
Statistical Theory MT 2009
Problems 2: Solution sketches

1. Denote the c.d.f. of a statistic T = t(X) under the simple null hypothesis H0 by FT,H0 ,
and assume that FT,H0 is continuous. Put

P (x) = P (T ≥ t(x)|H0).

Let X be a random sample from the distribution specified by the null hypothesis. Show
that then the random variable P (X) is uniformly distributed on [0, 1].

Solution: To derive this result, suppose that X has continuous distribution with in-
vertible c.d.f. F , and Y = F (X). Then 0 ≤ Y ≤ 1, and for 0 ≤ y ≤ 1,

P (Y ≤ y) = P (F (X) ≤ y) = P (X ≤ F−1(y)) = F (F−1(y)) = y,

showing that Y ∼ U [0, 1]. It also follows that 1− Y ∼ U [0, 1]. Now note that

FT,H0(t) = P (T ≤ t|H0)

and so FT,H0(T (X)) is of the form F (X) for some random variable X.

2. Suppose you have a sample of size n from an exponential distribution with mean µ.
Find the best size-α test of H0 : µ = µ0 against the alternative H1 : µ = µ1, where
µ1 > µ0.

Solution: We have as density

f(x;µ) =
1
µ
e
− x
µ , x > 0,

giving as likelihood
L(µ) = µ−ne

− 1
µ

∑n
i=1 xi .

The Neyman-Pearson lemma tells us that the best test uses as test statistic the likeli-
hood ratio

L(µ1)
L(µ0)

=
(
µ0

µ1

)n
e
∑n
i=1 xi

(
1
µ0
− 1
µ1

)
.

As µ1 > µ0 we have that 1
µ0
− 1

µ1
> 0, and thus we reject for large values of

∑n
i=1 xi,

or equivalently, for large values of x.

We know that, under H0, we have
∑n

i=1Xi ∼ Γ(n, µ−1
0 ), so the test statistic T =

1
µ0

∑n
i=1Xi ∼ Γ(n, 1), independent of µ, and so the critical region for T can be deter-

mined using the Γ(n, 1)-distribution.

Note: The critical region does not depend on the particular µ1, so the test is UMP for
H0 : µ = µ0 against the alternative H1 : µ > µ0.

3. Suppose you have a random sample X = X1, . . . , Xn of size n from a distribution which
is a member of a continuous 1-parameter regular exponential family, so that

f(x; θ) = exp {φ(θ)h(x) + c(θ) + d(x)} , x ∈ X ,

and assume that φ is an increasing function. Let T = t(X) =
∑n

i=1 h(Xi). Consider
H0 : θ = θ0 and for fixed α > 0 choose kα such that Pθ0(t(X) ≥ kα) = α. The following
test is proposed: Reject H0 if t(x) ≥ kα.



(a) Let θ1 > θ0. Show that the test is most powerful when testing H0 against H1 :
θ = θ1.

(b) Show that the test is uniformly most powerful when testingH0 againstH1 : θ > θ0.

Solution: Under H0 the likelihood function is

L(θ,x) = exp

{
φ(θ)

n∑
i=1

h(xi) + nc(θ) +
n∑
i=1

d(xi)

}
.

(a) For testing H0 against H1 : θ = θ1 the Neyman-Pearson Lemma tells us that the
most powerful test is the likelihood ratio test. The likelihood ratio here is

LR =
L(θ1,x)
L(θ0,x)

= exp {(φ(θ1)− φ(θ0))t(x) + n(c(θ1)− c(θ0))} .

Now, for any c,

LR ≥ c ⇐⇒ (φ(θ1)− φ(θ0))t(x) + n(c(θ1)− c(θ0)) ≥ d,

where d is some other constant; with more constants f and k we continue to argue:

(φ(θ1)− φ(θ0))t(x) + n(c(θ1)− c(θ0)) ≥ d
⇐⇒ (φ(θ1)− φ(θ0))t(x) ≥ f
⇐⇒ t(x) ≥ k.

The last step follows because φ is assumed to be increasing, and θ1 > θ0. Hence
the proposed test is the LR-test, and by the Neyman-Pearson Lemma it is most
powerful.

(b) The test does not depend on θ1, and it it most powerful for all θ1 which are larger
than θ0, hence it is uniformly most powerful when testing H0 against H1 : θ > θ0.

4. Consider the linear model
Y = βx+ γz + ε,

where ε ∼ N (0, σ2), and σ2 is unknown. Let σ̂2 be the maximum-likelihood estimator
for σ2. Let θ = (β, γ)T , and denote the estimated variance-covariance matrix of θ by
V̂ (θ̂); say,

V̂ (θ̂) = σ̂2

(
w11 w12

w12 w22

)
.

a) Show that for testing H0 : βγ = 1 the Wald statistic is

(β̂γ̂ − 1)2

σ̂2(γ̂2w11 + 2β̂γ̂w12 + β̂2w22)
.

b) Derive the Wald statistic for testing H0 : β = γ−1.

Solution: We use that, to test H0 : g(θ) = 0, where g is a differentiable function, then
the delta method gives the Wald test statistic

W = g(θ̂)T {G(θ̂)(In(θ̂))−1G(θ̂)T }−1g(θ̂),



where G(θ) = ∂g(θ)
∂θ

T
. As (In(θ̂))−1 is the approximate variance-covariance matrix for

θ̂, we use V̂ (θ̂) for (In(θ̂))−1.

a) Here, g(θ) = βγ − 1, so that G(θ) = (γ, β), and

G(θ̂)(In(θ̂))−1G(θ̂)T = σ̂2(γ̂2w11 + 2γ̂β̂w12 + β̂2w22),

so that
W = (β̂γ̂ − 1)2

(
σ̂2(γ̂2w11 + 2γ̂β̂w12 + β̂2w22)

)−1
,

as required.

b) Here, g(θ) = β − γ−1, so that G(θ) = (1, γ−2), yielding

G(θ̂)(In(θ̂))−1G(θ̂)T = σ̂2(w11 + 2γ̂−2w12 + γ̂−4w22),

so that
W = (β̂ − γ̂−1)2

(
σ̂2(w11 + 2γ̂−2w12 + γ̂−4w22)

)−1
,

which simplifies to

W = (β̂γ̂ − 1)2
(
σ̂2(γ̂2w11 + 2w12 + γ̂−2w22)

)−1
.

We note that the statistics in a) and in b) are not the same.

5. Suppose Yi ∼ N(β0 + β1xi
ψ, σ2) for i = 1, . . . , n, where β0, β1, ψ and σ are unknown

parameters and where the constants xi are known. Derive the score test of H0 : ψ = 1
against the alternative H+

1 : ψ > 1.

Solution: The log likelihood is

`(ψ, β, σ) = const.− n

2
logσ2 − 1

2σ2

∑
(yj − β0 − β1x

ψ
j )2

and differentiation w.r.t. ψ gives

∂`

∂ψ
=

1
σ2
β1

∑
(yj − β0 − β1x

ψ
j )xψj logxj .

Under H0 the m.l.e.s β̂0, β̂1 are the normal least squares estimates, and

σ̂2 =
1
n

∑
(yj − β̂0 − β̂1xj)2.

The score test statistic is

T =
1
σ̂2
β̂1

∑
(yj − β̂0 − β̂1x

ψ
j )xψj logxj ,

and we reject H0 for large positive values of T .

Let uj = xjlogxj , then the information matrix works out to be

In(ψ0, β0, β1, σ) = σ−2


β2

1

∑
u2
j β1

∑
uj β1

∑
ujxj 0

β1
∑
uj n

∑
xj 0

β1
∑
ujxj

∑
xj

∑
x2
j 0

0 0 0 2n





and the variance of T is the inverse of the (1, 1) element of I−1
n .

You can calculate the inverse; put sxx =
∑

j(xj −x)2 and suu =
∑

j(uj −u)2 to obtain
that

V ar(T ) =
σ2sxx

β2
1

{
sxxsuu − (

∑
ujxj − nxu)2

} .
6. Suppose Xi ∼ N(µx, σ2

x) for i = 1, . . . , n, and Yj ∼ N(µy, σ2
y) for j = 1, . . . ,m, where

µx, µy, σx and σy are all unknown. Let S2
x and S2

y denote the sample variances. Use the
pivot (S2

x/σ
2
x)/(S2

y/σ
2
y) to obtain an exact upper 1−α confidence limit for ψ = σ2

y/σ
2
x.

How would you construct the corresponding confidence limit for ψ if both µx and µy
were known?

Solution: We know that

S2
xσ

2
y

S2
yσ

2
X

∼
χ2
n−1/(n− 1)

χ2
m−1/(m− 1)

= Fn−1,m−1

(see the book by Rice) and hence an exact upper 1−α confidence bound for ψ = σ2
Y

σ2
X

is

s2y
s2x
Fn−1,m−1(1− α).

If both µx and µy are known then we use

σ̂2
X =

1
n

n∑
i=1

(Xi − µx)2, σ̂2
Y =

1
m

m∑
i=1

(Yi − µY )2,

and Fn,m.

7. Let X(n) be the largest value in a sample of size n drawn from the uniform distribution
on [0, θ]. Show that X(n)/θ is a pivot. Using this pivot, find a 100(1− α)% confidence
interval for θ. Discuss how you would test the hypothesis that θ takes a specific value
θ0 for such a sample.

Solution: We know that

P (X(n) ≤ x) = (P (Xi ≤ x))n = θ−nxn, 0 ≤ x ≤ θ, ,

and therefore
P (X(n)/θ ≤ x) = xn, 0 ≤ x ≤ 1,

and so X(n)/θ is a pivot. For a 100(1− α)% confidence interval we would like

1− α = P
(
a ≤ X(n)/θ < b

)
= P

(
X(n)

b
< θ <

X(n)

a

)
.

If we choose b = 1 then we find 1−an = 1−α, yielding a = α1/n. Note that other choices
of b are possible. For a hypothesis test, we would accept H0 : θ = θ0 if θ0 < X(n), or if
θ0 > X(n)α

−1/n.


