1. Which of the following densities are within an exponential family? Explain your reasoning.
(a)

$$
f(x, \theta)=(1-\theta) \theta^{x} ; \quad x=0,1,2, \ldots
$$

where $0<\theta<1$;
(b)

$$
f(x ; \alpha, \lambda)=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} e^{-\lambda x} x^{\alpha-1}, \quad x>0
$$

where $\alpha>0, \lambda>0$;
(c)

$$
f(x, \theta)=e^{-(x-\theta)}, \quad x \geq \theta
$$

2. Suppose $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from the Pareto distribution $f(x, \lambda)=$ $\frac{\lambda \alpha^{\lambda}}{x^{\lambda+1}}$ with $x>\alpha, \lambda>0$, and $\alpha>0$ known. Find the likelihood function for λ, and find a minimal sufficient statistic for λ.
3. Suppose $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from the log-normal distribution with density

$$
f(x, \mu, \phi)=\frac{1}{x \sqrt{2 \pi \phi}} \exp \left\{-\frac{1}{2 \phi}(\log x-\mu)^{2}\right\}
$$

with $\phi>0$ (so that $\log X_{j} \sim \mathcal{N}(\mu, \phi)$). Find a minimal sufficient statistic for the parameter $\theta=(\mu, \phi)$.
4. Suppose X_{1}, \ldots, X_{n} are independent and exponentially distributed, each with density function

$$
f(x ; \theta)=\frac{1}{\theta} e^{-x / \theta}, \quad x \geq 0 .
$$

Let $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ and put

$$
T=\frac{\bar{X}}{\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}} .
$$

Show that T is an ancillary statistic. What does this say about t-tests on exponential data?
5. Let X_{1}, \ldots, X_{n} be i.i.d. uniform $\mathcal{U}\left[\theta-\frac{1}{2}, \theta+\frac{1}{2}\right]$ random variables.
a) Show that $\left(X_{(1)}, X_{(n)}\right)$ is minimal sufficient for θ.
b) Show that $(S, A)=\left(\frac{1}{2}\left(X_{(1)}+X_{(n)}\right), X_{(n)}-X_{(1)}\right)$ is minimal sufficient for θ, and that the distribution of A is independent of θ (so A is an ancillary statistic).
c) Show that any value contained in the interval $\left[x_{(n)}-\frac{1}{2}, x_{(1)}+\frac{1}{2}\right]$ is a maximum-likelihood-estimator for θ.
6. The random variables X_{1}, \ldots, X_{n} are independent with geometric distribution $\mathrm{P}\left(X_{i}=x\right)=p(1-p)^{x-1}$ for $x=1,2, \ldots$. Let $\theta=p^{-1}$.
(i) Find the maximum likelihood estimator for p. Considering $n=1$, is it unbiased?
(ii) Show that $\hat{\theta}=\bar{X}$ is the maximum likelihood estimator for θ. Is it unbiased?
(iii) Compute the expected Fisher information for θ.
(iv) Does $\hat{\theta}$ attain the Cramer-Rao lower bound?
7. Let X_{1}, \ldots, X_{n} be i.i.d. $U[0, \theta]$, having density

$$
f(x ; \theta)=\frac{1}{\theta}, \quad 0 \leq x \leq \theta
$$

with $\theta>0$.
(i) Estimate θ using both the method of moments and maximum likelihood.
(ii) Calculate the means and variances of the two estimators.
(iii) Which one should be preferred and why?
8. Suppose X_{1}, \ldots, X_{n} are a random sample with mean μ and finite variance σ^{2}. Use the delta method to show that, in distribution,

$$
\sqrt{n}\left(\bar{X}_{n}{ }^{2}-\mu^{2}\right) \rightarrow \mathcal{N}\left(0,4 \mu^{2} \sigma^{2}\right) .
$$

What would you suggest if $\mu=0$?

