Statistical Theory MT 2009

Problems 4: Solution sketches

1. Suppose that X has a Poisson distribution with unknown mean θ.

Determine the Jeffreys prior π^{J} for θ, and discuss whether the "scale-invariant" prior $\pi_{0}(\theta)=1 / \theta$ might be preferrable as noninformative prior.

Solution: The Poisson probability mass function is $f(x \mid \theta)=e^{-\theta \frac{\theta^{x}}{x!}}, \quad x=0,1, \ldots$ An element $\pi(\theta)$ of the conjugate prior family is given by

$$
\pi(\theta) \propto e^{-\tau_{0} \theta} \theta^{\tau_{1}}, \quad \theta>0
$$

For this to be a proper prior we require $\tau_{0}>0$ and $\tau_{1}>-1$. The posterior density of θ given x is then given by

$$
\pi(\theta \mid x) \propto e^{-\left(\tau_{0}+1\right) \theta} \theta^{\tau_{1}+x}, \quad \theta>0
$$

which is a Gamma distribution with parameters $\alpha=\tau_{1}+x+1$ and $\beta=\tau_{0}+1$. To obtain the Jeffreys prior we need the Fisher information $I(\theta)$. Note that

$$
\frac{\partial^{2}}{\partial \theta^{2}} \log f(x \mid \theta)=-\frac{x}{\theta^{2}}
$$

so

$$
I(\theta)=-E\left(\frac{\partial^{2}}{\partial \theta^{2}} \log f(X \mid \theta)\right)=\frac{\theta}{\theta^{2}}=\frac{1}{\theta} .
$$

It follows that the Jeffreys prior is

$$
\pi^{J}(\theta) \propto \theta^{-\frac{1}{2}}, \quad \theta>0
$$

Comparison with scale-invariant prior: If your relative beliefs about any two parameter values θ_{1} and θ_{2} depend only on their ratio θ_{1} / θ_{2}, then you will be led to the scaleinvariant prior, $\pi_{0}=1 / \theta$. If on the other hand you insist that the prior distribution of θ is invariant under parametric transformatinos then you are led to the Jeffreys prior. In this example, these two philosophies are incompatible.
2. Suppose again that X has a Poisson distribution with unknown mean θ.

Using π^{J} as the reference measure, find the maximum entropy prior under the constraints that the prior mean and variance of θ are both 1 . (Just write it in terms of the constraints λ_{1} and λ_{2} from lectures, do not solve for these.)
Repeat, for the reference measure π_{0}. (Again, just write it in terms of the constraints λ_{1} and λ_{2} from lectures, do not solve for these.)

Solution: Maximum entropy prior: The constraints are $E_{\pi}(\theta)=1$ and $E_{\pi}\left((\theta-1)^{2}\right)=$ 1 , and the reference measure is $\pi_{r e f}(\theta)=\pi^{J}(\theta) \propto \theta^{-\frac{1}{2}}$. By definition, the prior
density that maximises the entropy relative to the reference density $\pi_{r e f}$ and satisfies m constraints is

$$
\tilde{\pi}(\theta)=\frac{\pi_{r e f}(\theta) \exp \left(\sum_{k=1}^{m} \lambda_{k} g_{k}(\theta)\right)}{\int \pi_{r e f}(\theta) \exp \left(\sum_{k=1}^{m} \lambda_{k} g_{k}(\theta)\right) d \theta}
$$

and in our case $m=2, g_{1}(\theta)=\theta, g_{2}(\theta)=(\theta-1)^{2}$, and so

$$
\tilde{\pi}(\theta) \propto \theta^{-\frac{1}{2}} \exp \left(\lambda_{1} \theta+\lambda_{2}(\theta-1)^{2}\right)
$$

Similarly, when the reference measure is $\pi_{r e f}=\pi_{0}$, then the maximum entropy prior is

$$
\tilde{\pi}(\theta) \propto \theta^{-1} \exp \left(\lambda_{1} \theta+\lambda_{2}(\theta-1)^{2}\right)
$$

Side remark: Poisson process: The probability density of the inter-arrival times in a Poisson process is

$$
f(x \mid \lambda)=\lambda e^{-\lambda x}
$$

For this density the Fisher information is

$$
\frac{\partial^{2}}{\partial \lambda^{2}}(-\log \lambda+\lambda x)=\frac{1}{\lambda^{2}},
$$

so that the Jeffreys prior for λ is proportional to $1 / \lambda$. Since $\theta=\lambda T$ and T is a known constant, this implies that, from the perspective of inter-arrival times, the prior density for θ should also be proportional to $1 / \theta$.
3. Suppose that x_{1}, \ldots, x_{n} is a random sample from a Poisson distribution with unknown mean θ. Two models for the prior distribution of θ are contemplated;

$$
\pi_{1}(\theta)=e^{-\theta}, \quad \theta>0, \text { and } \pi_{2}(\theta)=e^{-\theta} \theta, \quad \theta>0
$$

(a) Calculate the the Bayes estimator of θ under both models, with quadratic loss function.
(b) The prior probabilities of model 1 and model 2 are assessed at probability $1 / 2$ each. Calculate the Bayes factor for H_{0} :model 1 applies against H_{1} :model 2 applies.

Solution:

(a) We calculate

$$
\pi_{1}(\theta \mid \mathbf{x}) \propto e^{-n \theta} \theta \sum x_{i} e^{-\theta}=e^{-(n+1) \theta} \theta \sum x_{i},
$$

which we recognize as $\operatorname{Gamma}\left(\sum x_{i}+1, n+1\right)$. The Bayes estimator is the expected value of the posterior distribution, $\frac{\sum x_{i}+1}{n+1}$. For Model 2,

$$
\pi_{2}(\theta \mid \mathbf{x}) \propto e^{-n \theta} \theta \theta^{\sum x_{i}} e^{-\theta} \theta=e^{-(n+1) \theta} \theta{ }^{\sum x_{i}+1}
$$

which we recognize as $\operatorname{Gamma}\left(\sum x_{i}+2, n+1\right)$. The Bayes estimator is the expected value of the posterior distribution, $\frac{\sum x_{i}+2}{n+1}$. Note that the first model has greater weight for smaller values of θ, so the posterior distribution is shifted to the left.
(b) The prior probabilities of model 1 and model 2 are assessed at probability $1 / 2$ each. Then the Bayes factor is

$$
\begin{aligned}
B(\mathbf{x}) & =\frac{\int_{0}^{\infty} e^{-n \theta} \theta \sum x_{i} e^{-\theta} d \theta}{\int_{0}^{\infty} e^{-n \theta} \theta \sum x_{i} e^{-\theta} \theta d \theta} \\
& =\frac{\Gamma\left(\sum x_{i}+1\right) /\left((n+1)^{\sum x_{i}+1}\right)}{\Gamma\left(\sum x_{i}+2\right) /\left((n+1)^{\sum x_{i}+2}\right)}=\frac{n+1}{\sum x_{i}+1} .
\end{aligned}
$$

Note that in this setting

$$
B(\mathbf{x})=\frac{P(\text { Model } 1 \mid \mathbf{x})}{P(\operatorname{Model} 2 \mid \mathbf{x})}=\frac{P(\text { Model } 1 \mid \mathbf{x})}{1-P(\operatorname{Model} 1 \mid \mathbf{x})}
$$

so that $P(\operatorname{Model} 1 \mid \mathbf{x})=\left(1+B(\mathbf{x})^{-1}\right)^{-1}$. Hence

$$
P(\text { Model } 1 \mid \mathbf{x})=\left(1+\frac{\sum x_{i}+1}{n+1}\right)^{-1}=\left(1+\frac{\bar{x}+\frac{1}{n}}{1+\frac{1}{n}}\right)^{-1}
$$

which is decreasing for \bar{x} increasing.
4. ${ }^{*}$ Let θ be a real-valued parameter and let $f(x \mid \theta)$ be the probability density function of an observation x, given θ. The prior distribution of θ has a discrete component that gives probability β to the point null hypothesis $H_{0}: \theta=\theta_{0}$. The remainder of the distribution is continuous, and conditional on $\theta \neq \theta_{0}$, its density is $g(\theta)$.
(a) Derive an expression for $\pi\left(\theta_{0} \mid x\right)$, the posterior probability of H_{0}.
(b) Derive the Bayes factor $B(x)$ for the null hypothesis against the alternative.
(c) Express $\pi\left(\theta_{0} \mid x\right)$ in terms of $B(x)$.
(d) Explain how you would use $B(x)$ to construct a most powerful test of size α for H_{0}, against the alternative $H_{1}: \theta \neq \theta_{0}$.

Solution:

(a) Following lectures, the posterior probability of θ_{0} is

$$
\pi\left(\theta_{0} \mid x\right)=\frac{\beta f\left(x \mid \theta_{0}\right)}{\beta f\left(x \mid \theta_{0}\right)+(1-\beta) m(x)}
$$

where

$$
m(x)=\int f(x \mid \theta) g(\theta) d \theta
$$

(b) The Bayes factor is

$$
\begin{aligned}
B(x) & =\frac{\frac{P\left(\theta=\theta_{0} \mid x\right)}{P\left(\theta \neq \theta_{0} \mid x\right)}}{\frac{P\left(\theta=\theta_{0}\right)}{P\left(\theta \neq \theta_{0}\right)}} \\
& =\frac{\beta f\left(x \mid \theta_{0}\right)}{\beta f\left(x \mid \theta_{0}\right)+(1-\beta) m(x)} \times \frac{\beta f\left(x \mid \theta_{0}\right)+(1-\beta) m(x)}{(1-\beta) m(x)} / \frac{\beta}{1-\beta} \\
& =\frac{f\left(x \mid \theta_{0}\right)}{m(x)} .
\end{aligned}
$$

(c) From lectures,

$$
\pi\left(\theta_{0} \mid x\right)=\left(1+\frac{1-\beta}{\beta B(x)}\right)^{-1}
$$

(d) The simple hypothesis $\theta=\theta_{0}$ can be tested against the simple hypothesis that the density of x is $\int f(x \mid \theta) g(\theta) d \theta$; i.e. $H_{0}: x \sim f(x \mid \theta)$ and $H_{1}: x \sim m(x)$.
The Neyman-Pearson Lemma says that the most powerful test of size α rejects H_{0} when $f(x \mid \theta) / m(x)<C_{\alpha}$, where C_{α} is chosen such that

$$
\int_{\left\{x: f(x \mid \theta) / m(x)<C_{\alpha}\right\}} f(x \mid \theta) d x=\alpha .
$$

So we reject when $B(x)<C_{\alpha}$.
5. Suppose that x_{1}, \ldots, x_{n} is a sample from a normal distribution with mean θ and variance v. Let $H_{0}: \theta=0$, and let the alternative be $H_{1}: \theta \neq 0$. The prior distribution of θ has a discrete component that gives probability $1 / 2$ to the point null hypothesis H_{0}; the remainder of the prior distribution is continuous, and conditional on $\theta \neq \theta_{0}$, its density is $g(\theta)$ given by

$$
g(\theta)=\left(2 \pi w^{2}\right)^{-1 / 2} \exp \left\{-\theta^{2} /\left(2 w^{2}\right)\right\}
$$

for $-\infty<\theta<\infty$. Show that, if the sample mean is observed to be $10(v / n)^{1 / 2}$, then
(a) the likelihood ratio test of size $\alpha=0.05$ will reject H_{0} for any value of n;
(b) the posterior probability of H_{0} converges to 1 , as $n \rightarrow \infty$.

Solution:

(a) We now have $x=\left(x_{1}, \ldots, x_{n}\right)$. The statistic \bar{x} is sufficient. Under $H_{0}, \bar{x} \sim$ $N(0, v / n)$ and under $H_{1}, \bar{x} \sim N\left(0, v / n+w^{2}\right)$. The most powerful test rejects when $|\bar{x} / \sqrt{v / n}|>C_{\alpha / 2}$. For a 5% test, $C_{\alpha / 2}$ is certainly less than 2 , therefore with the observed value of x the test will reject H_{0} at the 5% level.
(b) However the Bayes factor is

$$
B(\bar{x})=\frac{\frac{1}{\sqrt{v / n}} \exp \left\{-\frac{10^{2} v / n}{2 v / n}\right\}}{\frac{1}{\sqrt{v / n+w^{2}}} \exp \left\{-\frac{10^{2} 2 / n}{2\left(v / n+w^{2}\right.}\right\}} \rightarrow \infty \text { as } n \rightarrow \infty .
$$

Therefore the posterior probability of H_{0} converges to 1 (contrasting with the conclusion of the frequentist test).

