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Our starting point are data x = x1, x2, . . . , xn, which we view as realisa-
tions of random variablesX1, X2, . . . , Xn with distribution (model) f(x1, x2, . . . , xn|θ).
In the Bayesian framework, θ ∈ Θ is random, and follows a prior distribution
π(θ).

1. Priors, Posteriors, Likelihood, and Sufficiency

The posterior distribution of θ given x is

π(θ|x) =
f(x|θ)π(θ)∫
f(x|θ)π(θ)dθ

Abbreviating, we write: posterior ∝ prior × likelihood.

The (prior) predictive distribution of the data x on the basis π is

p(x) =

∫
f(x|θ)π(θ)dθ.

Suppose data x1 is available, and we want to predict additional data: the
predictive distribution is

p(x2|x1) =

∫
f(x2|θ)π(θ|x1)dθ.

Note that x2 and x1 are assumed conditionally independent given θ. They
are not, in general, unconditionally independent.

Example. Suppose y1, y2, . . . , yn are independent normally distributed
random variables, each with variance 1 and with means βx1, . . . , βxn, where β
is an unknown real-valued parameter and x1, x2, . . . , xn are known constants.
Suppose as prior π(β) = N (µ, α2). Then the likelihood is

L(β) = (2π)−
n
2

n∏
i=1

e−
(yi−βxi)

2

2
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and

π(β) =
1√

2πα2
e−

(β−µ)2

2α2 ∝ exp

{
− β2

2α2
+ β

µ

α2

}
.

The posterior of β given y1, y2, . . . , yn can be calculated as

π(β|y) ∝ exp

{
−1

2

∑
(yi − βxi)2 − 1

2α2
(β − µ)2

}
∝ exp

{
β
∑

xiyi −
1

2
β2
∑

x2
i −

β2

2α2
+
βµ

α2

}
.

Abbreviate sxx =
∑
x2
i , sxy =

∑
xiyi, then

π(β|y) ∝ exp

{
βsxy −

1

2
β2sxx −

β2

2α2
+
βµ

α2

}
= exp

{
−β

2

2

(
sxx +

1

α2

)
+ β

(
sxy +

µ

α2

)}
,

which we recognize as

N

(
sxy + µ

α2

sxx + 1
α2

,

(
sxx +

1

α2

)−1
)
.

To summarize information about θ we find a minimal sufficient statistic
t(x); T = t(X) is sufficient for θ if and only if for all x and θ

π(θ|x) = π(θ|t(x)).

As in the frequentist approach; posterior (inference) is based on sufficient
statistics.

Choice of prior

There are many ways of choosing a prior distribution; using a coherent
belief system, e.g.. Often it is convenient to restrict the class of priors to a
particular family of distributions. When the posterior is in the same family
of models as the prior, i.e. when one has a conjugate prior, then updating
the distribution under new data is particularly convenient.
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For the regular k-parameter exponential family,

f(x|θ) = f(x)g(θ)exp{
k∑
i=1

ciφi(θ)hi(x)}, x ∈ X ,

conjugate priors can be derived in a straightforward manner, using the suf-
ficient statistics.

Non-informative priors favour no particular values of the parameter over
others. If Θ is finite, choose we uniform prior. If Θ is infinite, there are
several ways (some may be improper):

For a location density f(x|θ) = f(x − θ), then the non-informative
location-invariant prior is π(θ) = π(0) constant; we usually choose π(θ) = 1
for all θ (improper prior).

For a scale density f(x|σ) = 1
σ
f
(
x
σ

)
for σ > 0, the scale-invariant non-

informative prior is π(σ) ∝ 1
σ
; usually we choose π(σ) = 1

σ
(improper).

The Jeffreys prior is π(θ) ∝ I(θ)
1
2 if the information I(θ) exists; then

is invariant under reparametrization; the Jeffreys prior may or may not be
improper.

Example continued. Suppose y1, y2, . . . , yn are independent, yi ∼ N (βxi, 1),
where β is an unknown parameter and x1, x2, . . . , xn are known. Then

I(β) = −E
(
∂2

∂β2
logL(β,y)

)
= −E

(
∂

∂β

∑
(yi − βxi)xi

)
= sxx

and so the Jeffreys prior is ∝ √sxx; constant and improper. With this
Jeffreys prior, the calculation of the posterior distribution is equivalent to
putting α2 =∞ in the previous calculation, yielding

π(β|y) is N
(
sxy
sxx

, (sxx)
−1

)
.

If Θ is discrete, and satisfies the constraints

Eπgk(θ) = µk, k = 1, . . . ,m
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then we choose the distribution with the maximum entropy under these con-
straints; it is given by:

π̃(θi) =
exp (

∑m
k=1 λkgk(θi))∑

i exp (
∑m

k=1 λkgk(θi))

where the λi are determined by the constraints. There is a similar formula for
the continuous case, maximizing the entropy relative to a particular reference
distribution π0 under constraints. For π0 one would choose the “natural”
invariant noninformative prior.

For inference, we check the influence of the choice of prior, for example
by trying out different priors.

2. Point Estimation

Under suitable regularity conditions, and random sampling, when n is
large, then the posterior is approximately N (θ̂, (nI1(θ̂))−1), where θ̂ is the
m.l.e.; provided that the prior is non-zero in a region surrounding θ̂. In
particular, if θ0 is the true parameter, then the posterior will become more
and more concentrated around θ0. Often reporting the posterior distribution
is preferred to point estimation.

Bayes estimators are constructed to minimize the integrated risk. Recall
from Decision Theory: Θ is the set of all possible states of nature (values of
parameter), D is the set of all possible decisions (actions); a loss function is
any function

L : Θ×D → [0,∞).

For point estimation we choose D = Θ, and L(θ, d) is the loss in reporting d
when θ is true. For a prior π and data x ∈ X , the posterior expected loss of
a decision is

ρ(π, d|x) =

∫
Θ

L(θ, d)π(θ|x)dθ.

For a prior π the integrated risk of a decision rule δ is

r(π, δ) =

∫
Θ

∫
X
L(θ, δ(x))f(x|θ)dxπ(θ)dθ.

An estimator minimizing r(π, δ) can be obtained by selecting, for every x ∈
X , the value δ(x) that minimizes ρ(π, δ|x). A Bayes estimator associated
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with prior π, loss L, is any estimator δπ which minimizes r(π, δ). Then
r(π) = r(π, δπ) is the Bayes risk.

This is valid for proper priors, and for improper priors if r(π) < ∞. If
r(π) = ∞, we define a generalized Bayes estimator as the minimizer, for
every x, of ρ(π, d|x).

For strictly convex loss functions, Bayes estimators are unique. For
squared error loss L(θ, d) = (θ − d)2, the Bayes estimator δπ associated
with prior π is the posterior mean. For absolute error loss L(θ, d) = |θ − d|,
the posterior median is a Bayes estimator.

Example. Let x be a single observation from N (µ, 1), and let µ have
prior distribution

π(µ) ∝ eµ,

on the whole real line. What is the generalized Bayes estimator for µ under
square error loss?

First we find the posterior distribution of µ given x.

π(µ|x) ∝ exp

(
µ− 1

2
(µ− x))2

)
∝ exp

(
−1

2
(µ− (x+ 1))2

)
and so π(µ|x) = N (x+ 1, 1).

The generalized Bayes estimator under square error loss is the posterior
mean (from lectures), and so we have

µB = 1 + x.

Note that, in this example, for µB, if we consider X ∼ N (µ, 1) and µ
fixed, we have

MSE(µB) = E(X + 1− µ)2 = 1 + E(X − µ)2 = 2 > E(X − µ)2 = 1.

The m.l.e. for µ is X, so the mean-square error for the Bayes estimator
is larger than the MSE for the maximum-likelihood estimator. The Bayes
estimator is far from optimal here.
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3. Hypothesis Testing

For testing H0 : θ ∈ Θ0, we set

D = {accept H0, reject H0} = {1, 0},

where 1 stands for acceptance; we choose as loss function

(1) L(θ, φ) =


0 if θ ∈ Θ0, φ = 1
a0 if θ ∈ Θ0, φ = 0
0 if θ 6∈ Θ0, φ = 0
a1 if θ 6∈ Θ0, φ = 1

.

Under this loss function, the Bayes decision rule associated with a prior
distribution π is

φπ(x) =

{
1 if P π(θ ∈ Θ0|x) > a1

a0+a1

0 otherwise .

The Bayes factor for testing H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1 is

Bπ(x) =
P π(θ ∈ Θ0|x)/P π(θ ∈ Θ1|x)

P π(θ ∈ Θ0)/P π(θ ∈ Θ1)

=
p(x|θ ∈ Θ0)

p(x|θ ∈ Θ1)
;

this is the ratio of how likely the data is under H0 and how likely the data
is under H1. The Bayes factor measures the extent to which the data x will
change the odds of Θ0 relative to Θ1.

Note that we have to make sure that our prior distribution puts mass on
H0 (and on H1). If H0 is simple, this is usually achieved by choosing a prior
that has some point mass on H0 and otherwise lives on H1.

Example. Let X be binomially distributed with sample size n and suc-
cess probability θ. Suppose that we would like to investigate H0 : θ = θ0

and H1 : θ 6= θ0, where θ0 is specified. Our prior distribution is π(H0) = β,
π(H1) = 1 − β, and given H1, θ is Beta-distributed with parameters α and
β, i.e.

π(θ|H1) =
θα−1(1− θ)β−1

B(α, β)
,
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where B is the Beta function,

B(α, β) =

∫ 1

0

θα−1(1− θ)β−1dθ =
Γ(α)Γ(β)

Γ(α + β)
.

1. Find the Bayes factor for this test problem.

2. Find the Bayes decision rule for this test problem under the loss func-
tion (1).

For the Bayes factor we calculate p(x|θ ∈ Θ0) and p(x|θ ∈ Θ1). Firstly,

p(x|θ ∈ Θ0) = p(x|θ = θ0) =

(
n

x

)
θx0(1− θ0)n−x.

For the alternative, we use the Beta prior,

p(x|θ ∈ Θ1) =

(
n

x

)
1

B(α, β)

∫ 1

0

θx(1− θ)n−xθα−1(1− θ)β−1dθ

=

(
n

x

)
1

B(α, β)

∫ 1

0

θx+α−1(1− θ)n−x+β−1dθ

=

(
n

x

)
B(x+ α, n− x+ β)

B(α, β)
.

Thus the Bayes factor is

Bπ(x)‘ =
p(x|θ ∈ Θ0)

p(x|θ ∈ Θ1)

=
B(α, β)

B(α + x, β + n− x)
θx0(1− θ0)n−x.

The Bayes decision rule is

φπ(x) =

{
1 if P π(θ ∈ Θ0|x) > a1

a0+a1

0 otherwise

and from lectures,

φπ(x) = 1 ⇐⇒ Bπ(x) >
a1

a0

β
1−β

⇐⇒ B(α, β)

B(α + x, β + n− x)
θx0(1− θ0)n−x >

a1

a0

β
1−β

⇐⇒ βB(α, β)

(1− β)B(α + x, β + n− x)
θx0(1− θ0)n−x >

a1

a0

.
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For robustness we consider least favourable Bayesian answers; suppose
H0 : θ = θ0, H1 : θ 6= θ0, and the prior probability on H0 is ρ0 = 1/2. For G
a family of priors on H1 we put

B(x,G) = inf
g∈G

f(x|θ0)∫
Θ
f(x|θ)g(θ)dθ

and

P (x,G) =

(
1 +

1

B(x,G)

)−1

.

A Bayesian prior g ∈ G on H0 will then have posterior probability at least
P (x,G) on H0 (for ρ0 = 1/2). If θ̂ is the m.l.e. of θ, and GA the set of all
prior distributions, then

B(x,GA) =
f(x|θ0)

f(x|θ̂(x))

and

P (x,GA) =

(
1 +

f(x|θ̂(x))

f(x|θ0)

)−1

.

4. Credible intervals

A (1− α) (posterior) credible interval (region) is an interval (region) of
θ−values within which 1−α of the posterior probability lies. Often we would
like to find HPD (highest posterior density) region: a (1−α) credible region
that has minimal volume. When the posterior density is unimodal, this is
often straightforward.

Example continued. Suppose y1, y2, . . . , yn are independent normally
distributed random variables, each with variance 1 and with means βx1, . . . , βxn,
where β is an unknown real-valued parameter and x1, x2, . . . , xn are known

constants. Under the Jeffreys prior, the posterior is N
(
sxy
sxx
, (sxx)

−1
)

. Hence

a 95%-credible interval for β is

sxy
sxx
± 1.96

√
1

sxx
.
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The interpretation in Bayesian statistics is conditional on the observed
x; the randomness relates to the distribution of θ. In contrast, a frequentist
confidence interval applies before x is observed; the randomness relates to
the distribution of x.

5. Not to forget about: Nuisance parameters

If θ = (ψ, λ), where λ nuisance parameter, and π(θ|x) = π((ψ, λ)|x), then
we base our inference on the marginal posterior of ψ:

π(ψ|x) =

∫
π(ψ, λ|x)dλ.

That is, we just integrate out the nuisance parameter.

9


