T = t)

=

∏n
i=1

(
θxi(1− θ)(1−xi)

)(
n
t

)
θt(1− θ)n−t

=
θt(1− θ)n−t(
n
t

)
θt(1− θ)n−t

=

(
n

t

)−1

is independent of θ, so T is sufficient for θ

Alternatively: the Factorisation Theorem gives

f(x, θ) =
n∏
i=1

(
θxi(1− θ)(1−xi)

)
= θ

∑n
i=1 xi(1− θ)n−

∑n
i=1 xi

= g(t(x), θ)h(x)

with t =
∑n

i=1 xi; g(t, θ) = θt(1− θ)n−t and h(x) = 1, so T is sufficient for θ
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Example: Normal distribution
X1, . . . , Xn i.i.d. ∼ N (µ, σ2); put x = 1

n

∑n
i=1 xi and s2 = 1

n−1

∑n
i=1(xi −

x)2, then

f(x, θ) = (2πσ2)−n/2 exp

{
− 1

2σ2

n∑
i=1

(xi − µ)2

}

= exp

{
−n(x− µ)2

2σ2

}
(2πσ2)−

n
2 exp

{
−(n− 1)s2

2σ2

}
σ2 known: θ = µ, t(x) = x, and g(t, µ) = exp

{
−n(x−µ)2

2σ2

}
, so X is sufficient

σ2 unknown: θ = (µ, σ2), and f(x, θ) = g(x, s2, θ), so (X,S2) is sufficient

Example: Poisson distribution
x1, . . . , xn random sample from Poisson(θ), unknown θ > 0

L(θ) = e−nθθ
∑n

i=1 xi

n∏
i=1

(xi!)
−1.

Then

t(x) =

g(t, θ) =

h(x) =

Example: order statistics. X1, . . . , Xn i.i.d.; order statistics X(1) ≤
X(2) ≤ · · · ≤ X(n), then T = (X(1), X(2), · · · , X(n)) is sufficient

1.2.1 Exponential families

Any probability density function f(x|θ) which is written in the form

f(x|θ) = exp

{
k∑
i=1

ciφi(θ)hi(x) + c(θ) + d(x),

}
, x ∈ X ,

where c(θ) is chosen such that
∫
f(x|θ) dx = 1, is said to be in the k-

parameter exponential family. The family is called regular if X does not
depend on θ; otherwise it is called non-regular.
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Examples: binomial, Poisson, normal (known mean, or known variance),
gamma (known α, or known λ (including exponential) distributions

Example: Binomial (n, θ). For x = 0, 1, ..., n,

f(x; θ) =

(
n

x

)
θx(1− θ)n−x

= exp

{
log

((
n

x

))
+ x log θ + (n− x) log(1− θ)

}
= exp

{
x log

(
θ

1− θ

)
log

((
n

x

))
+ n log(1− θ)

}
.

Choose k = 1 and

c1 = 1

φ1(θ) = log

(
θ

1− θ

)
h1(x) = x

c(θ) = n log(1− θ)

d(x) = log

((
n

x

))
X = {0, . . . , n}.

Fact: In k-parameter exponential family models,

t(x) = (n,
n∑
j=1

h1(xj), . . . ,
n∑
j=1

hk(xj))

is sufficient.

1.2.2 Minimal sufficiency

T is minimal sufficient for θ is if can be expressed as a function of any other
sufficient statistic. To find a minimal sufficient statistic: Suppose f(x,θ)

f(y,θ)
is

constant in θ if and only if
t(x) = t(y),

then t(X) is minimal sufficient (see Casella + Berger p.255)
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Example: Poisson distribution. X1, . . . , Xn i.i.d. Po(θ), f(x, θ) =
e−nθθ

∑n
i=1 xi

∏n
i=1(xi!)

−1 and

f(x, θ)

f(y, θ)
= θ

∑n
i=1 xi−

∑n
i=1 yi

n∏
i=1

yi!

xi!

which is constant in θ if and only if

n∑
i=1

xi =
n∑
i=1

yi;

so T =
∑n

i=1Xi is minimal sufficient (as is X)

In order to avoid issues when the density could be zero, it is the case that
if for any possible values for x and y, we have that the equation

f(x, θ) = φ(x,y)f(y, θ) for all θ

implies that T (x) = T (y), where φ is a function which does not depend on
θ, then T = T (X) is minimal sufficent for θ.

Note: T =
∑n

i=1X(i) is a function of the order statistic.

1.3 Ancillary statistic

If a(X) is a statistics whose distribution does not depend on θ it is called an
ancillary statistic.

Example: Normal distribution. Let X1, . . . , Xn be i.i.d. N (θ, 1).
Then T = X2 −X1 ∼ N (0, 2) has a distribution which does not depend on
θ; it is ancillary.

When a minimal sufficient statistic T is of larger dimension than θ, then
there will often be a component of T whose distribution is independent of θ

Example: some uniform distribution (Exercise). X1, . . . , Xn i.i.d.
U [θ − 1

2
, θ + 1

2
] then

(
X(1), X(n)

)
is minimal sufficient for θ, as is

(S,A) =

(
1

2
(X(1) +X(n)), X(n) −X(1)

)
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and the distribution of A is independent of θ, so A is an ancillary statistic.
Indeed, A measures the accuracy of S; if A = 1 then S = θ with certainty,
e.g.
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Chapter 2

Point Estimation

Data x1, x2, . . . , xn → inference about parameter θ, assume to be realisa-
tions of random variables X1, X2, . . . , Xn from f(x, θ). Denote the expecta-
tion with respect to f(x, θ) by Eθ, and the variance by Varθ.

Estimate θ by a function t(x1, . . . , xn) of the data (a point estimate);
T = t(X1, . . . , Xn) = t(X) is called an estimator (random). For example, a
sufficient statistic is an estimator.

2.1 Properties of estimators

T is unbiased for θ if Eθ(T ) = θ for all θ; otherwise T is biased. The bias of
T is

Bias(T ) = Biasθ(T ) = Eθ(T )− θ.

Example: Sample mean, sample variance.
X1, . . . , Xn i.i.d. with unknown mean µ; unknown variance σ2. Estimate

µ by

T = X =
1

n

n∑
i=1

Xi

Then

Eµ,σ2(T ) =
1

n

n∑
i=1

µ = µ
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so unbiased. Recall that

V arµ,σ2(T ) = V arµ,σ2(X) = Eµ,σ2{(X − µ)2)} =
σ2

n
.

Estimate σ2 by

S2 =
1

n− 1

n∑
i=1

(Xi −X)2.

Then

Eµ,σ2(S2)

=
1

n− 1

n∑
i=1

Eµ,σ2{(Xi − µ+ µ−X)2}

=
1

n− 1

n∑
i=1

{
Eµ,σ2{(Xi − µ)2}+ 2Eµ,σ2(Xi − µ)(µ−X)

+Eµ,σ2{(X − µ)2}
}

=
1

n− 1

n∑
i=1

σ2 − 2
n

n− 1
Eµ,σ2{(X − µ)2}+

n

n− 1
Eµ,σ2{(X − µ)2}

= σ2

(
n

n− 1
− 2

n− 1
+

1

n− 1

)
= σ2,

so unbiased. Note: σ̂2 = 1
n

∑n
i=1(Xi −X)2 is not unbiased.

Another criterion: small mean square error (MSE)

MSE(T ) = MSEθ(T ) = Eθ{(T − θ)2} = V arθ(T ) + (Biasθ(T ))2

Note: MSE(T ) is a function of θ and in general therefore cannot be zero
everywhere.

Example: σ̂2 has smaller MSE than S2 (see Casella and Berger, p.304)
but is biased.

If one has two estimators at hand, one being slightly biased but having
a smaller MSE than the second one, which is, say, unbiased, then one may
well prefer the slightly biased estimator. Exception: If the estimate is to be
combined linearly with other estimates from independent data.
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The efficiency of an estimator is defined as

Efficiencyθ(T ) =
Varθ(T0)

Varθ(T )
,

where T0 has minimum possible variance.

Cramér-Rao Inequality
Under regularity conditions on f(x, θ), it holds that for any unbiased T ,

Varθ(T ) ≥ (I(θ))−1

(Cramér-Rao Inequality, Cramér-Rao lower bound) where

I(θ) := In(θ) = Eθ

[(
∂`(θ,X)

∂θ

)2
]

is the expected Fisher information of the sample.

Calculation:

In(θ) = Eθ

[(
∂`(θ,X)

∂θ

)2
]

=

∫
f(x, θ)

[(
∂ log f(x, θ)

∂θ

)2
]
dx

=

∫
f(x, θ)

[
1

f(x, θ)

(
∂f(x, θ)

∂θ

)]2

dx

=

∫
1

f(x, θ)

[(
∂f(x, θ)

∂θ

)2
]
dx.

Thus, for any unbiased estimator T ,

Efficiencyθ(T ) =
1

I(θ)Varθ(T )
.

Assume that T is unbiased. T is called efficient (or a minimum variance
unbiased estimator) if it has the minimum possible variance. An unbiased
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estimator T is efficient if Varθ(T ) = (I(θ))−1.

Often: T = T (X1, . . . , Xn) efficient at n→∞: asymptotically efficient

Regularity: conditions on the partial derivatives of f(x, θ) with respect to
θ; domain may not depend on θ; for example U [0, θ] violates the regularity
conditions.

Under more regularity: the first three partial derivatives of f(x, θ) with
respect to θ are integrable with respect to x; domain may not depend on θ;
then

In(θ) = Eθ

[
−∂

2`(θ,X)

∂θ2

]

Notation: We shall often omit the subscript in In(θ), when it is clear
whether we refer to a sample of size 1, or to a sample of size n. For a random
sample,

In(θ) = nI1(θ).

Example: Normal distribution, known variance
N (µ, σ2), where σ2 known, θ = µ

`(θ) = −n
2

log(2π)− n log σ − 1

2σ2

n∑
i=1

(xi − µ)2

∂`

∂θ
=

1

σ2

n∑
i=1

(xi − µ) =
n

σ2
(x− µ)

and

I(θ) = Eθ

[(
∂`(θ,X

∂θ

)2
]

=
n2

σ4
Eθ(X − µ)2 =

n

σ2

Note Varθ(X) = σ2

n
, so X is an efficient estimator for µ. Also note that

∂2`

∂θ2
= − n

σ2
.
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In future we shall often omit the subscript θ in the expectation and in
the variance.

Example: Exponential family models in canonical form
Recall that one-parameter (i.e., scalar θ) exponential family density has the
form

f(x; θ) = exp {φ(θ)h(x) + c(θ) + d(x)} , x ∈ X .

Choosing θ and x to make φ(θ) = θ and h(x) = x: canonical form

f(x; θ) = exp{θx+ c(θ) + d(x)}.

For the canonical form

EX = µ(θ) = −c′(θ), VarX = σ2(θ) = −c′′(θ)

Exercise: Prove the mean and variance results by calculating the moment-
generating function Eexp(tX) = exp{c(θ)−c(t+θ)}. Recall that you obtain
mean and variance by differentiating the moment-generating function (how
exactly?)

Example: Binomial (n, p)
Above we derived the exponential family form with

c1 = 1

φ1(p) = log

(
p

1− p

)
h1(x) = x

c(p) = n log(1− p)

d(x) = log

((
n

x

))
X = {0, . . . , n}.

To write the density in canonical form we put

θ = log

(
p

1− p

)
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(this transformation is called the logit transformation); then

p =
eθ

1 + eθ

and

φ(θ) = θ

h(x) = x

c(θ) = −n log
(
1 + eθ

)
d(x) = log

((
n

x

))
X = {0, . . . , n}

gives the canonical form. We calculate the mean

−c′(θ) = n
eθ

1 + eθ
= µ(θ) = np

and the variance

−c′′(θ) = n

{
eθ

1 + eθ
− e2θ

(1 + eθ)2

}
= σ2(θ) = np(1− p).

Now suppose X1, . . . , Xn are i.i.d., canonical density. Then

`(θ) = θ
∑

xi + nc(θ) +
∑

d(xi),

`′(θ) =
∑

xi + nc′(θ) = n(x+ c′(θ)).

Since `′′(θ) = nc′′(θ), we have that In(θ) = E(−`′′(θ)) = −nc′′(θ).

Example: Binomial (n, p) and

θ = log

(
p

1− p

)
then

I(θ) =
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2.2 Maximum Likelihood Estimation

Now θ may be a vector. A maximum likelihood estimate, denoted θ̂(x), is a
value of θ at which the likelihood L(θ,x) is maximal. The estimator θ̂(X) is
called MLE (also, θ̂(x) is sometimes called mle).

An mle is a parameter value at which the observed sample is most likely.

Often it is easier to maximise log likelihood: if derivatives exist, then
set first (partial) derivative(s) with respect to θ to zero, check that second
(partial) derivative(s) with respect to θ less than zero.

An mle is a function of a sufficient statistic:

L(θ,x) = f(x, θ) = g(t(x), θ)h(x)

by the factorisation theorem, and maximizing in θ depends on x only through
t(x).

An mle is usually efficient as n→∞.

Invariance property: An mle of a function φ(θ) is φ(θ̂) (Casella + Berger
p.294). That is, if we define the likelihood induced by φ as

L∗(λ, x) = sup
θ:φ(θ)=λ

L(θ, x),

then one can calculate that for λ̂ = φ(θ̂),

L∗(λ̂, x) = L(θ̂, x).

Examples: Uniforms, normal

1. X1, . . . , Xn i.i.d. ∼ U [0, θ]:

L(θ) = θ−n1[x(n),∞)(θ),

where x(n) = max1≤i≤n xi; so θ̂ = X(n)

2. X1, . . . , Xn i.i.d. ∼ U [θ − 1
2
, θ + 1

2
], then any θ ∈ [x(n) − 1

2
, x(1) + 1

2
]

maximises the likelihood (Exercise)
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3. X1, . . . , Xn i.i.d. ∼ N (µ, σ2), then (Exercise) µ̂ = X, σ̂2 = 1
n

∑n
i=1(Xi−

X)2. So σ̂2 is biased, but Bias(σ̂2) → 0 as n→∞.

Iterative computation of MLEs

Sometimes the likelihood equations are difficult to solve. Suppose θ̂(1) is
an initial approximation for θ̂. Use Taylor:

0 = `′(θ̂) ≈ `′(θ̂(1)) + (θ̂ − θ̂(1))`′′(θ̂(1))

so

θ̂ ≈ θ̂(1) − `′(θ̂(1))

`′′(θ̂(1))

Iterate (Newton-Raphson method)

θ̂(k+1) = θ̂(k) − (`′′(θ̂(k)))−1`′(θ̂(k)), k = 2, 3, . . .

until |θ̂(k+1) − θ̂(k)| < ε for some small ε.

As E
{
−`′′(θ̂(1))

}
= I(θ̂(1)) we could instead iterate

θ̂(k+1) = θ̂(k) + I−1(θ̂(k))`′(θ̂(k)), k = 2, 3, . . .

until |θ̂(k+1) − θ̂(k)| < ε for some small ε. This is Fisher’s modification of the
Newton-Raphson method.

Repeat with different starting values to reduce the risk of finding just a
local maximum.

Example: Binomial(n, θ). Observe x

`(θ) = x ln(θ) + (n− x) ln(1− θ) + log

(
n

x

)
`′(θ) =

x

θ
− n− x

1− θ
=

x− nθ

θ(1− θ)

`′′(θ) = − x

θ2
− n− x

(1− θ)2

I(θ) =
n

θ(1− θ)
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Assume n = 5, x = 2, ε = 0.01 (in practice rather ε = 10−5); guess
θ̂(0) = 0.55
Newton-Raphson:

`′(θ̂(0)) ≈ −3.03

θ̂(1) ≈ θ̂(0) − (`′′(θ̂(0)))−1`′(θ̂(0)) ≈ 0.40857

`′(θ̂(1)) ≈ −0.1774

θ̂(2) ≈ θ̂(1) − (`′′(θ̂(1)))−1`(θ̂(1)) ≈ 0.39994

Now |θ̂(2) − θ̂(1)| < 0.01 so stop

Fisher scoring:

I−1(θ)`′(θ) =
x− nθ

n
=
x

n
− θ

and so

θ + I−1(θ)`′(θ) =
x

n

for all θ. To compare: analytically, θ̂ = x
n

= 0.4.

2.3 Profile likelihood

Often θ = (ψ, λ) where ψ contains the parameters of interest and λ contains
the other unknown parameters: nuisance parameters. Let λ̂ψ be the MLE
for λ for a given value of ψ. Then the profile likelihood for ψ is

LP (ψ) = L(ψ, λ̂ψ).

(in L(ψ, λ) replace λ by λ̂ψ); the profile log-likelihood is `P (ψ) = log[LP (ψ)].
For point estimation, maximizing LP (ψ) with respect to ψ gives the same

estimator ψ̂ as maximizing L(ψ, λ) with respect to both ψ and λ (but possibly
different variances)

Example: Normal distribution.
X1, . . . , Xn i.i.d. N (µ, σ2) with µ and σ2 unknown. Given µ, σ̂2

µ =
(1/n)

∑
(xi − µ)2, and given σ2, µ̂σ2 = x. Hence the profile likelihood for µ
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is

LP (µ) = (2πσ̂2
µ)
−n/2 exp

{
− 1

2σ̂2
µ

n∑
i=1

(xi − µ)2

}

=

[
2πe

n

∑
(xi − µ)2

]−n/2
,

which gives µ̂ = x; and the profile likelihood for σ2 is

LP (σ2) = (2πσ2)−n/2 exp

{
− 1

2σ2

∑
(xi − x)2

}
,

gives (Exercise)
σ̂2
µ =??

2.4 Method of Moments (M.O.M)

Idea: match population moments to sample moments in order to obtain
estimators

Suppose X1, . . . , Xn i.i.d. ∼ f(x; θ1, . . . , θp). Denote by

µk = µk(θ) = E(Xk)

the kth moment and by

Mk =
1

n

∑
(Xi)

k

the kth sample moment. In general, µk = µk(θ1, . . . , θp).
Solve the equation

µk(θ) = Mk

for k = 1, 2, . . . , until there are sufficient equations to solve for θ1, . . . , θp
(usually p equations for the p unknowns). The solutions θ̃1, . . . , θ̃p are the
method of moments estimators.

They are often not as efficient as MLEs, but may be easier to calculate.
They could be used as initial estimates in an iterative calculation of MLEs.

Example: Normal distribution. X1, . . . , Xn i.i.d. N (µ, σ2); µ and σ2

unknown
µ1 = µ; M1 = X
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”Solve”
µ = X

so
µ̃ = X.

Furthermore

µ2 = σ2 + µ2; M2 =
1

n

n∑
i=1

X2
i

so solve

σ2 + µ2 =
1

n

n∑
i=1

X2
i ,

which gives

σ̃2 = M2 −M2
1 =

1

n

n∑
i=1

(Xi −X)2

(not unbiased).

Example: Gamma distribution. X1, . . . , Xn i.i.d. Γ(ψ, λ);

f(x;ψ, λ) =
1

Γ(ψ)
λψxψ−1e−λx for x ≥ 0.

Then µ1 = EX = ψ/λ and

µ2 = EX2 = ψ/λ2 + (ψ/λ)2

Solve

M1 = ψ/λ, M2 = ψ/λ2 + (ψ/λ)2

for ψ and λ; gives

ψ̃ = X
2/

[n−1

n∑
i=1

(Xi −X)2], and λ̃ = X
/
[n−1

n∑
i=1

(Xi −X)2].

22



2.5 Bias and variance approximations: the

delta method

Sometimes T is a function of one or more averages whose means and variances
can be calculated exactly; then we may be able to use the following simple
approximations for mean and variance of T :

Suppose T = g(S) where ES = β and VarS = V . Taylor expansion gives

T = g(S) ≈ g(β) + (S − β)g′(β).

Taking the mean and variance of the r.h.s.:

ET ≈ g(β), VarT ≈ [g′(β)]2V.

If S is an average so that the central limit theorem (CLT) applies to it, i.e.,

S ≈ N(β, V ), then
T ≈ N(g(β), [g′(β)]2V )

for large n.

If V = v(β), then it is possible to choose g so that T has approximately
constant variance in θ: solve [g′(β)]2v(β) = constant.

Example: Exponential distribution. X1, . . . , Xn i.i.d. ∼ exp( 1
µ
),

mean µ. Then S = X has mean µ and variance µ2/n. If T = logX then
g(µ) = log(µ), g′(µ) = µ−1, and so VarT ≈ n−1, independent of µ: variance
stabilization

If the Taylor expansion is carried to the second-derivative term, we ob-
taion

ET ≈ g(β) +
1

2
V g′′(β).

In practice we use numerical estimates for β and V if unknown.

When S, β vectors (V a matrix), with T still a scalar: Let
(
g′(β)

)
i

=
∂g/∂βi and let g′′(β) be the matrix of second derivatives, then Taylor expan-
sion gives

VarT ≈ [g′(β)]TV g′(β)

and

ET ≈ g(β) +
1

2
trace[g′′(β)V ].
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2.5.1 Exponential family models in canonical form and
asymptotic normality of the MLE

Recall that a one-parameter (i.e., scalar θ) exponential family density in
canonical form can be written as

f(x; θ) = exp{θx+ c(θ) + d(x)}.

For the canonical form

EX = µ(θ) = −c′(θ), VarX = σ2(θ) = −c′′(θ).

Suppose X1, . . . , Xn are i.i.d., canonical density. Then

`′(θ) =
∑

xi + nc′(θ) = n(x+ c′(θ)).

Since µ(θ) = −c′(θ),
`′(θ) = 0 ⇐⇒ x = µ(θ̂)

and we have already calculated that In(θ) = E(−`′′(θ)) = −nc′′(θ). If µ is
invertible, then

θ̂ = µ−1(x).

The CLT applies to X so, for large n,

X ≈ N (µ(θ),−c′′(θ)/n).

With the delta-method, S ≈ N (a, b) implies that

g(S) ≈ N
(
g(a), b[g′(a)]2

)
for continuous g, and small b. For S = X, with g(·) = µ−1(·) we have
g′(·) = (µ′(µ−1(·))−1, thus

θ̂ ≈ N
(
θ, I−1

n (θ)
)

giving the asymptotic normality of the M.L.E..

Note: The approximate variance equals the Cramér-Rao lower bound:
quite generally the MLE is asymptotically efficient.
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Example: Binomial(m, p). With θ = log
(

p
1−p

)
we have µ(θ) = m eθ

1+eθ ,

and we calculate

µ−1(t) = log

( t
m

1− t
m

)
.

Note that here n = 1, we have a sample, x, of size 1. This gives

θ̂ = log

( x
m

1− x
m

)
,

as expected from the invariance of mle’s. We hence know that θ̂ is approxi-
mately normally distributed.

Example: Logistic regression. The outcome of an experiment is 0
or 1, and the outcome may depend on some explanatory variables. We are
interested in

P (Yi = 1|x) = π(x|β).

The outcome for each experiment is in [0, 1]; in order to apply some normal
regression model we use the logit transform,

logit(p) = log

(
p

1− p

)
which is now spread over the whole real line. The ratio p

1−p is also called the

odds. A (Generalized linear) model then relates the logit to the regressors in
a linear fashion;

logit(π(x|β)) = log

(
π(x|β)

1− π(x|β)

)
= xTβ.

The coefficients β describe how the odds for π change with change in the
explanatory variables. The model can now be treated like an ordinary linear
regression, X is the design matrix, β is the vector of coefficients. Transform-
ing back,

P (Yi = 1|x) = exp(xTβ)
/(

1 + exp(xTβ)
)
.

The invariance property gives that the MLE of π(x|β), for any x, is π(x|β̂),
where β̂ is the MLE obtained in the ordinary linear regression from a sample
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of responses y1, . . . , yn with associated covariate vectors x1, . . . , xn. We know
that β̂ is approximately normally distributed, and we would like to infer
asymptotic normality of π(x|β̂).

(i) If β is scalar: Calculate that

∂

∂β
π(xi|β) =

∂

∂β
exp(xiβ)

/
(1 + exp(xiβ))

= xie
xiβ (1 + exp(xiβ))−1 − (1 + exp(xiβ))−2 xie

xiβexiβ

= xiπ(xi|β)− xi(π(xi|β))2

= xiπ(xi|β)(1− π(xi|β))

and the likelihood is

L(β) =
n∏
i=1

π(xi|β) =
n∏
i=1

exp(xiβ)
/

(1 + exp(xiβ)) .

Hence the log likelihood has derivative

`′(β) =
n∑
i=1

1

π(xi|β)
xiπ(xi|β)(1− π(xi|β))

=
n∑
i=1

xi(1− π(xi|β))

so that

`′′(β) = −
n∑
i=1

x2
iπ(xi|β))(1− π(xi|β)).

Thus β̂ ≈ N (β, I−1
(
β)
)

where I(β) =
∑
x2
iπi(1− πi) with πi = π(xi|β).

So now we know the parameters of the normal distribution which approx-
imates the distribution of β̂. The delta method with g(β) = eβx/(1 + eβx),
gives

g′(β) = xg(β)(1− g(β))

and hence we conclude that π = π(x|β̂) ≈ N
(
π, π2(1− π)2x2I−1(β)

)
.
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(ii) If β is vector: Similarly it is possible to calculate that β̂ ≈ N
(
β, I−1(β)

)
where [I(β)]kl = E (−∂2`/∂βk∂βl). The vector version of the delta method
then gives

π(x|β̂) ≈ N
(
π, π2(1− π)2xT I−1(β)x

)
with π = π(x|β) and I(β) = XTRX. Here X is the design matrix, and

R = Diag (πi(1− πi), i = 1, . . . , n)

where πi = π(xi|β). Note that this normal approximation is likely to be poor
for π near zero or one.

2.6 Excursions

2.6.1 Minimum Variance Unbiased Estimation

There is a pretty theory about how to construct minimum variance unbiased
estimators (MVUE) based on sufficient statistics. The key underlying result
is the Rao-Blackwell Theorem (Casella+Berger p.316). We do not have time
to go into detail during lectures, but you may like to read up on it.

2.6.2 A more general method of moments

Consider statistics of the form 1
n

∑n
i=1 h(Xi). Find the expected value as a

function of θ
1

n

n∑
i=1

Eh(Xi) = r(θ).

Now obtain an estimate for θ by solving r(θ) = 1
n

∑n
i=1 h(Xi) for θ.
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Chapter 3

Hypothesis Testing

3.1 Pure significance tests

We have data x = (x1, . . . , xn) from f(x, θ), and a hypothesis H0 which
restricts f(x, θ). We would like to know:

Are the data consistent with H0?

H0 is called the null hypothesis. It is called simple if it completely specifies
the density of x; it is called composite otherwise.

A pure significance test is a means of examining whether the data are
consistent with H0 where the only distribution of the data that is explicitly
formulated is that under H0. Suppose that for a test statistic T = t(X),
the larger t(x), the more inconsistent the data with H0. For simple H0, the
p-value of x is then

p = P (T ≥ t(x)|H0).

Small p indicate more inconsistency with H0.

For composite H0: If S is sufficient for θ then the distribution of X
conditional on S is independent of θ; the p-value of x is

p = P (T ≥ t(x)|H0;S).

Example: Dispersion of Poisson distribution. Let H0: X1, . . . , Xn

i.i.d. ∼ Poisson(µ), with unknown µ. Under H0, VarXi = EXi = µ and so

28



we would expect T = t(X) = S2/X to be close to 1. The statistic T is also
called the dispersion index.

We suspect that the Xi’s may be over-dispersed, that is, varianceXi >
EXi: discrepancy withH0 would then correspond to large T . Recall thatX is
sufficient for the Poisson distribution; the p-value is then p = P (S2/X ≥ t(x)|X = x;H0)
under the Poisson hypothesis, which makes p independent of the unknown µ.
Given X = x and H0 we have that

S2/X ≈ χ2
n−1/(n− 1)

(see Chapter 5 later) and so the p-value of the test satisfies

p ≈ P (χ2
n−1/(n− 1) ≥ t(x)).

Possible alternatives toH0 guide the choice and interpretation of T . What
is a ”best” test?

3.2 Simple null and alternative hypotheses:

The Neyman-Pearson Lemma

The general setting here is as follows: we have a random sample X1, . . . , Xn

from f(x; θ).

null hypothesis H0 : θ ∈ Θ0

alternative hypothesis H1 : θ ∈ Θ1

where Θ1 = Θ \ Θ0; Θ denotes the whole parameter space. We want to
choose rejection region or critical region R:

reject H0 ⇐⇒ X ∈ R.

Now suppose that H0 : θ = θ0, adn H1 : θ = θ1 are both simple. The
Type I error is: reject H0 when it is true;

α = P (reject H0|H0),
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this is also known as size of the test.
The Type II error is: accept H0 when it is false;

β = P (accept H0|H1)/

The power of the test is 1− β = P (accept H1|H1).

Usually: fix α (e.g., α = 0.05, 0.01, etc.), look for a test which mini-
mizes β: most powerful or best test of size α.

Intuitively: we reject H0 in favour of H1 if likelihood of θ1 is much larger
than likelihood of θ0, given the data.

Neyman-Pearson Lemma: (see, e.g., Casella and Berger, p.366) The
most powerful test at level α of H0 versus H1 has rejection region

R =

{
x :

L(θ1;x)

L(θ0;x)
≥ kα

}
where the constant kα is chosen so that

P (X ∈ R|H0) = α.

This test is called the the likelihood ratio (LR) test.

Often we simplify the condition

L(θ1;x)/L(θ0;x) ≥ kα

to
t(x) ≥ cα,

for some constant cα and some statistic t(x); determine cα from the equation

P (T ≥ cα|H0) = α,

where T = t(X); then the test is “reject H0 if and only if T ≥ cα”. For data
x the p-value is p = P (T ≥ t(x)|H0).

Example: Normal means, one-sided. X1, . . . , Xn ∼ N(µ, σ2), σ2

known; let
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H0 : µ = µ0

H1 : µ = µ1, with µ1 > µ0

Then

L(µ1;x)

L(µ0;x)
≥ k ⇔ `(µ1;x)− `(µ0;x) ≥ log k

⇔ −
∑[

(xi − µ1)
2 − (xi − µ0)

2
]
≥ 2σ2 log k

⇔ (µ1 − µ0)x ≥ k′

⇔ x ≥ c (since µ1 > µ0),

where k′, c are constants, indept. of x. Hence we choose t(x) = x, and for
size α test choose c so that

P (X ≥ c|H0) = α;

equivalently, such that

P

(
X − µ0

σ/
√
n
≥ c− µ0

σ/
√
n

∣∣∣∣ H0

)
= α.

Hence we want
(c− µ0)/(σ/

√
n) = z1−α,

(where Φ(z1−α) = 1− α with Φ standard normal c.d.f.), i.e.

c = µ0 + σz1−α/
√
n.

So our test

“reject H0 if and only if X ≥ c” becomes

“reject H0 if and only if X ≥ µ0 + σz1−α/
√
n”

This is the most powerful test of H0 versus H1 at level α.

Recall the notation for standard normal quantiles: If Z ∼ N (0, 1) then

P(Z ≤ zα) = α and P(Z ≥ z(α)) = α,
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and note that z(α) = z1−α. Thus

P(Z ≥ z1−α) = 1− (1− α) = α.

Example: Bernoulli, probability of success, one-sided. LetX1, . . . , Xn

i.i.d. Bernoulli(θ) then
L(θ) = θr(1− θ)n−r

where r =
∑
xi¿ Test H0 : θ = θ0 against H1 : θ = θ1, where θ1 > θ0. Now

θ1/θ0 > 1, (1− θ1)/(1− θ0) < 1, and

L(θ1;x)

L(θ0;x)
=

(
θ1

θ0

)r (
1− θ1

1− θ0

)n−r
and so L(θ1;x)/L(θ0;x) ≥ kα ⇐⇒ r ≥ rα.

So the best test rejects H0 for large r. For any given critical value rc,

α =
n∑

j=rc

(
n

j

)
θj0(1− θ0)

n−j

gives the p-value if we set rc = r(x) =
∑
xi, the observed value.

Note: The distribution is discrete, so we may not be able to achieve a
level α test exactly (unless we use additional randomization). For example,
if R ∼ Binomial(10, 0.5), then P (R ≥ 9) = 0.011, and P (R ≥ 8) = 0.055,
so there is no c such that P (R ≥ c) = 0.05. A solution is to randomize: If
R ≥ 9 reject the null hypothesis, if R ≤ 7 accept the null hypothesis, and if
R = 8 flip a (biased) coin to achieve the exact level of 0.05.

3.3 Composite alternative hypotheses

Suppose that θ scalar, H0 : θ = θ0 is simple, and we test against a composite
alternative hypotheses; this could be one-sided:

H−
1 : θ < θ0

or H+
1 : θ > θ0;
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or a two-sided alternative H1 : θ 6= θ0.

The power function of a test

power(θ) = P (X ∈ R|θ);

the probability of rejecting H0 as a function of the true value of the pa-
rameter θ; depends on α, the size of the test. Its main uses are comparing
alternative tests, and choosing sample size.

3.3.1 Uniformly most powerful tests

A test of size α is uniformly most powerful (UMP) if its power function is
such that

power(θ) ≥ power′(θ)

for all θ ∈ Θ1, where power′(θ) is the power function of any other size-α test.

Consider: H0 against H+
1

For exponential family problems: usually for any θ1 > θ0 the rejection
region of the LR test is independent of θ1. At the same time, the test is most
powerful for every single θ1 which is larger than θ0. Hence the test derived
for one such value of θ1 is UMP for H0 versus H+

1 .

Example: normal mean, composite one-sided alternative
X1, . . . , Xn ∼ N(µ, σ2) i.i.d., σ2 known
H0 : µ = µ0

H+
1 : µ > µ0

First pick arbitrary µ1 > µ0. We have seen that the most powerful test of
µ = µ0 versus µ = µ1 has a rejection region of the form

X ≥ µ0 + σz1−α/
√
n

for a test of size α.

This rejection region is independent of µ1, hence it is UMP for H0 ver-
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sus H+
1 . The power of the test is

power(µ) = P
(
X ≥ µ0 + σz1−α/

√
n
∣∣ µ)

= P
(
X ≥ µ0 + σz1−α/

√
n
∣∣ X ∼ N(µ, σ2/n)

)
= P

(X − µ

σ/
√
n
≥ µ0 − µ

σ/
√
n

+ z1−α
∣∣ X ∼ N(µ, σ2/n)

)
= P

(
Z ≥ z1−α −

µ− µ0

σ/
√
n

∣∣ Z ∼ N(0, 1)
)

= 1− Φ
(
z1−α − (µ− µ0)

√
n/σ

)
.

The power increases from 0 up to α at µ = µ0 and then to 1 as µ increases.
The power increases as α increases.

Sample size calculation in the Normal example
Suppose want to be near-certain to reject H0 when µ = µ0 + δ, say, and have
size 0.05. Suppose we want to fix n to force power(µ) = 0.99 at µ = µ0 + δ:

0.99 = 1− Φ(1.645− δ
√
n/σ)

so that 0.01 = Φ(1.645 − δ
√
n/σ). Solving this equation (use tables) gives

−2.326 = 1.645− δ
√
n/σ, i.e.

n = σ2(1.645 + 2.326)2/δ2

is the required sample size.

UMP tests are not always available. If not, options include:

1. Wald test

2. locally most powerful test (score test)

3. generalized likelihood ratio test.

3.3.2 Wald tests

The Wald test is directly based on the asymptotic normality of the m.l.e.
θ̂ = θ̂n, often θ̂ ≈ N

(
θ, I−1

n (θ)
)

if θ is the true parameter. Recall: In a
random sample, In(θ) = nI1(θ).
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Also it is often true that asymptotically, we may replace θ by θ̂ in the
Fisher information,

θ̂ ≈ N
(
θ, I−1

n (θ̂)
)
.

So we can construct a test based on

W =

√
In(θ̂)(θ̂ − θ0) ≈ N (0, 1).

If θ is scalar, squaring gives
W 2 ≈ χ2

1,

so equivalently we could use a chi-square test.
For higher-dimensional θ we can base a test on the quadratic form

(θ̂ − θ0)
T In(θ̂)(θ̂ − θ0)

which is approximately chi-square distributed in large samples.

If we would like to test H0 : g(θ) = 0, where g is a (scalar) differentiable
function, then the delta method gives as test statistic

W = g(θ̂){G(θ̂)(In(θ̂))
−1G(θ̂)T}−1g(θ̂),

where G(θ) = ∂g(θ)
∂θ

T
.

An advantage of the Wald test is that we do not need to evaluate the
likelihood under the null hypothesis, which can be awkward if the null hy-
pothesis contains a number of restrictions on a multidimensional parameter.
All we need is (an approximation) of θ̂, the maximum-likelihood-estimator.
But there is also a disadvantage:

Example: Non-invariance of the Wald test

Suppose that θ̂ is scalar and approximately N (θ, In(θ)
−1)-distributed,

then for testing H0 : θ = 0 the Wald statistic becomes

θ̂

√
In(θ̂),

which would be approximately standard normal. If instead we tested H0 :
θ3 = 0, then the delta method with g(θ) = θ3, so that g′(θ) = 3θ2, gives

V ar(g(θ̂)) ≈ 9θ̂4(I(θ̂))−1
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and as Wald statistic
θ̂

3

√
In(θ̂),

which would again be approximately standard normal, but the p-values for
a finite sample may be quite different!

3.3.3 Locally most powerful test (Score test)

We consider first the problem to test H0 : θ = θ0 against H1 : θ = θ0 + δ. for
some small δ > 0. We have seen that the most powerful test has a rejection
region of the form

`(θ0 + δ)− `(θ0) ≥ k.

Taylor expansion gives

`(θ0 + δ) ≈ `(θ0) + δ
∂`(θ0)

∂θ

i.e.

`(θ0 + δ)− `(θ0) ≈ δ
∂`(θ0)

∂θ
.

So a locally most powerful (LMP) test has as rejection region

R =

{
x :

∂`(θ0)

∂θ
≥ kα

}
.

This is also called the score test : ∂`/∂θ is known as the score function.
Under certain regularity conditions,

Eθ

[
∂`

∂θ

]
= 0, Varθ

[
∂`

∂θ

]
= In(θ).

As ` is usually a sum of independent components, so is ∂`(θ0)/∂θ, and the
CLT (Central Limit Theorem) can be applied.

Example: Cauchy parameter
X1, . . . , Xn random sample from Cauchy (θ), having density

f(x; θ) =
[
π
(
1 + (x− θ)2

)]−1
for −∞ < x <∞.

36



Test H0 : θ = θ0 against H+
1 : θ > θ0. Then

∂`(θ0;x)

∂θ
= 2

∑{
xi − θ0

1 + (xi − θ0)2

}
.

Fact: Under H0, the expression ∂`(θ0;X)/∂θ has mean 0, variance In(θ0) =
n/2. The CLT applies, ∂`(θ0;X)/∂θ ≈ N (0, n/2) under H0, so for the LMP
test,

P(N (0, n/2) ≥ kα) = P(

)
(N (0, 1) ≥ kα

√
2

n

)
≈ α.

This gives kα ≈ z1−α
√
n/2, and as rejection region with approximate size α

R =

{
x : 2

∑(
xi − θ0

1 + (xi − θ0)2

)
>

√
n

2
z1−α

}
.

The score test has the advantage that we only need the likelihood under
the null hypothesis. It is also not generally invariant under reparametrisation.

The multidimensional version of the score test is as follows: Let U =
∂`/∂θ be the score function, then the score statistic is

UT I(θ0)
−1U.

Compare with a chi-square distribution.

3.3.4 Generalised likelihood ratio (LR) test

Test H0 : θ = θ0 against H+
1 : θ > θ0; use as rejection region

R =

{
x :

maxθ≥θ0 L(θ;x)

L(θ0;x)
≥ kα

}
.

If L has one mode, at the m.l.e. θ̂, then the likelihood ratio in the definition
of R is either 1, if θ̂ ≤ θ0, or L(θ̂;x)/L(θ0;x), if θ̂ > θ0.

Similar for H−
1 with fairly obvious changes of signs and directions of in-

equalities.

The generalised LRT is invariant to a change in parametrisation.
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3.4 Two-sided tests

Test H0 : θ = θ0 against H1 : θ 6= θ0. If the one-sided tests of size α have
symmetric rejection regions

R+ = {x : t > c} and R− = {x : t < −c},

then a two-sided test (of size 2α) is to take the rejection region to

R = {x : |t| > c};

this test has as p-value p = P |t(X)| ≥ tH0.

The two-sided (generalized) LR test uses

T = 2 log

[
maxθ L(θ;X)

L(θ0;X)

]
= 2 log

[
L(θ̂;X)

L(θ0;X)

]

and rejects H0 for large T .

Fact: T ≈ χ2
1 under H0 (later).

Where possible, the exact distribution of T or of a statistic equivalent
to T should be used.

If θ is a vector: there is no such thing as a one-sided alternative hypoth-
esis. For the alternative θ 6= θ0 we use a LR test based on

T = 2 log

[
L(θ̂;X)

L(θ0;X)

]
.

Under H0, T ≈ χ2
p where p = dimension of θ (see Chapter 5).

For the score test we use as statistic

`′(θ0)
T [I(θ0)]

−1`′(θ0),

where I(θ) is the expected Fisher information matrix:

[I(θ)]jk := [In(θ)]jk = E[−∂2`/∂θj∂θk].
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If the CLT applies to the score function, then this quadratic form is again
approximately χ2

p under H0 (see Chapter 5).

Example: Pearson’s Chi-square statistic. We have a random sample
of size n, with p categories; P(Xj = i) = πi, for i = 1, . . . , p, j = 1, . . . , n. As∑
πi = 1, we take θ = (π1, . . . , πp−1). The likelihood function is then∏

πni
i

where ni = # observations in category i (so
∑
ni = n). We think of

n1, . . . , np as realisations of random counts N1, . . . , Np. The m.l.e. is θ̂ =
n−1(n1, . . . , np−1). Test H0 : θ = θ0, where θ0 = (π1,0, . . . , πp−1,0), against
H1 : θ 6= θ0.

The score vector is vector of partial derivatives of

`(θ) =

p−1∑
i=1

ni log πi + np log

(
1−

p−1∑
k=1

πk

)

with respect to π1, . . . , πp−1:

∂`

∂πi
=
ni
πi
− np

1−
∑p−1

k=1 πk
.

The matrix of second derivatives has entries

∂2`

∂πi∂πk
= −niδik

π2
i

− np

(1−
∑p−1

i=1 πi)
2
,

where δik = 1 if i = k, and δik = 0 if i 6= k. Minus the expectation of this,
using Eθ0(Ni) = nπi, gives

I(θ) = nDiag(π−1
1 , . . . , π−1

p−1) + n11Tπ−1
p ,

where 1 is a (p− 1)-dimensional vector of ones.

Compute

`′(θ0)
T [I(θ0)]

−1`′(θ0) =

p∑
i=1

(ni − nπi,0)
2

nπi,0
;
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this statistic is called the chi-squared statistic, T say. The CLT for the score
vector gives that T ≈ χ2

p−1 under H0.

Note: the form of the chi-squared statistic is∑
(Oi − Ei)

2/Ei

where Oi and Ei refer to observed and expected frequencies in category i:
This is known as Pearson’s chi-square statistic.

3.5 Composite null hypotheses

Let θ = (ψ, λ), where λ is a nuisance parameter. We want a test which
does not depend on the unknown value of λ. Extending two of the previous
methods:

3.5.1 Generalized likelihood ratio test: Composite null
hypothesis

H0 : θ ∈ Θ0

H1 : θ ∈ Θ1 = Θ \Θ0

The (generalized) LR test uses the likelihood ratio statistic

T =
max
θ∈Θ

L(θ;X)

max
θ∈Θ0

L(θ;X)

and rejects H0 for large values of T .

Now θ = (ψ, λ), assume that ψ is scalar, test H0 : ψ = ψ0 against H+
1 : ψ >

ψ0. The LR statistic T is

T =
max
ψ≥ψ0,λ

L(ψ, λ)

max
λ

L(ψ0, λ)
=

max
ψ≥ψ0

LP (ψ)

LP (ψ0)
,

where LP (ψ) is the profile likelihood for ψ. For H0 against H1 : ψ 6= ψ0,

T =
max
ψ,λ

L(ψ, λ)

max
λ

L(ψ0, λ)
=
L(ψ̂, λ̂)

LP (ψ0)
.
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Often (see Chapter 5):
2 log T ≈ χ2

p

where p is the dimension of ψ

Important requirement: the dimension of λ does not depend on n.

Example: Normal distribution and Student t-test. Random sam-
ple, size n, N(µ, σ2), both µ and σ unknown; H0 : µ = µ0. Ignoring an
irrelevant additive constant,

`(θ) = −n log σ − n(x− µ)2 + (n− 1)s2

2σ2

Maximizing this w.r.t. σ with µ fixed gives

`P (µ) = −n
2

log

(
(n− 1)s2 + n(x− µ)2

n

)
.

If H+
1 : µ > µ0: maximize `P (µ) over µ ≥ µ0:

if x ≤ µ0 then max at µ = µ0

if x > µ0 then max at µ = x
So log T = 0 when x ≤ µ0 and is

−n
2

log

(
(n− 1)s2

n

)
+
n

2
log

(
(n− 1)s2 + n(x− µ0)

2

n

)
=

n

2
log

(
1 +

n(x− µ0)
2

(n− 1)s2

)
when x > µ0. Thus the LR rejection region is of the form

R = {x : t(x) ≥ cα},

where

t(x) =

√
n(x− µ0)

s
.

This statistic is called Student-t statistic. Under H0, t(X) ∼ tn−1, and for a
size α test set cα = tn−1,1−α; the p-value is p = P(tn−1 ≥ t(x)). Here we use
the quantile notation P(tn−1 ≥ tn−1,1−α) = α.

The two-sided test of H0 against H1 : µ 6= µ0 is easier, as unconstrained
maxima are used. The size α test has rejection region

R = {x : |t(x)| ≥ tn−1,1−α/2}.
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3.5.2 Score test: Composite null hypothesis

Now θ = (ψ, λ) with ψ scalar, test H0 : ψ = ψ0 against H+
1 : ψ > ψ0 or

H−
1 : ψ < ψ0. The score test statistic is

T =
∂`(ψ0, λ̂0;X)

∂ψ
,

where λ̂0 is the MLE for λ when H0 is true. Large positive values of T
indicate H+

1 , and large negative values indicate H−
1 . Thus the rejection

regions are of the form T ≥ k+
α when testing against H+

1 , and T ≤ k−α when
testing against H−

1 .

Recall the derivation of the score test,

`(θ0 + δ)− `(θ0) ≈ δ
∂`(θ0)

∂θ
= δT.

If δ > 0, i.e. for H+
1 , we reject if T is large; if δ < 0, i.e. for H−

1 , we reject if
T is small.

Sometimes the exact null distribution of T is available; more often we
use that T ≈ normal (by CLT, see Chapter 5), zero mean. To find the
approximate variance:

1. compute I(ψ0, λ)

2. invert to I−1

3. take the diagonal element corresponding to ψ

4. invert this element

5. replace λ by the null hypothesis MLE λ̂0.

Denote the result by v, then Z = T/
√
v ≈ N (0, 1) under H0.

A considerable advantage is that the unconstrained MLE ψ̂ is not re-
quired.

Example: linear or non-linear model? We can extend the linear
model Yj = (xTj β)+ εj, where ε1, . . . , εn i.i.d. N (0, σ2), to a non-linear model

Yj = (xTj β)ψ + εj
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with the same ε’s. Test H0 : ψ = 1: usual linear model, against, say,
H−

1 : ψ < 1. Here our nuisance parameters are λT = (βT , σ2).

Write ηj = xTj β, and denote the usual linear model fitted values by η̂j0 =

xTj β̂0, where the estimates are obtained under H0. As Yj ∼ N (ηj, σ
2), we

have up to an irrelevant additive constant,

`(ψ, β, σ) = −n log σ − 1

2σ2

∑
(yj − ηψj )2,

and so
∂`

∂ψ
=

1

σ2

∑
(yj − ηψj )ηψj log ηj,

yielding that the null MLE’s are the usual LSEs (least-square estimates),
which are

β̂0 = (XTX)−1XTY, σ̂2 = n−1
∑

(Yj − xTj β̂0)
2.

So the score test statistic becomes

T =
1

σ̂2

∑
(Yj − η̂j0)(η̂j0 log η̂j0).

We reject H0 for large negative values of T .

Compute approximate null variance (see below):

I(ψ0, β, σ) =
1

σ2

 ∑
u2
j

∑
ujx

T
j 0∑

ujxj
∑
xjx

T
j 0

0 0 2n


where uj = ηj log ηj. The (1, 1) element of the inverse of I has reciprocal(

uTu− uTX(XTX)−1XTu
) /
σ2,

where uT = (u1, . . . , un). Substitute η̂j0 for ηj and σ̂2 for σ2 to get v. For
the approximate p-value calculate z = t/

√
v and set p = Φ(z).

Calculation trick: To compute the (1, 1) element of the inverse of I above:
if

A =

(
a xT

x B

)
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where a is a scalar, x is an (n− 1)× 1 vector and B is an (n− 1)× (n− 1)
matrix, then (A−1)11 = 1/(a− xTB−1x).

Recall also:

∂

∂ψ
ηψ =

∂

∂ψ
eψ ln η = ln ηeψ ln η = ηψ ln η.

For the (1, 1)-entry of the information matrix, we calculate

∂2`

∂ψ2
=

1

σ2

∑{
(−ηψj log ηj)η

ψ
j log ηj + (yj − ηψj )ηψj (log ηj)

2
}
,

and as Yj ∼ N (ηj, σ
2) we have

E

{
− ∂2`

∂ψ2

}
=

1

σ2

∑
ηψj log ηjη

ψ
j log ηj =

1

σ2

∑
u2
j ,

as required. The off-diagonal terms in the information matrix can be calcu-
lated in a similar way, using that ∂

∂β
η = xTj .

3.6 Multiple tests

When many tests applied to the same data, there is a tendency for some
p-values to be small: Suppose P1, . . . , Pm are the random P -values for m
independent tests at level α (before seeing the data); for each i, suppose that
P (Pi ≤ α) = α if the null hypothesis is true. But then the probability that at
least one of the null hypothesis is rejected if m independent tests are carried
out is

1− P ( none rejected) = 1− (1− α)m.

Example: If α = 0.05 and m = 10, then

P ( at least one rejected |H0 true ) = 0.4012.

Thus with high probability at least one ”significant” result will be found
even when all the null hypotheses are true.
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Bonferroni: The Bonferroni inequality gives that

P (minPi ≤ α|H0) ≤
m∑
i=1

P (Pi ≤ α|H0) ≤ mα.

A cautious approach for an overall level α is therefore to declare the most
significant of m test results as significant at level p only if min pi ≤ p/m.

Example: If α = 0.05 and m = 10, then reject only if the p-value is less
than 0.005.

3.7 Combining independent tests

Suppose we have k independent experiments/studies for the same null hy-
pothesis. If only the p-values are reported, and if we have continuous distribu-
tion, we may use that under H0 each p-value is U [0, 1] uniformly distributed
(see Exercise). This gives that

−2
k∑
i=1

logPi ∼ χ2
2k

(exactly) under H0, so

pcomb = P(χ2
2k ≥ −2

∑
log pi).

If each test is based on a statistic T such that Ti ≈ N (0, vi), then the
best combination statistic is

Z =
∑

(Ti/vi)/
√∑

v−1
i .

If H0 is a hypothesis about a common parameter ψ, then the best com-
bination of evidence is ∑

`P,i(ψ),

and the combined test would be derived from this (e.g., an LR or score test).
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Advice
Even though a test may initially be focussed on departures in one direc-

tion, it is usually a good idea not to totally disregard departures in the other
direction, even if they are unexpected.

Warning:
Not rejecting the null hypothesis does not mean that the null hypothesis

is true! Rather it means that there is not enough evidence to reject the null
hypothesis; the data are consistent with the null hypothesis.

The p-value is not the probability that the null hypothesis is true.

3.8 Nonparametric tests

Sometimes we do not have a parametric model available, and the null hy-
pothesis is phrased in terms of arbitrary distributions, for example concerning
only the median of the underlying distribution. Such tests are called non-
parametric or distribution-free; treating these would go beyond the scope of
these lectures.
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Chapter 4

Interval estimation

The goal for interval estimation is to specify the accurary of an estimate. A
1− α confidence set for a parameter θ is a set C(X) in the parameter space
Θ, depending only on X, such that

Pθ
(
θ ∈ C(X)

)
= 1− α.

Note: it is not θ that is random, but the set C(X).

For a scalar θ we would usually like to find an interval

C(X) = [l(X), u(X)]

so that Pθ
(
θ ∈ [l(X), u(X)]

)
= 1 − α. Then [l(X), u(X)] is an interval esti-

mator or confidence interval for θ; and the observed interval [l(x), u(x)] is
an interval estimate. If l is −∞ or if u is +∞, then we have a one-sided
estimator/estimate. If l is −∞, we have an upper confidence interval, if u is
+∞, we have an lower confidence interval.

Example: Normal, unknown mean and variance. Let X1, . . . , Xn

be a random sample from N (µ, σ2), where both µ and σ2 are unknown. Then
(X − µ)/(S/

√
n) ∼ tn−1 and so

1− α = Pµ,σ2

(∣∣∣∣X − µ

S/
√
n

∣∣∣∣ ≤ tn−1,1−α/2

)
= Pµ,σ2(X − tn−1,1−α/2S/

√
n ≤ µ ≤ X + tn−1,1−α/2S/

√
n),

and so the (familiar) interval with end points

X ± tn−1,1−α/2S/
√
n

is a 1− α confidence interval for µ.
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4.1 Construction of confidence sets

4.1.1 Pivotal quantities

A pivotal quantity (or pivot) is a random variable t(X, θ) whose distribution
is independent of all parameters, and so it has the same distribution for all θ.

Example: (X − µ)/(S/
√
n) in the example above has tn−1-distribution if

the random sample comes from N (µ, σ2).

We use pivotal quantities to construct confidence sets, as follows. Suppose
θ is a scalar. Choose a, b such that

Pθ(a ≤ t(X, θ) ≤ b) = 1− α.

Manipulate this equation to give Pθ
(
l(X) ≤ θ ≤ u(X)

)
= 1 − α (if t is a

monotonic function of θ); then [l(X), u(X)] is a 1− α confidence interval for
θ.

Example: Exponential random sample. Let X1, . . . , Xn be a ran-
dom sample from an exponential distribution with unknown mean µ. Then
we know that nX/µ ∼ Gamma(n, 1). If the α-quantile of Gamma(n, 1) is
denoted by gn,α then

1− α = Pµ(nX/µ ≥ gn,α) = Pµ(µ ≤ nX/gn,α).

Hence [0, nX/gn,α] is a 1− α confidence interval for µ. Alternatively, we say
that nX/gn,α is the upper 1− α confidence limit for µ.

4.1.2 Confidence sets derived from point estimators

Suppose θ̂(X) is an estimator for a scalar θ, from a known distribution. Then
we can take our confidence interval as

[θ̂ − a1−α, θ̂ + b1−α]

where a1−α and b1−α are chosen suitably.
If θ̂ ∼ N(θ, v), perhaps approximately, then for a symmetric interval

choose
a1−α = b1−α = z1−α/2

√
v.
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Note: [θ̂ − a1−α, θ̂ + b1−α] is not immediately a confidence interval for
θ if v depends on θ: in that case replace v(θ) by v(θ̂), which is a further
approximation.

4.1.3 Approximate confidence intervals

Sometimes we do not have an exact distribution available, but normal ap-
proximation is known to hold.

Example: asymptotic normality of m.l.e. . We have seen that,
under regularity, θ̂ ≈ N

(
θ, I−1(θ)

)
. If θ is scalar, then (under regularity)

θ̂ ± z1−α/2/

√
I(θ̂)

is an approximate 1− α confidence interval for θ.

Sometimes we can improve the accuracy by applying (monotone) trans-
formation of the estimator, using the delta method, and inverting the trans-
formation to get the final result.

As a guide line for transformations, in general a normal approximation
should be used on a scale where a quantity ranges over (−∞,∞).

Example: Bivariate normal distribution. Let (Xi, Yi), i = 1, . . . , n,
be a random sample from a bivariate normal distribution, with unknown
mean vector and covariance matrix. The parameter of interest is ρ, the
bivariate normal correlation. The MLE for ρ is the sample correlation

R =

∑n
i=1(Xi −X)(Yi − Y )√∑n

i=1(Xi −X)2
∑n

i=1(Yi − Y )2

,

whose range is [−1, 1]. For large n,

R ≈ N(ρ, (1− ρ2)2/n),

using the expected Fisher information matrix to obtain an approximate vari-
ance (see the section on asymptotic theory).

But the distribution of R is very skewed, the approximation is poor un-
less n is very large. For a variable whose range is (−∞,∞), we use the
tranformation

Z =
1

2
log[(1 +R)/(1−R)];
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this transformation is called the Fisher z transformation. By the delta
method,

Z ≈ N(ζ, 1/n)

where ζ = 1
2
log[(1 + ρ)/(1 − ρ)]. So a 1 − α confidence interval for ρ can

be calculated as follows: for ζ compute the interval limits Z ± z1−α/2/
√
n,

then transform these to the ρ scale using the inverse transformation ρ =
(e2ζ − 1)/(e2ζ + 1).

4.1.4 Confidence intervals derived from hypothesis tests

Define C(X) to be the set of values of θ0 for which H0 would not be rejected
in size-α tests of H0 : θ = θ0. Here the form of the 1 − α confidence set
obtained depends on the alternative hypotheses.
Example: to produce an interval with finite upper and lower limits use H1 :
θ 6= θ0; to find an upper confidence limit use H−

1 : θ < θ0.

Example: Normal, known variance, unknown mean. LetX1, . . . , Xn

be i.i.d. N(µ, σ2), where σ2 known. For H0 : µ = µ0 versus H1 : µ 6= µ0 the
usual test has an acceptance region of the form∣∣∣∣X − µ0

σ/
√
n

∣∣∣∣ ≤ z1−α/2.

So the values of µ0 for which H0 is accepted are those in the interval

[X − z1−α/2σ/
√
n,X + z1−α/2σ/

√
n];

this interval is a 100(1− α)% confidence interval for µ.

For H0 : µ = µ0 versus H−
1 : µ < µ0 the UMP test accepts H0 if

X ≥ µ0 − z1−ασ/
√
n

i.e., if
µ0 ≤ X + z1−ασ/

√
n.

So an upper 1− α confidence limit for µ is X + z1−ασ/
√
n.
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4.2 Hypothesis test from confidence regions

Conversely, we can also construct tests based on confidence interval:
For H0 : θ = θ0 against H1 : θ 6= θ0, if C(X) is 100(1 − α)% two-sided

confidence region for θ, then for a size α test reject H0 if θ0 6= C(X): The
confidence region is the acceptance region for the test.

If θ is a scalar: ForH0 : θ = θ0 againstH−
1 : θ < θ0, if C(X) is 100(1−α)%

upper confidence region for θ, then for a size α test reject H0 if θ0 6= C(X).

Example: Normal, known variance. Let X1, . . . , Xn ∼ N(µ, σ2) be
i.i.d., where σ2 is known. For H0 : µ = µ0 versus H1 : µ 6= µ0 the usual
100(1− α)% confidence region is

[X − z1−α/2σ/
√
n,X + z1−α/2σ/

√
n],

so reject H0 if ∣∣∣∣X − µ0

σ/
√
n

∣∣∣∣ > z1−α/2.

To test H0 : µ = µ0 versus H−
1 : µ < µ0: an upper 100(1−α)% confidence

region is X + z1−α/2σ/
√
n, so reject H0 if

µ0 > X + z1−ασ/
√
n

i.e. if
X < µ0 − z1−ασ/

√
n.

We can also construct approximate hypothesis test based on approximate
confidence intervals. For example, we use the asymptotic normality of m.l.e.
to derive a Wald test.

4.3 Prediction Sets

What is a set of plausible values for a future data value? A 1− α prediction
set for an unobserved random variable Xn+1 based on the observed data
X = (X1, . . . , Xn) is a random set P (X) for which

P(Xn+1 ∈ P (X)) = 1− α.
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Sometimes such a set can be derived by finding a prediction pivot t(X, Xn+1)
whose distribution does not depend on θ. If a setR is such that P(t(X, Xn+1) ∈
R) = 1− α, then a 1− α prediction set is

P (X) = {Xn+1 : t(X, Xn+1) ∈ R}.

Example: Normal, unknown mean and variance. LetX1, . . . , Xn ∼
N(µ, σ2) be i.i.d., where both µ and σ2 are unknown. A possible prediction
pivot is

t(X, Xn+1) =
Xn+1 −X

S
√

1 + 1
n

.

As X ∼ N(µ, σ
2

n
) and Xn+1 ∼ N(µ, σ2) is independent of X, it follows that

Xn+1 − X ∼ N(0, σ2(1 + 1/n)), and so t(X, Xn+1) has tn−1 distribution.
Hence a 1− α prediction interval is

{Xn+1 : |t(X, Xn+1)| ≤ tn−1,1−α/2}

=

{
Xn+1 : X − S

√
1 +

1

n
tn−1,1−α/2 ≤ Xn+1 ≤ X + S

√
1 +

1

n
tn−1,1−α/2

}
.
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Chapter 5

Asymptotic Theory

What happens as n→∞?

Let θ = (θ1, . . . , θp) be the parameter of interest, let `(θ) be the log-
likelihood. Then `′(θ) is a vector, with jth component ∂`/∂θj, and I(θ) =
In(θ) is the Fisher information matrix, whose (j, k) entry is Eθ (−∂2`/∂θj∂θk).

5.1 Consistency

A sequence of estimators Tn for θ, where Tn = tn(X1, . . . , Xn), is said to be
consistent if, for any ε > 0,

Pθ(|Tn − θ| > ε) → 0 as n→∞.

In that case we also say that Tn converges to θ in probability.

Example: the sample mean. Let Xn be and i.i.d. sample of size n,
with finite variance, mean θ then, by the weak law of large numbers, Xn is
consistent for θ.

Recall: The weak law of large numbers states: Let X1, X2, . . . be a se-
quence of independent random variablles with E(Xi) = µ and V ar(Xi) = σ2,
and let Xn = 1

n

∑n
i=1Xi. Then, for any ε > 0m

P (|Xn − µ| > ε) → 0 as n→∞.
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A sufficient condition for consistency is thatBias(Tn) → 0 and Var(Tn) →
0 as n→∞. (Use Chebyshev inequality to show this fact).

Subject to regularity conditions, MLEs are consistent.

5.2 Distribution of MLEs

Assume that X1, . . . , Xn i.i.d. where θ scalar, and θ̂ = θ̂(X) is the m.l.e.;
assume that θ̂ exists and is unique. In regular problems, θ̂ is solution to the
likelihood equation `′(θ) = 0. Then Taylor expansion gives

0 = `′(θ̂) ≈ `′(θ) + (θ̂ − θ)`′′(θ)

and so

−`′′(θ)
I(θ)

(θ̂ − θ) ≈ `′(θ)

I(θ)
. (5.1)

For the left hand side of (5.1):

−`′′(θ)/I(θ) =
∑

Yi/(nµ)

where
Yi = ∂2/∂θ2{log f(Xi; θ)}

and µ = E(Yi). The weak law of large numbers gives that

−`′′(θ)/I(θ) → 1

in probability, as n→∞. So

θ̂ − θ ≈ `′(θ)

I(θ)
.

For the right hand side of (5.1),

`′(θ) =
∑

∂/∂θ{log f(Xi; θ)}
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is the sum of i.i.d. random variables. By the CLT, `′(θ) is approximately
normal with mean E[`′(θ)] = 0 and variance Var`′(θ) = I(θ), and hence
`′(θ) ≈ N(0, I(θ)) or

`′(θ)/I(θ) ≈ N(0, [I(θ)]−1). (5.2)

Combining:
θ̂ − θ ≈ N(0, [I(θ)]−1).

Result:

θ̂ ≈ N(θ, [I(θ)]−1) (5.3)

is the approximate distribution of the MLE.

The above argument generalizes immediately to θ being a vector: if θ
has p components, say, then θ̂ is approximately multivariate normal in p-
dimensions with mean vector θ and covariance matrix [I(θ)]−1.

In practice we often use I(θ̂) in place of I(θ).
A corresponding normal approximation applies to any monotone trans-

formation of θ̂ by the delta method, as seen before.

Back to our tests:
1. Wald test
2. Score test (LMP test)
3. Generalized LR test.

A normal approximation for the Wald test follows immediately from (5.3).

5.3 Normal approximation for the LMP/score

test

Test H0 : θ = θ0 against H+
1 : θ > θ0 (where θ is a scalar:) We reject H0

if `′(θ) is large (in contrast, for H0 versus H−
1 : θ < θ0, small values of `′(θ)

would indicate H−
1 ). The score test statistic is `′(θ)/

√
I(θ). From (5.2) we

obtain immediately that

`′(θ)/
√
I(θ) ≈ N (0, 1).

To find an (approximate) rejection region for the test: use the normal ap-
proximation at θ = θ0, since the rejection region is calculated under the
assumption that H0 is true.
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5.4 Chi-square approximation for the gener-

alized likelihood ratio test

Test H0 : θ = θ0 against H1 : θ 6= θ0, where θ is scalar. Reject H0 if
L(θ̂;X)/L(θ;X) is large; equivalently, reject for large

2 logLR = 2[`(θ̂)− `(θ)].

We use Taylor expansion around θ̂:

`(θ̂)− `(θ)

≈ −(θ − θ̂)`′(θ̂)− 1
2
(θ − θ̂)2`′′(θ̂)

Setting `′(θ̂) = 0, we obtain

`(θ̂)− `(θ) ≈ −1
2
(θ − θ̂)2`′′(θ̂).

By the consistency of θ̂, we may approximate

`′′(θ̂) ≈ −I(θ)

to get

2[`(θ̂)− `(θ)] ≈ (θ − θ̂)2I(θ) =

(
θ − θ̂√
I−1(θ)

)2

.

From (5.2), the asymptotic normality of θ̂, and as χ2
1 variable is the square

of a N(0, 1) variable, we obtain that

2 logLR = 2[`(θ̂)− `(θ)] ≈ χ2
1.

We can calculate a rejection region for the test of H0 versus H1 under this
approximation.

For θ = (θ1, . . . , θp), testing H0 : θ = θ0 versus H1 : θ 6= θ0, the dimension

of the normal limit for θ̂ is p, hence the degrees of freedom of the related
chi-squared variables are also p:

`′(θ)T [I(θ)]−1`′(θ) ≈ χ2
p

and
2 logLR = 2[`(θ̂)− `(θ)] ≈ χ2

p.
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5.5 Profile likelihood

Now θ = (ψ, λ), and λ̂ψ is the MLE of λ when ψ fixed. Recall the profile

log-likelihood `P (ψ) = `(ψ, λ̂ψ).

5.5.1 One-sided score test

We test H0 : ψ = ψ0 against H+
1 : ψ > ψ0; we reject H0 based on large values

of the score function T = `′ψ(ψ, λ̂ψ). Again T has approximate mean zero.

For the approximate variance of T , we expand

T ≈ `′ψ(ψ, λ) + (λ̂ψ − λ)`′′ψ,λ(ψ, λ).

From (5.1),
θ̂ − θ ≈ I−1`′.

We write this as(
ψ̂ − ψ

λ̂− λ

)
≈
(
Iψ,ψ Iψ,λ
Iψ,λ Iλ,λ

)−1(
`′ψ
`′λ

)
.

Here `′ψ = ∂`/∂ψ, `′λ = ∂`/∂λ, `′′ψ,λ = ∂2`/∂ψ∂λ, Iψ,ψ = E[−`′′ψ,ψ] etc. Now

substitute λ̂ψ − λ ≈ I−1
λ,λ`

′
λ and put

`′′ψ,λ ≈ −Iψ,λ.

Calculate

V (T ) ≈ Iψ,ψ + (I−1
λ,λ)

2I2
ψ,λIλ,λ − 2I−1

λ,λIψ,λIψ,λ

to get

T ≈ `′ψ − I−1
λ,λIψ,λ`

′
λ ≈ N(0, 1/Iψ,ψ),

where Iψ,ψ = (Iψ,ψ − I2
ψ,λI

−1
λ,λ)

−1 is the top left element of I−1. Estimate
the Fisher information by substituting the null hypothesis values. Finally
calculate the practical standardized form of T as

Z =
T√

Var(T )
≈ `′ψ(ψ, λ̂ψ)[Iψ,ψ(ψ, λ̂ψ)]1/2 ≈ N(0, 1).

Similar results for vector-valued ψ and vector-valued λ hold, with obvious
modifications, provided that the dimension of λ is fixed (i.e., independent of
the sample size n).
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5.5.2 Two-sided likelihood ratio tests

Assume that ψ and λ are scalars. We use similar arguments as above, in-
cluding Taylor expansion, for

2 logLR = 2
[
`(ψ̂, λ̂)− `(ψ, λ̂ψ)

]
to obtain

2 logLR ≈ (ψ̂ − ψ)2/Iψ,ψ ≈ χ2
1, (5.4)

where Iψ,ψ = (Iψ,ψ−I2
ψ,λI

−1
λ,λ)

−1 is the top left element of I−1. The chi-squared

approximation above follows from ψ̂ − ψ ≈ normal.

(Details can be found in the additional material at the end of this section.)

In general, if θ is p-dimensional, then 2 logLR ≈ χ2
p.

Note: This result applies to the comparison of nested models, i.e., where
one model is a special case of the other, but it does not apply to the com-
parison of non-nested models.

5.6 Connections with deviance

In GLM’s, the deviance is usually 2 logLR for two nested models, one the
saturated model with a separate parameter for every response and the other
the GLM (linear regression, log-linear model, etc.) For normal linear models
the deviance equals the RSS. The general chi-squared result above need not
apply to the deviance, because λ has dimension n−p where p is the dimension
of the GLM.

But the result does apply to deviance differences: Compare the GLM fit
with p parameters (comprising θ = (ψ, λ)) to a special case with only q (< p)
parameters (i.e., with ψ omitted), then 2 logLR for that comparison is the
deviance difference, and in the null case (special case correct) ≈ χ2

p−q.
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5.7 Confidence regions

We can construct confidence regions based on the asymptotic normal distri-
butions of the score statistic and the MLE, or on the chi-square approxima-
tion to the likelihood ratio statistic, or to the profile likelihood ratio statistic.
These are equivalent in the limit n→∞, but they may display slightly dif-
ferent behaviour for finite samples.

Example: Wald-type interval. Based on the asymptotic normality
of a p-dimensional θ̂, an approximate 1− α confidence region is

{θ : (θ̂ − θ)T I(θ̂)(θ̂ − θ) ≤ χ2
p,1−α}.

As an alternative to using I(θ̂) we could use J(θ̂), the observed information
or observed precision evaluated at θ̂, where [J(θ)]jk = −∂2`/∂θj∂θk.

An advantage of the first type of region is that all values of θ inside
the confidence region have higher likelihood than all values of θ outside the
region.

Example: normal sample, known variance. Let X1, . . . , Xn ∼
N(µ, σ2) be i.i.d, with σ2 known. The log LR difference is

`(µ̂;x)− `(µ;x)

= − 1

2σ2

[∑
(xi − x)2 −

∑
(xi − µ)2

]
=

n(x− µ)2

2σ2
,

so an approximate confidence interval is given by the values of µ satisfying

n(X − µ)2

2σ2
≤ 1

2
χ2

1,1−α or

∣∣∣∣X − µ

σ/
√
n

∣∣∣∣ ≤ z1−α/2,

which gives the same interval as in Chapter 4. In this case the approximate
χ2 result is, in fact, exact.

5.8 Additional material: Derivation of (5.4)

Assume ψ and λ scalars, then(
ψ̂ − ψ

λ̂− λ

)
≈
(
Iψ,ψ Iψ,λ
Iψ,λ Iλ,λ

)−1(
`′ψ
`′λ

)
.
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Similarly we have that

λ̂ψ − λ ≈ I−1
λ,λ`

′
λ.

As
`′λ ≈ Iψ,λ(ψ̂ − ψ) + Iλ,λ(λ̂− λ),

we obtain

λ̂ψ − λ ≈ λ̂− λ+ Iψ,λI
−1
λ,λ(ψ̂ − ψ).

Taylor expansion gives

2 logLR = 2
[
`(ψ̂, λ̂)− `(ψ, λ̂ψ)

]
= 2

[
`(ψ̂, λ̂)− `(ψ, λ)

]
− 2

[
`(ψ, λ̂ψ)− `(ψ, λ)

]
≈ (ψ − ψ̂, λ− λ̂)I(ψ − ψ̂, λ− λ̂)T − (0, λ− λ̂ψ)I(0, λ− λ̂ψ)T .

Substituting for λ̂ψ − λ gives

2 logLR ≈ (ψ̂ − ψ)2/Iψ,ψ ≈ χ2
1,

where Iψ,ψ = (Iψ,ψ − I2
ψ,λI

−1
λ,λ)

−1 is the top left element of I−1. This is what
we wanted to show.
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