## Statistical Theory MT 2009

## Problems 2: Solution sketches

1. Denote the c.d.f. of a statistic $T=t(\mathbf{X})$ under the simple null hypothesis $H_{0}$ by $F_{T, H_{0}}$, and assume that $F_{T, H_{0}}$ is continuous. Put

$$
P(\mathbf{x})=P\left(T \geq t(\mathbf{x}) \mid H_{0}\right) .
$$

Let $\mathbf{X}$ be a random sample from the distribution specified by the null hypothesis. Show that then the random variable $P(\mathbf{X})$ is uniformly distributed on $[0,1]$.

Solution: To derive this result, suppose that $X$ has continuous distribution with invertible c.d.f. $F$, and $Y=F(X)$. Then $0 \leq Y \leq 1$, and for $0 \leq y \leq 1$,

$$
P(Y \leq y)=P(F(X) \leq y)=P\left(X \leq F^{-1}(y)\right)=F\left(F^{-1}(y)\right)=y,
$$

showing that $Y \sim \mathcal{U}[0,1]$. It also follows that $1-Y \sim \mathcal{U}[0,1]$. Now note that

$$
F_{T, H_{0}}(t)=P\left(T \leq t \mid H_{0}\right)
$$

and so $F_{T, H_{0}}(T(\mathbf{X}))$ is of the form $F(X)$ for some random variable $X$.
2. Suppose you have a sample of size $n$ from an exponential distribution with mean $\mu$. Find the best size- $\alpha$ test of $H_{0}: \mu=\mu_{0}$ against the alternative $H_{1}: \mu=\mu_{1}$, where $\mu_{1}>\mu_{0}$.

Solution: We have as density

$$
f(x ; \mu)=\frac{1}{\mu} e^{-\frac{x}{\mu}}, \quad x>0,
$$

giving as likelihood

$$
L(\mu)=\mu^{-n} e^{-\frac{1}{\mu} \sum_{i=1}^{n} x_{i}} .
$$

The Neyman-Pearson lemma tells us that the best test uses as test statistic the likelihood ratio

$$
\frac{L\left(\mu_{1}\right)}{L\left(\mu_{0}\right)}=\left(\frac{\mu_{0}}{\mu_{1}}\right)^{n} e^{\sum_{i=1}^{n} x_{i}\left(\frac{1}{\mu_{0}}-\frac{1}{\mu_{1}}\right)} .
$$

As $\mu_{1}>\mu_{0}$ we have that $\frac{1}{\mu_{0}}-\frac{1}{\mu_{1}}>0$, and thus we reject for large values of $\sum_{i=1}^{n} x_{i}$, or equivalently, for large values of $\bar{x}$.
We know that, under $H_{0}$, we have $\sum_{i=1}^{n} X_{i} \sim \Gamma\left(n, \mu_{0}^{-1}\right)$, so the test statistic $T=$ $\frac{1}{\mu_{0}} \sum_{i=1}^{n} X_{i} \sim \Gamma(n, 1)$, independent of $\mu$, and so the critical region for $T$ can be determined using the $\Gamma(n, 1)$-distribution.
Note: The critical region does not depend on the particular $\mu_{1}$, so the test is UMP for $H_{0}: \mu=\mu_{0}$ against the alternative $H_{1}: \mu>\mu_{0}$.
3. Suppose you have a random sample $\mathbf{X}=X_{1}, \ldots, X_{n}$ of size $n$ from a distribution which is a member of a continuous 1-parameter regular exponential family, so that

$$
f(x ; \theta)=\exp \{\phi(\theta) h(x)+c(\theta)+d(x)\}, \quad x \in \mathcal{X},
$$

and assume that $\phi$ is an increasing function. Let $T=t(\mathbf{X})=\sum_{i=1}^{n} h\left(X_{i}\right)$. Consider $H_{0}: \theta=\theta_{0}$ and for fixed $\alpha>0$ choose $k_{\alpha}$ such that $P_{\theta_{0}}\left(t(\mathbf{X}) \geq k_{\alpha}\right)=\alpha$. The following test is proposed: Reject $H_{0}$ if $t(\mathbf{x}) \geq k_{\alpha}$.
(a) Let $\theta_{1}>\theta_{0}$. Show that the test is most powerful when testing $H_{0}$ against $H_{1}$ : $\theta=\theta_{1}$.
(b) Show that the test is uniformly most powerful when testing $H_{0}$ against $H_{1}: \theta>\theta_{0}$.

Solution: Under $H_{0}$ the likelihood function is

$$
L(\theta, \mathbf{x})=\exp \left\{\phi(\theta) \sum_{i=1}^{n} h\left(x_{i}\right)+n c(\theta)+\sum_{i=1}^{n} d\left(x_{i}\right)\right\} .
$$

(a) For testing $H_{0}$ against $H_{1}: \theta=\theta_{1}$ the Neyman-Pearson Lemma tells us that the most powerful test is the likelihood ratio test. The likelihood ratio here is

$$
L R=\frac{L\left(\theta_{1}, \mathbf{x}\right)}{L\left(\theta_{0}, \mathbf{x}\right)}=\exp \left\{\left(\phi\left(\theta_{1}\right)-\phi\left(\theta_{0}\right)\right) t(\mathbf{x})+n\left(c\left(\theta_{1}\right)-c\left(\theta_{0}\right)\right)\right\} .
$$

Now, for any $c$,

$$
L R \geq c \quad \Longleftrightarrow \quad\left(\phi\left(\theta_{1}\right)-\phi\left(\theta_{0}\right)\right) t(\mathbf{x})+n\left(c\left(\theta_{1}\right)-c\left(\theta_{0}\right)\right) \geq d
$$

where $d$ is some other constant; with more constants $f$ and $k$ we continue to argue:

$$
\begin{aligned}
& \left(\phi\left(\theta_{1}\right)-\phi\left(\theta_{0}\right)\right) t(\mathbf{x})+n\left(c\left(\theta_{1}\right)-c\left(\theta_{0}\right)\right) \geq d \\
& \quad \Longleftrightarrow\left(\phi\left(\theta_{1}\right)-\phi\left(\theta_{0}\right)\right) t(\mathbf{x}) \geq f \\
& \quad \Longleftrightarrow t(\mathbf{x}) \geq k .
\end{aligned}
$$

The last step follows because $\phi$ is assumed to be increasing, and $\theta_{1}>\theta_{0}$. Hence the proposed test is the LR-test, and by the Neyman-Pearson Lemma it is most powerful.
(b) The test does not depend on $\theta_{1}$, and it it most powerful for all $\theta_{1}$ which are larger than $\theta_{0}$, hence it is uniformly most powerful when testing $H_{0}$ against $H_{1}: \theta>\theta_{0}$.
4. Consider the linear model

$$
Y=\beta x+\gamma z+\epsilon,
$$

where $\epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$, and $\sigma^{2}$ is unknown. Let $\hat{\sigma^{2}}$ be the maximum-likelihood estimator for $\sigma^{2}$. Let $\theta=(\beta, \gamma)^{T}$, and denote the estimated variance-covariance matrix of $\theta$ by $\hat{V}(\hat{\theta})$; say,

$$
\hat{V}(\hat{\theta})=\hat{\sigma^{2}}\left(\begin{array}{ll}
w_{11} & w_{12} \\
w_{12} & w_{22}
\end{array}\right) .
$$

a) Show that for testing $H_{0}: \beta \gamma=1$ the Wald statistic is

$$
\frac{(\hat{\beta} \hat{\gamma}-1)^{2}}{\hat{\sigma}^{2}\left(\hat{\gamma}^{2} w_{11}+2 \hat{\beta} \hat{\gamma} w_{12}+\hat{\beta}^{2} w_{22}\right)} .
$$

b) Derive the Wald statistic for testing $H_{0}: \beta=\gamma^{-1}$.

Solution: We use that, to test $H_{0}: g(\theta)=0$, where $g$ is a differentiable function, then the delta method gives the Wald test statistic

$$
W=g(\hat{\theta})^{T}\left\{G(\hat{\theta})\left(I_{n}(\hat{\theta})\right)^{-1} G(\hat{\theta})^{T}\right\}^{-1} g(\hat{\theta}),
$$

where $G(\theta)=\frac{\partial g(\theta)}{\partial \theta}{ }^{T}$. As $\left(I_{n}(\hat{\theta})\right)^{-1}$ is the approximate variance-covariance matrix for $\hat{\theta}$, we use $\hat{V}(\hat{\theta})$ for $\left(I_{n}(\hat{\theta})\right)^{-1}$.
a) Here, $g(\theta)=\beta \gamma-1$, so that $G(\theta)=(\gamma, \beta)$, and

$$
G(\hat{\theta})\left(I_{n}(\hat{\theta})\right)^{-1} G(\hat{\theta})^{T}=\hat{\sigma}^{2}\left(\hat{\gamma}^{2} w_{11}+2 \hat{\gamma} \hat{\beta} w_{12}+\hat{\beta}^{2} w_{22}\right),
$$

so that

$$
W=(\hat{\beta} \hat{\gamma}-1)^{2}\left(\hat{\sigma}^{2}\left(\hat{\gamma}^{2} w_{11}+2 \hat{\gamma} \hat{\beta} w_{12}+\hat{\beta}^{2} w_{22}\right)\right)^{-1}
$$

as required.
b) Here, $g(\theta)=\beta-\gamma^{-1}$, so that $G(\theta)=\left(1, \gamma^{-2}\right)$, yielding

$$
G(\hat{\theta})\left(I_{n}(\hat{\theta})\right)^{-1} G(\hat{\theta})^{T}=\hat{\sigma^{2}}\left(w_{11}+2 \hat{\gamma}^{-2} w_{12}+\hat{\gamma}^{-4} w_{22}\right),
$$

so that

$$
W=\left(\hat{\beta}-\hat{\gamma}^{-1}\right)^{2}\left(\hat{\sigma}^{2}\left(w_{11}+2 \hat{\gamma}^{-2} w_{12}+\hat{\gamma}^{-4} w_{22}\right)\right)^{-1}
$$

which simplifies to

$$
W=(\hat{\beta} \hat{\gamma}-1)^{2}\left(\hat{\sigma^{2}}\left(\hat{\gamma}^{2} w_{11}+2 w_{12}+\hat{\gamma}^{-2} w_{22}\right)\right)^{-1}
$$

We note that the statistics in a) and in b) are not the same.
5. Suppose $Y_{i} \sim N\left(\beta_{0}+\beta_{1} x_{i}{ }^{\psi}, \sigma^{2}\right)$ for $i=1, \ldots, n$, where $\beta_{0}, \beta_{1}, \psi$ and $\sigma$ are unknown parameters and where the constants $x_{i}$ are known. Derive the score test of $H_{0}: \psi=1$ against the alternative $H_{1}^{+}: \psi>1$.

Solution: The log likelihood is

$$
\ell(\psi, \beta, \sigma)=\text { const. }-\frac{n}{2} \log \sigma^{2}-\frac{1}{2 \sigma^{2}} \sum\left(y_{j}-\beta_{0}-\beta_{1} x_{j}^{\psi}\right)^{2}
$$

and differentiation w.r.t. $\psi$ gives

$$
\frac{\partial \ell}{\partial \psi}=\frac{1}{\sigma^{2}} \beta_{1} \sum\left(y_{j}-\beta_{0}-\beta_{1} x_{j}^{\psi}\right) x_{j}^{\psi} \log x_{j} .
$$

Under $H_{0}$ the m.l.e.s $\hat{\beta}_{0}, \hat{\beta}_{1}$ are the normal least squares estimates, and

$$
\hat{\sigma}^{2}=\frac{1}{n} \sum\left(y_{j}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{j}\right)^{2} .
$$

The score test statistic is

$$
T=\frac{1}{\hat{\sigma}^{2}} \hat{\beta}_{1} \sum\left(y_{j}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{j}^{\psi}\right) x_{j}^{\psi} \log x_{j},
$$

and we reject $H_{0}$ for large positive values of $T$.
Let $u_{j}=x_{j} \log x_{j}$, then the information matrix works out to be

$$
I_{n}\left(\psi_{0}, \beta_{0}, \beta_{1}, \sigma\right)=\sigma^{-2}\left(\begin{array}{cccc}
\beta_{1}^{2} \sum u_{j}^{2} & \beta_{1} \sum u_{j} & \beta_{1} \sum u_{j} x_{j} & 0 \\
\beta_{1} \sum u_{j} & n & \sum x_{j} & 0 \\
\beta_{1} \sum u_{j} x_{j} & \sum x_{j} & \sum x_{j}^{2} & 0 \\
0 & 0 & 0 & 2 n
\end{array}\right)
$$

and the variance of $T$ is the inverse of the $(1,1)$ element of $I_{n}^{-1}$.
You can calculate the inverse; put $s_{x x}=\sum_{j}\left(x_{j}-\bar{x}\right)^{2}$ and $s_{u u}=\sum_{j}\left(u_{j}-\bar{u}\right)^{2}$ to obtain that

$$
\operatorname{Var}(T)=\frac{\sigma^{2} s_{x x}}{\beta_{1}^{2}\left\{s_{x x} s_{u u}-\left(\sum u_{j} x_{j}-n \overline{x u}\right)^{2}\right\}}
$$

6. Suppose $X_{i} \sim N\left(\mu_{x}, \sigma_{x}^{2}\right)$ for $i=1, \ldots, n$, and $Y_{j} \sim N\left(\mu_{y}, \sigma_{y}^{2}\right)$ for $j=1, \ldots, m$, where $\mu_{x}, \mu_{y}, \sigma_{x}$ and $\sigma_{y}$ are all unknown. Let $S_{x}^{2}$ and $S_{y}^{2}$ denote the sample variances. Use the pivot $\left(S_{x}^{2} / \sigma_{x}^{2}\right) /\left(S_{y}^{2} / \sigma_{y}^{2}\right)$ to obtain an exact upper $1-\alpha$ confidence limit for $\psi=\sigma_{y}^{2} / \sigma_{x}^{2}$. How would you construct the corresponding confidence limit for $\psi$ if both $\mu_{x}$ and $\mu_{y}$ were known?

Solution: We know that

$$
\frac{S_{x}^{2} \sigma_{y}^{2}}{S_{y}^{2} \sigma_{X}^{2}} \sim \frac{\chi_{n-1}^{2} /(n-1)}{\chi_{m-1}^{2} /(m-1)}=F_{n-1, m-1}
$$

(see the book by Rice) and hence an exact upper $1-\alpha$ confidence bound for $\psi=\frac{\sigma_{Y}^{2}}{\sigma_{X}^{2}}$ is

$$
\frac{s_{y}^{2}}{s_{x}^{2}} F_{n-1, m-1}(1-\alpha)
$$

If both $\mu_{x}$ and $\mu_{y}$ are known then we use

$$
\hat{\sigma}_{X}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu_{x}\right)^{2}, \quad \hat{\sigma}_{Y}^{2}=\frac{1}{m} \sum_{i=1}^{m}\left(Y_{i}-\mu_{Y}\right)^{2}
$$

and $F_{n, m}$.
7. Let $X_{(n)}$ be the largest value in a sample of size $n$ drawn from the uniform distribution on $[0, \theta]$. Show that $X_{(n)} / \theta$ is a pivot. Using this pivot, find a $100(1-\alpha) \%$ confidence interval for $\theta$. Discuss how you would test the hypothesis that $\theta$ takes a specific value $\theta_{0}$ for such a sample.

Solution: We know that

$$
P\left(X_{(n)} \leq x\right)=\left(P\left(X_{i} \leq x\right)\right)^{n}=\theta^{-n} x^{n}, \quad 0 \leq x \leq \theta
$$

and therefore

$$
P\left(X_{(n)} / \theta \leq x\right)=x^{n}, \quad 0 \leq x \leq 1
$$

and so $X_{(n)} / \theta$ is a pivot. For a $100(1-\alpha) \%$ confidence interval we would like

$$
1-\alpha=P\left(a \leq X_{(n)} / \theta<b\right)=P\left(\frac{X_{(n)}}{b}<\theta<\frac{X_{(n)}}{a}\right)
$$

If we choose $b=1$ then we find $1-a^{n}=1-\alpha$, yielding $a=\alpha^{1 / n}$. Note that other choices of $b$ are possible. For a hypothesis test, we would accept $H_{0}: \theta=\theta_{0}$ if $\theta_{0}<X_{(n)}$, or if $\theta_{0}>X_{(n)} \alpha^{-1 / n}$.

