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Our standard situation is that we have data x = x1, x2, . . . , xn, which we
view as realisations of random variables X1, X2, . . . , Xn with a distribution
(model) f(x1, x2, . . . , xn; θ), where θ is unknown. In frequentist analysis, θ ∈ Θ
is an unknown constant.

1. Likelihood and Sufficiency

(Fisherian) Likelihood approach: We define the likelihood of θ given the data
as

L(θ) = L(θ,x) = f(x1, x2, . . . , xn; θ).

Often: X1, X2, . . . , Xn are independent, identically distributed (i.i.d.); then
L(θ,x) =

∏n
i=1 f(xi, θ).

We summarize information about θ: find a minimal sufficient statistic t(x);
from the Factorization Theorem: T = t(X) is sufficient for θ if and only if there
exists functions g(t, θ) and h(x) such that for all x and θ

f(x, θ) = g(t(x), θ)h(x).

Moveover T = t(X) is minimal sufficient when it holds that

f(x, θ)
f(y, θ)

is constant in θ ⇐⇒ t(x) = t(y)

Example
LetX1, . . . , Xn be a random sample from the truncated exponential distribution,
where

fXi(xi) = eθ−xi , xi > θ

or, using the indicator function notation,

fXi(xi) = eθ−xiI(θ,∞)(xi).

Show that Y1 = min(Xi) is sufficient for θ.
Let T = T (X1, . . . , Xn) = Y1. We need the pdf fT (t) of the smallest order

statistic. Calculate the cdf for Xi,

F (x) =
∫ x

θ

eθ−zdz = eθ[e−θ − e−x] = 1− eθ−x.

Now

P (T > t) =
n∏
i=1

(1− F (t)) = (1− F (t))n.
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Differentiating gives that fT (t) equals

n[1− F (t)]n−1f(t) = ne(θ−t)(n−1) × eθ−t = nen(θ−t), t > θ.

So the conditional density of X1, . . . Xn given T = t is

eθ−x1eθ−x2 . . . eθ−xn

nen(θ−t) =
e−

∑
xi

ne−nt
, xi ≥ t, i = 1, . . . n,

which does not depend on θ for each fixed t = min(xi). Note that since xi ≥
t, i = 1, . . . , n, neither the expression nor the range space depends on θ, so the
first order statistic, X(1) = min(Xi), is a sufficient statistic for θ.

Alternatively, use the Factorization Theorem:

fX(x) =
n∏
i=1

eθ−xiI(θ,∞)(xi)

= I(θ,∞)(x(1))
n∏
i=1

eθ−xi

= enθI(θ,∞)(x(1))e−
∑n
i=1 xi .

With
g(t, θ) = enθI(θ,∞)(t) and h(x) = e−

∑n
i=1 xi

we see that X(1) is minimal sufficient.

2. Point Estimation

Estimate θ by a function t(x1, . . . , xn) of the data; often by maximum-
likelihood:

θ̂ = argmax
θ
L(θ),

or by method of moments. Neither are unbiased in general, but the m.l.e.
is asymptotically unbiased and asymptotically efficient; under some regularity
assumptions,

θ̂ ≈ N (θ, I−1
n (θ)),

where

In(θ) = E

[(
∂`(θ,X)
∂θ

)2
]

is the Fisher information (matrix). Under more regularity,

In(θ) = −E
(
∂2`(θ,X)
∂θ2

)
.

If x is a random sample, then In(θ) = nI1(θ) ; often we abbreviate I1(θ) =
I(θ).
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The m.l.e. is a function of a sufficient statistic; recall that, for scalar θ,
there is a nice theory using the Cramer-Rao lower bound and the Rao-Blackwell
theorem on how to obtain minimum variance unbiased estimators based on a
sufficient statistic and an unbiased estimator. The mle possesses the invariance
property: The m.l.e. of a function φ(θ) is φ(θ̂).

Example
Suppose X1, X2, . . . , Xn random sample from Gamma distribution with density

f(x; c, β) =
xc−1

Γ(c)βc
e−

x
β , x > 0,

where c > 0, β > 0; θ = (c, β);

`(θ) = −n log Γ(c)− nc log β + (c− 1) log
∏

xi −
1
β

∑
xi

Put D1(c) = ∂
∂c log Γ(c), then

∂`

∂β
= −nc

β
+

1
β2

∑
xi

∂`

∂c
= −nD1(c)− n log β + log(

∏
xi)

Setting these equal to zero yields

β̂ =
x

ĉ
,

where ĉ solves
D1(ĉ)− log(ĉ) = log([

∏
xi]1/n/x).

(We could calculate that sufficient statistics is indeed (
∑
xi, [

∏
xi), and is min-

imal sufficient)
We need to check the second derivatives to assure that we have a maximum; we
leave this out here for time reasons. We calculate the Fisher information: Put
D2(c) = ∂2

∂c2 log Γ(c),

∂2`

∂β2
=

nc

β2
− 2
β3

∑
xi

∂2`

∂β∂c
= −n

β

∂2`

∂c2
= −nD2(c).

We use that EXi = cβ to obtain

In(θ) = n

( c
β2

1
β

1
β D2(c)

)
.
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Note that if c was large, then by the CLT each observation Xj is approximately
normal, because, in distribution, Xj = Y1 + Y2 + · · ·+ Yk, with Yi, i = 1, . . . , k,
being i.i.d. Gamma(c/k, β).

Recall also that there is an iterative method to compute m.l.e.s, related to
the Newton-Raphson method.

3. Hypothesis Testing

For simple null hypothesis and simple alternative, the Neyman-Pearson Lemma
says that the most powerful tests are likelihood-ratio tests. These can sometimes
be generalized to one-sided alternatives in such a way as to yield uniformly most
powerful tests.

Example
Suppose as above that X1, . . . , Xn is a random sample from the truncated ex-
ponential distribution, where

fXi(xi; θ) = eθ−xi , xi > θ.

Find a UMP test of size α for testing H0 : θ = θ0 against H1 : θ > θ0:
Let θ1 > θ0, then the LR is

f(x, θ1)
f(x, θ0)

= en(θ1−θ0)I(θ1,∞)(x(1)),

which increases with x(1), so we reject H0 if the smallest observation, T = X(1),
is large. Under H0, we have calculated that the pdf of fT is

nen(θ0−y1), y1 > θ0.

So for t > θ, under H0,

P (T > t) =
∫ ∞
t

nen(θ0−s)ds = en(θ0−t).

For a test at level α, choose t such that

t = θ0 −
lnα
n
.

The LR test rejects H0 if X(1) > θ0 − lnα
n . The test is the same for all θ > θ0,

so it is UMP.

For a general null hypothesis and a general alternative, H0 : θ ∈ Θ0 versus
H1 : θ ∈ Θ1 = Θ\Θ0, the (generalized) LR test uses the likelihood ratio statistic

T =
max
θ∈Θ

L(θ; X)

max
θ∈Θ0

L(θ; X)
.
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We reject H0 for large values of T ; we use the chisquare asymptotics 2 log T ≈
χ2
p, where p = dimΘ − dimΘ0 (which is valid for nested models only). Alter-

natively, we could use score tests, which are based on the score function ∂`/∂θ,
with asymptotics in terms of normal distribution N (0, In(θ)). Or, we could
use a Wald test, which is based on the asymptotic normality of the m.l.e.; of-
ten θ̂ ≈ N

(
θ, I−1

n (θ)
)

if θ is the true parameter. Recall: In a random sample,
In(θ) = nI1(θ).

An important example is Pearson’s Chisquare test, which we derived as a
score test, and we saw that it is asymptotically equivalent to the generalized
likelihood ratio test

Example
Let X1, . . . , Xn be a random sample from a geometric distribution with param-
eter p;

P (Xi = k) = p(1− p)k, k = 0, 1, 2, . . . .

Then
L(p) = pn(1− p)

∑
(xi)

and
`(p) = n ln p+ nx ln(1− p),

so that

∂`/∂p(p) = n

(
1
p
− x

1− p

)
and

∂2`/∂p2(p) = n

(
− 1
p2
− x

(1− p)2

)
.

We know that EX1 = (1− p)/p. Calculate the information

I(p) =
n

p2(1− p)
.

Suppose n = 20, x = 3, H0 : p0 = 0.15 and H1 : p0 6= 0.15. Then
∂`/∂p(0.15) = −62.7 and I(0.15) = 1045.8. The test statistic is then

Z = −62.7/
√

1045.8 = 1.9388.

Compare to 1.96 for a test at level α = 0.05: do not reject H0.

Example continued.
For a generalized LRT the test statistic is based on 2 log[L(θ̂)/L(θ0)] ≈ χ2

1, and
the test statistic is thus

2(`(θ̂)− `(θ0) = 2n(ln(θ̂)− ln(θ0) + x(ln(1− θ̂)− ln(1− θ0)).

We calculate that the m.l.e. is

θ̂ =
1

1 + x
.
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Suppose again n = 20, x = 3, H0 : θ0 = 0.15 and H1 : θ0 6= 0.15. The m.l.e.
is θ̂ = 0.25, and `(0.25) = −44.98; `(0.15) = −47.69. Calculate

χ2 = 2(47.69− 44.98) = 5.4

and compare to chisquare distribution with 1 degree of freedom: 3.84 at 5
percent level, so reject H0.

4. Confidence Regions

If we can find a pivot, a function t(X, θ) of a sufficient statistics whose distri-
bution does not depend on θ, then we can find confidence regions in a straight-
forward manner. Otherwise we may have to resort to approximate confidence
regions, for example using the approximate normality of the m.l.e. Recall that
confidence intervals are equivalent to hypothesis tests with simple null hypoth-
esis and one- or two-sided alternatives

Not to forget about:

Profile likelihood
Often θ = (ψ, λ) where ψ contains the parameters of interest; then we may

base our inference on the profile likelihood for ψ,

LP (ψ) = L(ψ, λ̂ψ).

Again we can use a (generalized) LRT or score test; if ψ scalar, H0 : ψ = ψ0,
H+

1 : ψ > ψ0, H−1 : ψ < ψ0, use test statistic

T =
∂`(ψ0, λ̂0; X)

∂ψ
,

where λ̂0 is the MLE for λ when H0 true. Large positive values of T indicate H+
1 ;

large negative values indicate H−1 , and

T ≈ `′ψ − I−1
λ,λIψ,λ`

′
λ ≈ N(0, 1/Iψ,ψ),

where Iψ,ψ = (Iψ,ψ − I2
ψ,λI

−1
λ,λ)−1 is the top left element of I−1. We estimate

the parameters by substituting the null hypothesis values; calculate the practical
standardized form of T as

Z =
T√

Var(T )
≈ `′ψ(ψ, λ̂ψ)[Iψ,ψ(ψ, λ̂ψ)]1/2,

which is approximately standard normal.
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Bias and variance approximations: the delta method
The delta method is useful if we cannot calculate mean and variance directly.

Suppose T = g(S) where ES = β and VarS = V . Taylor expansion gives

T = g(S) ≈ g(β) + (S − β)g′(β).

Taking the mean and variance of the r.h.s.:

ET ≈ g(β), VarT ≈ [g′(β)]2V.

This also works for vectors S, β, with T still a scalar. If
(
g′(β)

)
i

= ∂g/∂βi, and
g′′(β) the matrix of second derivatives, then

VarT ≈ [g′(β)]TV g′(β)

and
ET ≈ g(β) +

1
2

trace[g′′(β)V ].

Exponential family
For distributions in the exponential family, many calculations have been

standardized, see the lecture notes.
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