Michaelmas Term 2009

- Problems 1
- 1. Which of the following densities are within an exponential family? Explain your reasoning.

(a)

$$f(x,\theta) = (1-\theta)\theta^x; \quad x = 0, 1, 2, \dots$$

where $0 < \theta < 1$;

(b)

$$f(x; \alpha, \lambda) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} e^{-\lambda x} x^{\alpha - 1}, \quad x > 0,$$

where $\alpha > 0, \lambda > 0;$

(c)

$$f(x,\theta) = e^{-(x-\theta)}, \quad x \ge \theta.$$

- **2.** Suppose X_1, X_2, \ldots, X_n is a random sample from the Pareto distribution $f(x, \lambda) = \frac{\lambda \alpha^{\lambda}}{x^{\lambda+1}}$ with $x > \alpha$, $\lambda > 0$, and $\alpha > 0$ known. Find the likelihood function for λ , and find a minimal sufficient statistic for λ .
- **3.** Suppose X_1, X_2, \ldots, X_n is a random sample from the log-normal distribution with density

$$f(x,\mu,\phi) = \frac{1}{x\sqrt{2\pi\phi}} \exp\left\{-\frac{1}{2\phi}(\log x - \mu)^2\right\}$$

with $\phi > 0$ (so that $\log X_j \sim \mathcal{N}(\mu, \phi)$). Find a minimal sufficient statistic for the parameter $\theta = (\mu, \phi)$.

4. Suppose X_1, \ldots, X_n are independent and exponentially distributed, each with density function

$$f(x;\theta) = \frac{1}{\theta}e^{-x/\theta}, \qquad x \ge 0.$$

Let $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ and put

$$T = \frac{\overline{X}}{\sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(X_i - \overline{X})^2}}$$

Show that T is an ancillary statistic. What does this say about t-tests on exponential data?

5. Let X_1, \ldots, X_n be i.i.d. uniform $\mathcal{U}\left[\theta - \frac{1}{2}, \theta + \frac{1}{2}\right]$ random variables.

a) Show that $(X_{(1)}, X_{(n)})$ is minimal sufficient for θ .

b) Show that $(S, A) = (\frac{1}{2}(X_{(1)} + X_{(n)}), X_{(n)} - X_{(1)})$ is minimal sufficient for θ , and that the distribution of A is independent of θ (so A is an ancillary statistic). c) Show that any value contained in the interval $[x_{(n)} - \frac{1}{2}, x_{(1)} + \frac{1}{2}]$ is a maximum-likelihood-estimator for θ .

- 6. The random variables X_1, \ldots, X_n are independent with geometric distribution $\mathsf{P}(X_i = x) = p(1-p)^{x-1}$ for $x = 1, 2, \ldots$ Let $\theta = p^{-1}$.
 - (i) Find the maximum likelihood estimator for p. Considering n = 1, is it unbiased?
 - (ii) Show that $\hat{\theta} = \overline{X}$ is the maximum likelihood estimator for θ . Is it unbiased?
 - (iii) Compute the expected Fisher information for θ .
 - (iv) Does $\hat{\theta}$ attain the Cramer-Rao lower bound?
- 7. Let X_1, \ldots, X_n be i.i.d. $U[0, \theta]$, having density

$$f(x;\theta) = \frac{1}{\theta}, \qquad 0 \le x \le \theta$$

with $\theta > 0$.

- (i) Estimate θ using both the method of moments and maximum likelihood.
- (ii) Calculate the means and variances of the two estimators.
- (iii) Which one should be preferred and why?
- 8. Suppose X_1, \ldots, X_n are a random sample with mean μ and finite variance σ^2 . Use the delta method to show that, in distribution,

$$\sqrt{n}(\overline{X}_n^2 - \mu^2) \to \mathcal{N}(0, 4\mu^2\sigma^2).$$

What would you suggest if $\mu = 0$?