1. Suppose that X has a Poisson distribution with unknown mean θ .

Determine the Jeffreys prior π^J for θ , and discuss whether the "scale-invariant" prior $\pi_0(\theta) = 1/\theta$ might be preferrable as noninformative prior.

2. Suppose again that X has a Poisson distribution with unknown mean θ .

Using π^J as the reference measure, find the maximum entropy prior under the constraints that the prior mean and variance of θ are both 1. (Just write it in terms of the constraints λ_1 and λ_2 from lectures, do not solve for these.)

Repeat, for the reference measure π_0 . (Again, just write it in terms of the constraints λ_1 and λ_2 from lectures, do not solve for these.)

3. Suppose that x_1, \ldots, x_n is a random sample from a Poisson distribution with unknown mean θ . Two models for the prior distribution of θ are contemplated;

$$\pi_1(\theta) = e^{-\theta}, \quad \theta > 0, \text{ and } \pi_2(\theta) = e^{-\theta}\theta, \quad \theta > 0.$$

- (a) Calculate the Bayes estimator of θ under both models, with quadratic loss function.
- (b) The prior probabilities of model 1 and model 2 are assessed at probability 1/2 each. Calculate the Bayes factor for H_0 :model 1 applies against H_1 :model 2 applies.
- 4. * Let θ be a real-valued parameter and let $f(x|\theta)$ be the probability density function of an observation x, given θ . The prior distribution of θ has a discrete component that gives probability β to the point null hypothesis $H_0: \theta = \theta_0$. The remainder of the distribution is continuous, and conditional on $\theta \neq \theta_0$, its density is $g(\theta)$.
 - (a) Derive an expression for $\pi(\theta_0|x)$, the posterior probability of H_0 .
 - (b) Derive the Bayes factor B(x) for the null hypothesis against the alternative.
 - (c) Express $\pi(\theta_0|x)$ in terms of B(x).
 - (d) Explain how you would use B(x) to construct a most powerful test of size α for H_0 , against the alternative $H_1: \theta \neq \theta_0$.
- 5. Suppose that x_1, \ldots, x_n is a sample from a normal distribution with mean θ and variance v. Let $H_0: \theta = 0$, and let the alternative be $H_1: \theta \neq 0$. The prior distribution of θ has a discrete component that gives probability 1/2 to the point null hypothesis H_0 ; the remainder of the prior distribution is continuous, and conditional on $\theta \neq \theta_0$, its density is $g(\theta)$ given by

$$g(\theta) = (2\pi w^2)^{-1/2} \exp\{-\theta^2/(2w^2)\},\$$

for $-\infty < \theta < \infty$. Show that, if the sample mean is observed to be $10(v/n)^{1/2}$, then

- (a) the likelihood ratio test of size $\alpha = 0.05$ will reject H_0 for any value of n;
- (b) the posterior probability of H_0 converges to 1, as $n \to \infty$.