A Very Brief Summary of Bayesian Inference, and

Examples
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Our starting point are data x = 1, 2o, ..., T,, which we view as realisa-
tions of random variables X, X», ..., X, with distribution (model) f(z1, o, ..

In the Bayesian framework, 6 € © is random, and follows a prior distribution
7(6).

1. Priors, Posteriors, Likelihood, and Sufficiency

The posterior distribution of 6 given x is

o))
00 = 6y 6)d0

Abbreviating, we write: posterior o prior x likelihood.

The (prior) predictive distribution of the data x on the basis 7 is

pla) = [ lalo)e(o)a.

Suppose data x; is available, and we want to predict additional data: the
predictive distribution is

p(xe|z) = /f(xgle)ﬂ(e\xl)dﬁ.

Note that x5 and x; are assumed conditionally independent given 6. They
are not, in general, unconditionally independent.

Example. Suppose y1,%s,...,y, are independent normally distributed
random variables, each with variance 1 and with means [z, ..., fx,, where (3
is an unknown real-valued parameter and 1, zo, ..., z, are known constants.
Suppose as prior m(3) = N (u, @?). Then the likelihood is
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and
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The posterior of § given yi, s, ..., y, can be calculated as
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Abbreviate s, = > 7, Spy, = Y 2;Y;, then
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which we recognize as
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To summarize information about 6 we find a minimal sufficient statistic

t(x); T' = t(X) is sufficient for € if and only if for all x and 6

7(0]x) = 7(0]t(x)).

As in the frequentist approach; posterior (inference) is based on sufficient

statistics.

Choice of prior

There are many ways of choosing a prior distribution; using a coherent
belief system, e.g.. Often it is convenient to restrict the class of priors to a
particular family of distributions. When the posterior is in the same family
of models as the prior, i.e. when one has a conjugate prior, then updating

the distribution under new data is particularly convenient.



For the regular k-parameter exponential family,

f(x]0) = f(ﬂ«")g(@)e:lfp{z ci¢i(0)hi(x)}, x e X,

conjugate priors can be derived in a straightforward manner, using the suf-
ficient statistics.

Non-informative priors favour no particular values of the parameter over
others. If © is finite, choose we uniform prior. If © is infinite, there are
several ways (some may be improper):

For a location density f(z|#) = f(x — 6), then the non-informative
location-invariant prior is w(#) = 7(0) constant; we usually choose 7(0) = 1
for all # (improper prior).

For a scale density f(z[|o) = 2 (£) for ¢ > 0, the scale-invariant non-
informative prior is (o) o %; usually we choose 7(c) = X (improper).

The Jeffreys prior is m(0)  I(A)z if the information I(0) exists; then
is invariant under reparametrization; the Jeffreys prior may or may not be
improper.

Example continued. Suppose y1,¥2, ..., y, are independent, y; ~ N (Gz;, 1),
where (3 is an unknown parameter and x1, s, ..., x, are known. Then

I(8) = —E (aa—;logL(ﬂ,y))

= —B (% > (i @Ez‘)xi)
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and so the Jeffreys prior is o ,/S;;; constant and improper. With this
Jeffreys prior, the calculation of the posterior distribution is equivalent to
putting a? = oo in the previous calculation, yielding

() s A7 (22, ().
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If © is discrete, and satisfies the constraints

E.ge(0) =1, k=1,...,m



then we choose the distribution with the maximum entropy under these con-
straints; it is given by:

exp (ZZ; /\kgk(ei))
> exp (ZZ; Aegr(0:))

where the \; are determined by the constraints. There is a similar formula for
the continuous case, maximizing the entropy relative to a particular reference
distribution 7y under constraints. For my one would choose the “natural”
invariant noninformative prior.

T(0;) =

For inference, we check the influence of the choice of prior, for example
by trying out different priors.

2. Point Estimation

Under suitable regularity conditions, and random sampling, when n is
large, then the posterior is approximately N(6, (nly(6))~!), where 0 is the
m.l.e.; provided that the prior is non-zero in a region surrounding 9. In
particular, if 6y is the true parameter, then the posterior will become more
and more concentrated around #,. Often reporting the posterior distribution
is preferred to point estimation.

Bayes estimators are constructed to minimize the integrated risk. Recall
from Decision Theory: © is the set of all possible states of nature (values of
parameter), D is the set of all possible decisions (actions); a loss function is
any function

L:0xD—|0,00).

For point estimation we choose D = ©, and L(#, d) is the loss in reporting d
when 6 is true. For a prior 7 and data x € X', the posterior expected loss of
a decision is

p(r,d|z) = /@ L(6, d)r(0|z)do.

For a prior 7 the integrated risk of a decision rule 9 is

r(md) = /@/XL(9,5($))f($|¢9)dx7r(9)d0.

An estimator minimizing r(m, §) can be obtained by selecting, for every x €
X, the value 6(x) that minimizes p(m,d|z). A Bayes estimator associated
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with prior m, loss L, is any estimator ™ which minimizes r(7,d). Then
r(m) = r(m, ™) is the Bayes risk.

This is valid for proper priors, and for improper priors if r(7) < oco. If
r(m) = oo, we define a generalized Bayes estimator as the minimizer, for
every x, of p(m,d|z).

For strictly convex loss functions, Bayes estimators are unique. For
squared error loss L(0,d) = (6 — d)?, the Bayes estimator 0™ associated
with prior 7 is the posterior mean. For absolute error loss L(6,d) = |0 — d|,
the posterior median is a Bayes estimator.

Example. Let x be a single observation from A (p, 1), and let p have
prior distribution
m(p) o< e,

on the whole real line. What is the generalized Bayes estimator for p under
square error loss?
First we find the posterior distribution of p given x.

1

k) o eap (1= 0n—)?)

o cap (~5n - o 1))

and so 7(pulr) = N(z+1,1).

The generalized Bayes estimator under square error loss is the posterior
mean (from lectures), and so we have

pp =1+
Note that, in this example, for pug, if we consider X ~ AN (u,1) and pu
fixed, we have
MSE(upg) =EX +1-p)?=1+EX —p)?=2>E(X —p)?=1.

The m.l.e. for p is X, so the mean-square error for the Bayes estimator
is larger than the MSE for the maximum-likelihood estimator. The Bayes
estimator is far from optimal here.



3. Hypothesis Testing
For testing Hy : 0 € ©g, we set
D = {accept Hy, reject Ho} = {1,0},
where 1 stands for acceptance; we choose as loss function

0 ifeyop=1
- ag if 0 € Oy, ¢ =0

W HOO =Y itege.s=0
aq 1f0¢@0,¢:1

Under this loss function, the Bayes decision rule associated with a prior
distribution 7 is

¢7‘r( )_{ 1 ifP”(0€@0|x)>a—1

ap+tai
0 otherwise .

The Bayes factor for testing Hy : 0 € ©¢ against H; : § € O is

P™(0 € O|x)/P™(0 € ©1|2)
P60 € ©y)/P™(0 € 64)

P(z]0 € ).

p(z|f € ©1)’

B™(z) =

this is the ratio of how likely the data is under Hy and how likely the data
is under H;. The Bayes factor measures the extent to which the data x will
change the odds of O relative to ;.

Note that we have to make sure that our prior distribution puts mass on
Hy (and on Hy). If Hy is simple, this is usually achieved by choosing a prior
that has some point mass on Hy and otherwise lives on Hj.

Example. Let X be binomially distributed with sample size n and suc-
cess probability 8. Suppose that we would like to investigate Hy : 6 = 6,
and H; : 0 # 0y, where 0 is specified. Our prior distribution is w(Hy) = 3,
m(Hy) =1 — 3, and given Hy, 0 is Beta-distributed with parameters o and
0, i.e.

8@—1(1 _ 0)6—1

B(a,B)

7(0|Hy) =



where B is the Beta function,

Bla, 8) = /O o1 (1 — 0)P-1d9 — %.

1. Find the Bayes factor for this test problem.

2. Find the Bayes decision rule for this test problem under the loss func-
tion (1).

For the Bayes factor we calculate p(x|6 € ©y) and p(z|0 € ©,). Firstly,

p(zlf € ©y) = p(z|6 =) = (Z) 02 (1 — 6y)"".

For the alternative, we use the Beta prior,

p(alf € ©)) = (Z) B(;’ 5 /01 67(1 — 0)"9°=1(1 — 9)°~1d

B @ B(; 9) /o 6o (1= 0) g

_ (Z) B(x +§(,071;)x +0)

Thus the Bayes factor is

p(z|0 € ©o)

p(z|0 € ©1)
Bla+z,0+n—1)

B™(z)*

07 (1 — 0p)" .

The Bayes decision rule is
1 if P™(0 € Og|x) > 24—
U = ao+ai
() { 0 otherwise

and from lectures,

P (r) =1 <= B”(x)>§
-8
B, 5) " n-z . _ag
= Blatapra_aoth g 2
ﬁB<Oé7ﬁ) T n—x ay
e (1—ﬁ)B(oz—ir:r;,ﬁ—l—n—:c)eO(l_eo) >a_0'

7



For robustness we consider least favourable Bayesian answers; suppose
Hy: 0 =0y, Hy : 0 # 0y, and the prior probability on Hy is py = 1/2. For G
a family of priors on H; we put

TS
Ble.G) = o T Flpyg(0)do

and

e 6) = O*@éGQA'

A Bayesian prior g € G on Hy will then have posterior probability at least
P(x,G) on Hy (for pg = 1/2). If 0 is the m.l.e. of 6, and G4 the set of all
prior distributions, then

f(x|6o)

BJJ,GA = ~
BlnGa) = 2w

and

fliE)))
£(x]6)

E(SC,GA> = <1+

4. Credible intervals

A (1 — «) (posterior) credible interval (region) is an interval (region) of
f—values within which 1— « of the posterior probability lies. Often we would
like to find HPD (highest posterior density) region: a (1 — «) credible region
that has minimal volume. When the posterior density is unimodal, this is
often straightforward.

Example continued. Suppose yi,¥s, ..., ¥y, are independent normally
distributed random variables, each with variance 1 and with means Bz, ..., fx,,
where 3 is an unknown real-valued parameter and x1, s, ..., x, are known

constants. Under the Jeffreys prior, the posterior is N/ <zﬂ, (sm)_1>. Hence
a 95%-credible interval for 3 is

i 1
S 41,96, —.
s$$ SCEI'



The interpretation in Bayesian statistics is conditional on the observed
x; the randomness relates to the distribution of #. In contrast, a frequentist
confidence interval applies before x is observed; the randomness relates to
the distribution of x.

5. Not to forget about: Nuisance parameters

If 0 = (¢, \), where X nuisance parameter, and 7(6|z) = 7((¢), A)|z), then
we base our inference on the marginal posterior of :

m(Ylz) = /w(w,)\|m)d)\.

That is, we just integrate out the nuisance parameter.



