1. Denote the c.d.f. of a statistic $T=t(\mathbf{X})$ under the simple null hypothesis H_{0} by $F_{T, H_{0}}$, and assume that $F_{T, H_{0}}$ is continuous. Put

$$
P(\mathbf{x})=P\left(T \geq t(\mathbf{x}) \mid H_{0}\right)
$$

Let \mathbf{X} be a random sample from the distribution specified by the null hypothesis. Show that then the random variable $P(\mathbf{X})$ is uniformly distributed on $[0,1]$.
2. Suppose you have a random sample of size n from an exponential distribution with mean μ. Find the best size- α test of $H_{0}: \mu=\mu_{0}$ against the alternative $H_{1}: \mu=\mu_{1}$, where $\mu_{1}>\mu_{0}$.
3. Suppose you have a random sample $\mathbf{X}=X_{1}, \ldots, X_{n}$ of size n from a distribution which is a member of a continuous 1-parameter regular exponential family, so that

$$
f(x ; \theta)=\exp \{\phi(\theta) h(x)+c(\theta)+d(x)\}, \quad x \in \mathcal{X}
$$

and assume that ϕ is an increasing function. Let $T=t(\mathbf{X})=\sum_{i=1}^{n} h\left(X_{i}\right)$. Consider $H_{0}: \theta=\theta_{0}$ and for fixed $\alpha>0$ choose k_{α} such that $P_{\theta_{0}}\left(t(\mathbf{X}) \geq k_{\alpha}\right)=\alpha$. The following test is proposed: Reject H_{0} if $t(\mathbf{x}) \geq k_{\alpha}$.
(a) Let $\theta_{1}>\theta_{0}$. Show that the test is most powerful when testing H_{0} against H_{1} : $\theta=\theta_{1}$.
(b) Show that the test is uniformly most powerful when testing H_{0} against $H_{1}: \theta>\theta_{0}$.
4. Consider the linear model

$$
Y=\beta x+\gamma z+\epsilon
$$

where $\epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$, and σ^{2} is unknown. Let $\hat{\sigma^{2}}$ be the maximum-likelihood estimator for σ^{2}. Let $\theta=(\beta, \gamma)^{T}$, and denote the estimated variance-covariance matrix of θ by $\hat{V}(\hat{\theta})$; say,

$$
\hat{V}(\hat{\theta})=\hat{\sigma^{2}}\left(\begin{array}{ll}
w_{11} & w_{12} \\
w_{12} & w_{22}
\end{array}\right)
$$

a) Show that for testing $H_{0}: \beta \gamma=1$ the Wald statistic is

$$
\frac{(\hat{\beta} \hat{\gamma}-1)^{2}}{\hat{\sigma^{2}}\left(\hat{\gamma}^{2} w_{11}+2 \hat{\beta} \hat{\gamma} w_{12}+\hat{\beta}^{2} w_{22}\right)}
$$

b) Derive the Wald statistic for testing $H_{0}: \beta=\gamma^{-1}$.
5. Suppose $Y_{i} \sim N\left(\beta_{0}+\beta_{1} x_{i}{ }^{\psi}, \sigma^{2}\right)$ for $i=1, \ldots, n$, where $\beta_{0}, \beta_{1}, \psi$ and σ are unknown parameters and where the constants x_{i} are known. Derive the score test of $H_{0}: \psi=1$ against the alternative $H_{1}^{+}: \psi>1$.
6. Suppose $X_{i} \sim N\left(\mu_{x}, \sigma_{x}^{2}\right)$ for $i=1, \ldots, n$, and $Y_{j} \sim N\left(\mu_{y}, \sigma_{y}^{2}\right)$ for $j=1, \ldots, m$, where $\mu_{x}, \mu_{y}, \sigma_{x}$ and σ_{y} are all unknown. Let S_{x}^{2} and S_{y}^{2} denote the sample variances. Use the pivot $\left(S_{x}^{2} / \sigma_{x}^{2}\right) /\left(S_{y}^{2} / \sigma_{y}^{2}\right)$ to obtain an exact upper $1-\alpha$ confidence limit for $\psi=\sigma_{y}^{2} / \sigma_{x}^{2}$. How would you construct the corresponding confidence limit for ψ if both μ_{x} and μ_{y} were known?
7. Let $X_{(n)}$ be the largest value in a sample of size n drawn from the uniform distribution on $[0, \theta]$. Show that $X_{(n)} / \theta$ is a pivot. Using this pivot, find a $100(1-\alpha) \%$ confidence interval for θ. Discuss how you would test the hypothesis that θ takes a specific value θ_{0} for such a sample.

