
Statistical Theory MT 2009

Problems 4: Solution sketches

1. Suppose that X has a Poisson distribution with unknown mean θ.

Determine the Jeffreys prior πJ for θ, and discuss whether the “scale-invariant” prior
π0(θ) = 1/θ might be preferrable as noninformative prior.

Solution: The Poisson probability mass function is f(x|θ) = e−θ θ
x

x!
, x = 0, 1, . . . An

element π(θ) of the conjugate prior family is given by

π(θ) ∝ e−τ0θθτ1 , θ > 0.

For this to be a proper prior we require τ0 > 0 and τ1 > −1. The posterior density of
θ given x is then given by

π(θ|x) ∝ e−(τ0+1)θθτ1+x, θ > 0,

which is a Gamma distribution with parameters α = τ1 + x + 1 and β = τ0 + 1. To
obtain the Jeffreys prior we need the Fisher information I(θ). Note that

∂2

∂θ2
log f(x|θ) = − x

θ2
,

so

I(θ) = −E
(
∂2

∂θ2
log f(X|θ)

)
=

θ

θ2
=

1

θ
.

It follows that the Jeffreys prior is

πJ(θ) ∝ θ−
1
2 , θ > 0.

Comparison with scale-invariant prior: If your relative beliefs about any two parameter
values θ1 and θ2 depend only on their ratio θ1/θ2, then you will be led to the scale-
invariant prior, π0 = 1/θ. If on the other hand you insist that the prior distribution of
θ is invariant under parametric transformatinos then you are led to the Jeffreys prior.
In this example, these two philosophies are incompatible.

2. Suppose again that X has a Poisson distribution with unknown mean θ.

Using πJ as the reference measure, find the maximum entropy prior under the con-
straints that the prior mean and variance of θ are both 1. (Just write it in terms of
the constraints λ1 and λ2 from lectures, do not solve for these.)

Repeat, for the reference measure π0. (Again, just write it in terms of the constraints
λ1 and λ2 from lectures, do not solve for these.)

Solution: Maximum entropy prior: The constraints are Eπ(θ) = 1 and Eπ((θ−1)2) =

1, and the reference measure is πref (θ) = πJ(θ) ∝ θ−
1
2 . By definition, the prior
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density that maximises the entropy relative to the reference density πref and satisfies
m constraints is

π̃(θ) =
πref (θ)exp(

∑m
k=1 λkgk(θ))∫

πref (θ)exp(
∑m
k=1 λkgk(θ))dθ

,

and in our case m = 2, g1(θ) = θ, g2(θ) = (θ − 1)2, and so

π̃(θ) ∝ θ−
1
2 exp(λ1θ + λ2(θ − 1)2).

Similarly, when the reference measure is πref = π0, then the maximum entropy prior is

π̃(θ) ∝ θ−1exp(λ1θ + λ2(θ − 1)2).

Side remark: Poisson process: The probability density of the inter-arrival times in a
Poisson process is

f(x|λ) = λe−λx.

For this density the Fisher information is

∂2

∂λ2
(− log λ+ λx) =

1

λ2
,

so that the Jeffreys prior for λ is proportional to 1/λ. Since θ = λT and T is a known
constant, this implies that, from the perspective of inter-arrival times, the prior density
for θ should also be proportional to 1/θ.

3. Suppose that x1, . . . , xn is a random sample from a Poisson distribution with unknown
mean θ. Two models for the prior distribution of θ are contemplated;

π1(θ) = e−θ, θ > 0, and π2(θ) = e−θθ, θ > 0.

(a) Calculate the the Bayes estimator of θ under both models, with quadratic loss
function.

(b) The prior probabilities of model 1 and model 2 are assessed at probability 1/2 each.
Calculate the Bayes factor for H0:model 1 applies against H1:model 2 applies.

Solution:

(a) We calculate

π1(θ|x) ∝ e−nθθ
∑

xie−θ = e−(n+1)θθ
∑

xi ,

which we recognize as Gamma(
∑
xi + 1, n + 1). The Bayes estimator is the

expected value of the posterior distribution,
∑

xi+1

n+1
. For Model 2,

π2(θ|x) ∝ e−nθθ
∑

xie−θθ = e−(n+1)θθ
∑

xi+1,

which we recognize as Gamma(
∑
xi + 2, n + 1). The Bayes estimator is the

expected value of the posterior distribution,
∑

xi+2

n+1
. Note that the first model has

greater weight for smaller values of θ, so the posterior distribution is shifted to
the left.
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(b) The prior probabilities of model 1 and model 2 are assessed at probability 1/2
each. Then the Bayes factor is

B(x) =

∫∞
0 e−nθθ

∑
xie−θdθ∫∞

0 e−nθθ
∑

xie−θθdθ

=
Γ(
∑
xi + 1)/((n+ 1)

∑
xi+1)

Γ(
∑
xi + 2)/((n+ 1)

∑
xi+2)

=
n+ 1∑
xi + 1

.

Note that in this setting

B(x) =
P (Model 1|x)

P (Model 2|x)
=

P (Model 1|x)

1− P (Model 1|x)
,

so that P (Model 1|x) = (1 +B(x)−1)−1. Hence

P (Model 1|x) =
(

1 +

∑
xi + 1

n+ 1

)−1

=

(
1 +

x+ 1
n

1 + 1
n

)−1

,

which is decreasing for x increasing.

4. ∗ Let θ be a real-valued parameter and let f(x|θ) be the probability density function
of an observation x, given θ. The prior distribution of θ has a discrete component that
gives probability β to the point null hypothesis H0 : θ = θ0. The remainder of the
distribution is continuous, and conditional on θ 6= θ0, its density is g(θ).

(a) Derive an expression for π(θ0|x), the posterior probability of H0.

(b) Derive the Bayes factor B(x) for the null hypothesis against the alternative.

(c) Express π(θ0|x) in terms of B(x).

(d) Explain how you would use B(x) to construct a most powerful test of size α for
H0, against the alternative H1 : θ 6= θ0.

Solution:

(a) Following lectures, the posterior probability of θ0 is

π(θ0|x) =
βf(x|θ0)

βf(x|θ0) + (1− β)m(x)
,

where
m(x) =

∫
f(x|θ)g(θ)dθ.

(b) The Bayes factor is

B(x) =

P (θ=θ0|x)
P (θ 6=θ0|x)
P (θ=θ0)
P (θ 6=θ0)

=
βf(x|θ0)

βf(x|θ0) + (1− β)m(x)
× βf(x|θ0) + (1− β)m(x)

(1− β)m(x)
/

β

1− β

=
f(x|θ0)

m(x)
.
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(c) From lectures,

π(θ0|x) =

(
1 +

1− β
βB(x)

)−1

.

(d) The simple hypothesis θ = θ0 can be tested against the simple hypothesis that
the density of x is

∫
f(x|θ)g(θ)dθ; i.e. H0 : x ∼ f(x|θ) and H1 : x ∼ m(x).

The Neyman-Pearson Lemma says that the most powerful test of size α rejects
H0 when f(x|θ)/m(x) < Cα, where Cα is chosen such that∫

{x:f(x|θ)/m(x)<Cα}
f(x|θ)dx = α.

So we reject when B(x) < Cα.

5. Suppose that x1, . . . , xn is a sample from a normal distribution with mean θ and vari-
ance v. Let H0 : θ = 0, and let the alternative be H1 : θ 6= 0. The prior distribution
of θ has a discrete component that gives probability 1/2 to the point null hypothesis
H0; the remainder of the prior distribution is continuous, and conditional on θ 6= θ0,
its density is g(θ) given by

g(θ) = (2πw2)−1/2 exp{−θ2/(2w2)},

for −∞ < θ <∞. Show that, if the sample mean is observed to be 10(v/n)1/2, then

(a) the likelihood ratio test of size α = 0.05 will reject H0 for any value of n;

(b) the posterior probability of H0 converges to 1, as n→∞.

Solution:

(a) We now have x = (x1, . . . , xn). The statistic x is sufficient. Under H0, x ∼
N(0, v/n) and under H1, x ∼ N(0, v/n + w2). The most powerful test rejects

when |x/
√
v/n| > Cα/2. For a 5% test, Cα/2 is certainly less than 2, therefore

with the observed value of x the test will reject H0 at the 5% level.

(b) However the Bayes factor is

B(x) =

1√
v/n
exp{−102v/n

2v/n
}

1√
v/n+w2

exp{− 102v/n
2(v/n+w2}

→ ∞ as n→∞.

Therefore the posterior probability of H0 converges to 1 (contrasting with the
conclusion of the frequentist test).
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