Statistical Theory MT 2009

Problems 4: Solution sketches

1. Suppose that X has a Poisson distribution with unknown mean θ .

Determine the Jeffreys prior π^J for θ , and discuss whether the "scale-invariant" prior $\pi_0(\theta) = 1/\theta$ might be preferrable as noninformative prior.

Solution: The Poisson probability mass function is $f(x|\theta) = e^{-\theta} \frac{\theta^x}{x!}$, x = 0, 1, ... An element $\pi(\theta)$ of the conjugate prior family is given by

$$\pi(\theta) \propto e^{-\tau_0 \theta} \theta^{\tau_1}, \quad \theta > 0.$$

For this to be a proper prior we require $\tau_0 > 0$ and $\tau_1 > -1$. The posterior density of θ given x is then given by

$$\pi(\theta|x) \propto e^{-(\tau_0+1)\theta} \theta^{\tau_1+x}, \quad \theta > 0,$$

which is a Gamma distribution with parameters $\alpha = \tau_1 + x + 1$ and $\beta = \tau_0 + 1$. To obtain the Jeffreys prior we need the Fisher information $I(\theta)$. Note that

$$\frac{\partial^2}{\partial\theta^2}\log f(x|\theta) = -\frac{x}{\theta^2},$$

 \mathbf{SO}

$$I(\theta) = -E\left(\frac{\partial^2}{\partial\theta^2}\log f(X|\theta)\right) = \frac{\theta}{\theta^2} = \frac{1}{\theta}$$

It follows that the Jeffreys prior is

$$\pi^{J}(\theta) \propto \theta^{-\frac{1}{2}}, \quad \theta > 0.$$

Comparison with scale-invariant prior: If your relative beliefs about any two parameter values θ_1 and θ_2 depend only on their ratio θ_1/θ_2 , then you will be led to the scale-invariant prior, $\pi_0 = 1/\theta$. If on the other hand you insist that the prior distribution of θ is invariant under parametric transformations then you are led to the Jeffreys prior. In this example, these two philosophies are incompatible.

2. Suppose again that X has a Poisson distribution with unknown mean θ .

Using π^J as the reference measure, find the maximum entropy prior under the constraints that the prior mean and variance of θ are both 1. (Just write it in terms of the constraints λ_1 and λ_2 from lectures, do not solve for these.)

Repeat, for the reference measure π_0 . (Again, just write it in terms of the constraints λ_1 and λ_2 from lectures, do not solve for these.)

Solution: Maximum entropy prior: The constraints are $E_{\pi}(\theta) = 1$ and $E_{\pi}((\theta-1)^2) = 1$, and the reference measure is $\pi_{ref}(\theta) = \pi^J(\theta) \propto \theta^{-\frac{1}{2}}$. By definition, the prior

density that maximises the entropy relative to the reference density π_{ref} and satisfies m constraints is

$$\tilde{\pi}(\theta) = \frac{\pi_{ref}(\theta)exp(\sum_{k=1}^{m}\lambda_k g_k(\theta))}{\int \pi_{ref}(\theta)exp(\sum_{k=1}^{m}\lambda_k g_k(\theta))d\theta}$$

and in our case $m = 2, g_1(\theta) = \theta, g_2(\theta) = (\theta - 1)^2$, and so

$$\tilde{\pi}(\theta) \propto \theta^{-\frac{1}{2}} exp(\lambda_1 \theta + \lambda_2 (\theta - 1)^2).$$

Similarly, when the reference measure is $\pi_{ref} = \pi_0$, then the maximum entropy prior is

$$\tilde{\pi}(\theta) \propto \theta^{-1} exp(\lambda_1 \theta + \lambda_2 (\theta - 1)^2).$$

Side remark: *Poisson process:* The probability density of the inter-arrival times in a Poisson process is

$$f(x|\lambda) = \lambda e^{-\lambda x}.$$

For this density the Fisher information is

$$\frac{\partial^2}{\partial \lambda^2}(-\log \lambda + \lambda x) = \frac{1}{\lambda^2},$$

so that the Jeffreys prior for λ is proportional to $1/\lambda$. Since $\theta = \lambda T$ and T is a known constant, this implies that, from the perspective of inter-arrival times, the prior density for θ should also be proportional to $1/\theta$.

3. Suppose that x_1, \ldots, x_n is a random sample from a Poisson distribution with unknown mean θ . Two models for the prior distribution of θ are contemplated;

 $\pi_1(\theta) = e^{-\theta}, \quad \theta > 0, \text{ and } \pi_2(\theta) = e^{-\theta}\theta, \quad \theta > 0.$

- (a) Calculate the Bayes estimator of θ under both models, with quadratic loss function.
- (b) The prior probabilities of model 1 and model 2 are assessed at probability 1/2 each. Calculate the Bayes factor for H_0 :model 1 applies against H_1 :model 2 applies.

Solution:

(a) We calculate

$$\pi_1(\theta|\mathbf{x}) \propto e^{-n\theta} \theta^{\sum x_i} e^{-\theta} = e^{-(n+1)\theta} \theta^{\sum x_i},$$

which we recognize as $Gamma(\sum x_i + 1, n + 1)$. The Bayes estimator is the expected value of the posterior distribution, $\frac{\sum x_i+1}{n+1}$. For Model 2,

$$\pi_2(\theta|\mathbf{x}) \propto e^{-n\theta} \theta^{\sum x_i} e^{-\theta} \theta = e^{-(n+1)\theta} \theta^{\sum x_i+1},$$

which we recognize as $Gamma(\sum x_i + 2, n + 1)$. The Bayes estimator is the expected value of the posterior distribution, $\frac{\sum x_i+2}{n+1}$. Note that the first model has greater weight for smaller values of θ , so the posterior distribution is shifted to the left.

(b) The prior probabilities of model 1 and model 2 are assessed at probability 1/2 each. Then the Bayes factor is

$$B(\mathbf{x}) = \frac{\int_0^\infty e^{-n\theta} \theta \sum_{x_i} e^{-\theta} d\theta}{\int_0^\infty e^{-n\theta} \theta \sum_{x_i} e^{-\theta} d\theta}$$

=
$$\frac{\Gamma(\sum x_i + 1) / ((n+1)\sum_{x_i+1})}{\Gamma(\sum x_i + 2) / ((n+1)\sum_{x_i+2})} = \frac{n+1}{\sum x_i + 1}.$$

Note that in this setting

$$B(\mathbf{x}) = \frac{P(\text{Model } 1 | \mathbf{x})}{P(\text{Model } 2 | \mathbf{x})} = \frac{P(\text{Model } 1 | \mathbf{x})}{1 - P(\text{Model } 1 | \mathbf{x})}$$

so that $P(\text{Model } 1|\mathbf{x}) = (1 + B(\mathbf{x})^{-1})^{-1}$. Hence

$$P(\text{Model } 1|\mathbf{x}) = \left(1 + \frac{\sum x_i + 1}{n+1}\right)^{-1} = \left(1 + \frac{\overline{x} + \frac{1}{n}}{1 + \frac{1}{n}}\right)^{-1},$$

which is decreasing for \overline{x} increasing.

- 4. * Let θ be a real-valued parameter and let $f(x|\theta)$ be the probability density function of an observation x, given θ . The prior distribution of θ has a discrete component that gives probability β to the point null hypothesis $H_0: \theta = \theta_0$. The remainder of the distribution is continuous, and conditional on $\theta \neq \theta_0$, its density is $g(\theta)$.
 - (a) Derive an expression for $\pi(\theta_0|x)$, the posterior probability of H_0 .
 - (b) Derive the Bayes factor B(x) for the null hypothesis against the alternative.
 - (c) Express $\pi(\theta_0|x)$ in terms of B(x).
 - (d) Explain how you would use B(x) to construct a most powerful test of size α for H_0 , against the alternative $H_1: \theta \neq \theta_0$.

Solution:

(a) Following lectures, the posterior probability of θ_0 is

$$\pi(\theta_0|x) = \frac{\beta f(x|\theta_0)}{\beta f(x|\theta_0) + (1-\beta)m(x)},$$

where

$$m(x) = \int f(x|\theta)g(\theta)d\theta.$$

(b) The Bayes factor is

$$B(x) = \frac{\frac{P(\theta=\theta_0|x)}{P(\theta\neq\theta_0|x)}}{\frac{P(\theta=\theta_0)}{P(\theta\neq\theta_0)}}$$

=
$$\frac{\beta f(x|\theta_0)}{\beta f(x|\theta_0) + (1-\beta)m(x)} \times \frac{\beta f(x|\theta_0) + (1-\beta)m(x)}{(1-\beta)m(x)} / \frac{\beta}{1-\beta}$$

=
$$\frac{f(x|\theta_0)}{m(x)}.$$

(c) From lectures,

$$\pi(\theta_0|x) = \left(1 + \frac{1-\beta}{\beta B(x)}\right)^{-1}$$

(d) The simple hypothesis $\theta = \theta_0$ can be tested against the simple hypothesis that the density of x is $\int f(x|\theta)g(\theta)d\theta$; i.e. $H_0: x \sim f(x|\theta)$ and $H_1: x \sim m(x)$. The Neyman-Pearson Lemma says that the most powerful test of size α rejects H_0 when $f(x|\theta)/m(x) < C_{\alpha}$, where C_{α} is chosen such that

$$\int_{\{x:f(x|\theta)/m(x) < C_{\alpha}\}} f(x|\theta) dx = \alpha.$$

So we reject when $B(x) < C_{\alpha}$.

5. Suppose that x_1, \ldots, x_n is a sample from a normal distribution with mean θ and variance v. Let $H_0: \theta = 0$, and let the alternative be $H_1: \theta \neq 0$. The prior distribution of θ has a discrete component that gives probability 1/2 to the point null hypothesis H_0 ; the remainder of the prior distribution is continuous, and conditional on $\theta \neq \theta_0$, its density is $g(\theta)$ given by

$$g(\theta) = (2\pi w^2)^{-1/2} \exp\{-\theta^2/(2w^2)\},\$$

for $-\infty < \theta < \infty$. Show that, if the sample mean is observed to be $10(v/n)^{1/2}$, then

- (a) the likelihood ratio test of size $\alpha = 0.05$ will reject H_0 for any value of n;
- (b) the posterior probability of H_0 converges to 1, as $n \to \infty$.

Solution:

- (a) We now have $x = (x_1, \ldots, x_n)$. The statistic \overline{x} is sufficient. Under H_0 , $\overline{x} \sim N(0, v/n)$ and under H_1 , $\overline{x} \sim N(0, v/n + w^2)$. The most powerful test rejects when $|\overline{x}/\sqrt{v/n}| > C_{\alpha/2}$. For a 5% test, $C_{\alpha/2}$ is certainly less than 2, therefore with the observed value of x the test will reject H_0 at the 5% level.
- (b) However the Bayes factor is

$$B(\overline{x}) = \frac{\frac{1}{\sqrt{v/n}} exp\{-\frac{10^2 v/n}{2v/n}\}}{\frac{1}{\sqrt{v/n+w^2}} exp\{-\frac{10^2 v/n}{2(v/n+w^2)}\}} \to \infty \text{ as } n \to \infty.$$

Therefore the posterior probability of H_0 converges to 1 (contrasting with the conclusion of the frequentist test).