Stochastic Simulation
Michaelmas Term 2002

Dr. Gesine Reinert

Organization of the class

This class will take place Wednesdays 12-1, from week 1 to week 8, in the
Department of Statistics. In addition there will be a practical class on

Tuesday, November 19 (week 6), in the Computer lab in the department

Lecture notes and a problem sheet will be handed out in the beginning of
every second week. For computer exercises, we will use S-PLUS. Note that
lectures may differ slightly from these lecture notes.

Recommended reading

1. J.M. HAMMERSLEY AND D.C. HANDScOMB (1964). Monte Carlo
Methods. Methuen.

2. AM. Law AND W.D. KELTON (1999). Simulation Modeling and
Analysis. Third edition, McGraw-Hill.

3. B.J.T. MORGAN (1984). Elements of Sitmulation. Chapman and Hall.
4. B.D. RIPLEY (1987). Stochastic Simulation. Wiley.

5. S.M. Ross (1996). Simulation. Second edition. Academic Press.



Contents
1 Introduction

2 Pseudo-random number generators
2.1 Generating from the uniform distribution . . . . . . . . .. ..
2.1.1 Congruential generators . . . . .. ... ... .....
2.1.2  Shift-register generators . . . . .. .. ... ... ...
2.1.3 Lagged-Fibonacci generators . . . . . . .. ... .. ..
2.2 Testing randommness . . . . . . .. ...
2.2.1 Testing for independence . . . . . . .. ... .. ...
2.2.2  Testing for the distribution . . . . . . . ... ... ...

3 Generators for other distributions
3.1 The inverse transform method . . . . . . . . . ... .. ....
3.2 The acceptance-rejection method . . . . . . . ... ... ...
3.3 The composition method . . . . . . .. ... oL
3.4 Ratio of uniforms method . . . ... ... .. ... ......
3.5 Multivariate distributions . . . . . .. ... ...

4 Simulation design and analysis
4.1 Stratified sampling . . . . . ..o o000
4.2 Importance sampling . . . . .. . .. ... oL
4.3 Control variates . . . . . . . ... oo
4.4 Antithetic variates . . . . . .. ..o o000
4.5 Conditional Monte Carlo . . . . . . ... ... ... .. ....
4.6 Isolating known components . . . . .. .. ...
4.7 Experimental design . . . . .. ..o oL
4.8 DIScussion . . . ... ..o

5 Simulation of stochastic processes
5.1 Construction of algorithms . . . . . .. .. .. ... ... ...

5.2  Markov Chain Monte Carlo methods: The Gibbs sampler . . .

6 Statistical Inference
6.1 Monte Carlotests . . . . . . . . . . . ... ... ... .. ...
6.2 Confidence intervals. . . . . . . ... ... ... ... .....
6.3 Output analysis . . . . . . . .. ..

15
15
19
24
24
26

27
29
30
33
34
35
36
37
37

38
38
43



1 Introduction

Over the last 50 years, simulation has become an important tool in applied
mathematics, in computer science, and in engineering. Often a real-life prob-
lem is too complex for a closed-form solution; think of the aerodynamics of
an airplane, or of weather systems. In principle, these complex deterministic
systems could be described completely, for example by differential equations,
but these are too large and/or too complicated to be solvable exactly. Hence
one would resort to simulation to understand the underlying behaviour.

In addition, there are complex problems that involve randomness and
hence are not solvable deterministically at all. Among these would be, for
example, internet traffic, and the spread of disease in a population. In this
class we will restrict our attention to this type of problems, namely those
that have an element of randomness. Some uses of simulation would be

e exploratory modeling of the behaviour of complex stochastic systems,
such as queuing systems, spatial spread of epidemics

e to gain insight in statistical behaviour, such as simulating from a bino-
mial distribution to illustrate the central limit theorem

e intractable deterministic problems in analysis sometimes have a so-
lution involving stochastic processes, and these could be studied by
simulation

e examination of the properties of statistical procedures, such as estimat-
ing the power of tests, assessing robustness of procedures

e statistical inference: determine the null distribution of a statistic

Advantages of simulations are that we could try different scenarios easily,
that we could analyze systems of almost arbitrary complexity, and that we
could visualize processes. Disadvantages are that a simulation might be slow,
and that optimization of the algorithms can be hard. Moreover, rare event
simulation is extremely difficult. Large scale modeling is still very hard and
time consuming.



2 Pseudo-random number generators

For any simulation of stochastic systems, we need to be able to simulate
“randomness”, that is, to simulate observations that look as if they came
from a prespecified probability distribution. One way of achieving this would
be for example to flip a fair coin repeatedly, to roll a fair die repeatedly, or
to draw a card from a deck of cards repeatedly.

For example, if you wanted to determine the probability that with 4
cards drawn at random from a deck of 52 cards, exactly two of them are
aces, you could simulate this event by shuffling repeatedly, dealing 4 cards,
and recording whether or not they contained two aces.

In simulations often we need many random numbers, so this is not feasible.
(Think of assessing insurance risks - these are typically rare events.) On
the other hand, computer algorithms are deterministic in nature, so it is
not obvious how to generate random numbers in a computer. Of course
statistical software comes with pseudo-random number generators, but this
class is partly designed to look behind that curtain. In particular we will
see that these pseudo-random generators have its flaws, and these flaws are
important to know when setting up a simulation.

2.1 Generating from the uniform distribution

The best distribution to start with is the uniform distribution on [0, 1], de-
noted by U([0,1]). Ideally, a pseudo-random number generator (RNG) for
U([0,1]) would

e provide a very good approximation to ¢([0, 1]) marginally

e have very close to independent output in a moderate number of dimen-
sions

e be repeatable from a specified starting point
e be fast
e not repeat itself too often

e be portable (for different operating systems)



e be analyzable
e in cryptography often it is desired that the RNG is unpredictable.

Virtually all random number generators are based on the following idea.
We have a finite set ' and a function f: £ — E. Given an initial value Xy,
the generated sequence is

Xo, X1 = f(Xo), X2 = f(X1) = f2(Xo), ...

The three most common types of pseudo-random number generators are the
so-called congruential generators, the shift-register generators, and lagged-
Fibonacci generators, with variants.

2.1.1 Congruential generators

The (first-order) congruential generators were introduced by Lehmer (1951).
They are of the form

X, =aX,_1 +b (mod M)

so that X,, € [0, M — 1]. If b = 0 this is called a multiplicative generator, if
b # 0 it is called a mizred generator. We then put
X
U, = E
The starting point Xy is called the seed. The seed is often chosen by the
programmer, or using the internal clock of the computer. Ideally, the seed
should be chosen at random from ([0, 1]).

A convenient choice for M would equal the computer’s word length, since
then division by M is quite efficient. However, to reduce periodicity, M
should be large.

We also want the sequence not to repeat itself too often. A congruential
generator yields a periodic sequence with period k, say. For mixed congru-
ential generators, &k < M. If K = M, the generator is said to have full period.
For multiplicative congruential generators, & < M — 1, since 0 repeats itself
indefinitely. If £ = M — 1, the multiplicative generator is called mazimal.

In Hammersley and Hanscomb (1964), p.28 (see also Ripley (1987)) the

following can be found.



Proposition 1 For a mized congruential generator, the full period of M can
always be achieved provided that

1. b and M have no common divisor
2. a=1 (modp) for every prime factor of M

3.a=1 (mod4) if M is a multiple of 4.

For multiplicative generators, we can use the following fact (Ripley (1987),
p.21).

Proposition 2 A multiplicative generator has period M — 1 only if M 1is

prime. Then the period divides M — 1, and is M — 1 if and only if a is a
M-—1

primitive root, that is, a # 0 and a7 # 1(mod M) for each prime factor p

of M — 1.

Popular examples would be M = 232, a = 69,069,b = 1, or the Learmonth-
Lewis generator M = 231 —1,a = 7° = 16,807,b = 0. The S-PLUS function
congrval uses a = 69,069,b = 0, M = 232, A rather unpopular example is
M =23 a=2"% 43 ¢=0, see Ripley (1987), p.23-24.

Note that successive numbers generated by these methods would always
be correlated. Depending on the choice of parameters the correlation could
be quite strong. Successive values all lie on a lattice, see Marsaglia (1968),
and the goal is to choose a such that the lattice is rather evenly spread, and
that the points are not too far apart. Shuffling can also help.

2.1.2 Shift-register generators

For shift-register generators, the set K is the set of binary k—vectors X =
(X1, Xs,...,Xy), and f is a linear transformation f(z) = 2T, with T a
binary k x k matrix and all calculations being carried out mod2. This is
convenient as it corresponds to the exclusive “or 7 (EOR). An example is

Xn = CLn)(n—l + GQXn—Q + -+ aan—k d(mOd 2)7
where ay,...,a; € {0,1}. Then put

Un - O.Xn_l e Xn—k-



Very customary is to use
X, =Xup+ Xy (mod 2);

here, 1 < g < p. Choices of (p,q) that give the maximal period 2 — 1 are
given in Ripley (1987), p.27.

The Tausworthe generator, suggested by Tausworthe (1965), uses L-bit
binary fractions taken ¢ apart:

2
U, = Z 27 X pas = 0.X 01 Xppgo - Xoeas
s=1
that is, L-bit binary fractions taken ¢ apart. Here, 0.X,;11 X140 ... Xppqp 18
a binary representation. The parameter ¢ > L is called the decimation, and
if t and 2P — 1 are relatively prime, then the decimation is said to be proper
and the sequence attains its full period.
Typical values would be p = 33, ¢ = 13,1 = L = 32, having period 2% —1.
Recently the Mersenne Twister, developed by Matsumoto and Nishimura
(1998), has become rather popular. It is based on a matrix version of a
shift-register generator.

2.1.3 Lagged-Fibonacci generators

Here, F is the set of r-vectors with elements in some finite set. The function

f is defined by
f(Xl,XQ, Ce ,XT) = (X27X37X4, Ce ,Xr,Xl + X,A_H_s)(mod M)
An example is
X, = Xn_607 — Xn—243(m0d 232)-

The advantage of lagged-Fibonacci generator is that their period is consider-
ably larger than the period of congruential generators. The above generator,
for example, has period about 260732,

L’Ecuyer (1999) showed that the combined linear multiple recursive gen-
erator

Xin = (a1 X1+ + a1 X1 0k (mod my)
Xoym = (G2,1X2,n—1 + - ap Xo ok (mod m2)

U, = <&—&) (mod 1)

my mo

7



has good properties for

E =3
m; = 2% —209
my = 2°% —22,853
(a11,a12,a13) = (0;1,403,480; —810,728)
(aga,az2,a23) = (527,612;0;—1,370,589)
It has two main cycles of length ~ 291
tuples of length at most 48.

the lattice test is satisfactory for

Lagged-Fibonacci Generators have been refined by subtract-with-borrow gen-
erators, see Marsaglia and Zaman (1991). These are of the form

X, = X,os — X — b(mod M).
Here, b is a “borrow” flag. The iterating function here is

flz1,29,...,2,,b)
) (=, e gy — 2 — 5,0) ifz,1_s—2,—06>0
| (zeye e Tpp—s — 2 — b+ M 1) if 2o s — 21 — b <O.

These have much longer periods, for example, with M = 32,s = 607,r =
243 the above generator has period about 260732 Unfortunately, also this
generator has the problem of falling mainly on the planes; indeed, Tezuka,
L’Ecuyer and Couture (1993) showed that all triples (X,, X,,—s, X,,—) lie on
only two planes in [0, 1]°.

There is no uniformly best pseudo-random number generator available. The
Mersenne Twister seems to display good properties. Combining generators
is also a good choice. For example, one could add the binary output of two
generators mod 2 and use that as a new random number. Or one could
have two random number generators and a third one to switch between the
two. Another option is shuffling the output. There are nonlinear generators
available, displaying more favorable statistical properties, but unfortunately
they are still rather slow, see L’Ecuyer (1998, 2002).



2.2  Testing randomness

A good RNG should produce an output which does not differ significantly
from that of a (memoryless and fair) monkey hitting keys on a numeric
keyboard. Given a pseudo-random number generator, statistical tests are
advisable. Here are some possibilities.

2.2.1 Testing for independence

The gap test is based on the following observation. Choose two numbers,
a < 3 €[0,1], say, and record the lengths of the subsequence lying between
occurrences of the same sequence within [a, 3]. If a sequence X, X5, ... X,
was chosen uniformly and independently, then the distribution of the gap
length K should be geometric with probability of success

P(agUSﬁ):ﬁ—a,

where U denotes a ¢([0,1]) random variable. Under the independence as-
sumption, successive gap lengths are independent, and a Chisquare test for
independence can be used for testing whether the gap lengths are indeed
independent. This assumes that U ~ #([0,1]); indeed the gap test can be
used for other distributions as well, with a modified probability of success.
The run test follows a related idea. Record the length of runs, these
are monotonically increasing subsequences of X, X,,...X,,. For example,
(3,1,4,1,5,9,2,6,5,3,5) = 3|14|159|26|5|35 has 2 runs of length 1, 3 runs of
length 2, and one run of length 3. Under the null hypothesis that the obser-
vations are independent, the run lengths are independent, with expectation

(n+ 1Dk k-1
(k+1)! k7

E( number of runs with length k) = k=1,...,n.

A permutation test would divide Xy, X5, ... X, into blocks of length ¢, say;
(X1,...,X4),(Xa,..., Xi41), and so on. Under the null hypothesis of inde-
pendence, all ¢! different orderings should be equally likely, and a Chisquare
test can be used to test this.

There are also tests based on return time analysis, see ( Wegenkittl (1999)



2.2.2 Testing for the distribution

For this we could easily use the Kolmogorov-Smirnov test; if

1 n
Fo(z) = —EI(XZ' < z)
i
denotes the empirical distribution function of the observations, and £ is the
cumulative distribution function of the true distribution (which is assumed
to be continuous), then the Kolmogorov-Smirnov statistic

sup [Fu(z) — F'(2))]

should be small if the distribution is indeed uniform, and larger otherwise.
For U([0,1]), we have the special case F(z) =z, 0 <z < 1. The distri-
bution of this test statistic is not easy to determine; it can be shown (see

Shorack (2000), p. 316) that
Jim P(vnsup |F,(z) — 2| > A) = 2> (1) exp(—2k*A?).
¢ k=1

Instead, one could also bin the observations and use a Chisquare test.
Make a histogram of d equal size bins; then, under Hy, the probability for
each bin is 5. Use a Chisquare test with d — 1 degrees of freedom.

Another alternative is the Mazimum-of-t Test. Divide the sequence into
n groups of ¢ elements each, and calculate the maximum of each group.
Under Hy these maxima should follow the cumulative distribution function
F(z)=2', 0<z <1. Use a Kolmogorov-Smirnov test.

For testing uniformity of k-vectors, under the null hypothesis of unifor-
mity, the k-vectors (Ur,...,Ux), (Ugs1,...,Usz;) ... should be independent
and identically uniformly distributed on the cube [0, 1]*. Thus divide [0, 1]*
into d subcubes of same size, count the number of observations in each cube,
and use a Chisquare test.

For testing for independence when uniformity is assumed, there is the
Serial Correlation Test. Let Uy, Uy,...,U,_1 and V5, Vi,...,V,_1 be two
series. Then a correlation coefficient between the two series can be defined

by
ny UV, =3, U35,V

C = )
02 = (5, 0302) (n5 v = (5, Vi)

10



Let Up, Uy, ..., Uy_1 be uniform, and put V; = Ugi1ymodn,J = 0,...,n — 1.

Then

3

n(UgUy + UyUs + -+ -+ Ui Ug) — (Ug+ Uy + -+ - + Un—1)2
n(Ug+ U+ +U2_y) = (Uo+ Ui+ + Upr)?

The exact distribution for C is not known; empirically “good” values of C

lie between p, — 20, and pu, + 20, 95% of the time. Here. p, = —-1-

n—1"

O =

o, = nl—l\/% for n > 2.

Recently the Collision test has been advertised, (Knuth (1997)). Cut
[0,1) into k equal intervals, generate n points independently in [0, 1), and let
C' = number of times a point falls in a box that already has a point in it. For
large k, C' is approximately Poisson (%) Choose k = equal to the period,
and test for Poisson. This can be generalized to higher dimensions.

A variant of this is the Birthday spacings test (L Feuyer and Simard
(2001)). Cut [0, 1) into k equal intervals, and number these boxes in natural
order. Generate n points independently in [0,1), and let [y < I, < ... < [,
be the intervals where points fell. Consider the spacings

Sj:[j+1_[j7 jzl,...,n—l.

Let Y be the number of collisions between these spacings (that is, Sy =
S(j+1))- This corresponds to the birthday problem with n people and year

with k days. Under Hy, Y is approximately Poisson(}), if A = i is small.

In (L ’Feuyer, Simard and Wegenkittl (2002)) these tests are studied in
a more general framework. Partition [0,1) into d equal segments. This
generates a partition of [0,1)" into & = d' cubes of equal size. Generate
Uy, ..., Uu—1 random numbers, put

‘/;‘i:(Uti7"‘7Uti+t—1)7 l:()’,k_l,

and let X; be the number of these points falling into cube 5,7 =0,...,k—1.

Let n
A= —

k

denote the average number of points per cube under the null hypothesis that

the data are i.i.d. #([0,1]). Pearson’s Chi-square statistic is

k-1 X. — /\)2
X2 — ( J :
2

11



under the null hypothesis, X? is approximately X%k—l) distributed, when A >
5, say. This can be generalized to test statistics

k-1

Y = Z fn,k(Xj),

i=0

where f, is a real valued function. For example, the function f, x(z) =

@ gives Pearson’s Chi-square statistics, the function f, x(z) = 1[z = b
gives the number of cells with exactly b points, and f, x(z) = (z —1)1[z > 1]
gives the number of collisions. It is calculated in (L ’Feuyer, Simard and

Wegenkittl (2002)) that, under the null hypothesis,

o = =5 (1)

Vary = 2 " %(ﬂl’)—uf
+H (n) (n . ) = D=2 fa) -
20 )

There are two asymptotic regimes to distinguish: the sparse case where
A is small, and the dense case where A > 1. In the sparse case, the count
statistic and the collision statistic will be approximately Poisson distributed,
whereas in the dense case, they will be approximately normal distributed.
These tests can be extended to overlapping vectors.

Due to the periodic nature of many RNGs, for large sample sizes the null
hypothesis is likely to be rejected. (L Feuyer, Simard and Wegenkittl (2002))
also give an empirical evaluation for RNGs. They conclude that all linear
congruential generators and Lagged-Fibonacci shift register generators fail
the above tests as soon as the sample size exceeds a few times the square
root of their period length, regardless of the choice of their parameters. Thus
they advice against using RNGs with small periods (small here meaning less
than 2°°).

12



Another type of tests uses the generated numbers to approximate some-
thing that is known already, and see how well it does. An example for this
is the Monte Carlo Value for m. Each successive sequence is used as X and
Y co-ordinates within a square. If distance from zero of a point is smaller
than the radius of a circle inscribed within the square, a hit is recorded. The
percentage of hits approximates (very slowly) =.

Marsaglia compiled a battery of tests of randomness called DIEHARD,
to be found at http://stat.fsu.edu/pub/diehard/. A newer version is at
http://www.helsbreth.org/random/diehard.html.

Another battery called ENT has been developed by John Walker, see
http://www.fourmilab.ch/random/.

Further reading

1. D.E. KNUTH (1997). The Art of Computer Programming, Volume 2:
Seminumerical Algorithms. 3rd ed., Addison-Wesley; Reading, Mass.

2. P. L’ECUYER (2002). Random Numbers. In the International Ency-
clopedia of the Social and Behavioral Sciences, N. J. Smelser and Paul
B. Baltes Eds., Pergamon, Oxford, 12735-12738. (A short and easy

introduction to random number generation.)

3. P. L’ECUYER (2001). Software for uniform random number genera-
tion: Distinguishing the good and the bad. Proceedings of the 2001
Winter Simulation Conference, IEEE Press, 95-105.

4. P. L’ECUYER (1999). Good parameters and implementations for com-
bined multiple recursive random number generators. Operations Re-

search,47 (1), 159-164.

5. P. L’ECUYER (1998). Uniform random number generators. Proceed-
ings of the 1998 Winter Simulation Conference, IEEFE Press, 579-586.

6. P. L’ECUYER, R. SIMARD, AND S. WEGENKITTL (2002). Sparse
serial tests of uniformity for random number generators. SIAM Journal
of Scientific Computing. To appear.

13



10.

11.

12.

13.
14.

15.

16.

17.

P. L’ECUYER AND R. SIMARD (2001). On the performance of birth-
day spacing tests with certain families of random number generators.
Mathematics and Computers in Simulation 55, 131-137.

D.H. LEHMER (1951). Mathematical methods in large-scale computing
units. Proceedings of the Second Symposium on Large-Scale Digital
Calculating Machinery. Harvard University Press, Cambridge, MA,
141-146.

G. MARSAGLIA (1968). Random numbers fall mainly in the planes.
Proc. Nat. Acad. Sei. USA, 61, 25-28.

G. MARSAGLIA AND A. ZAMAN (1991). A new class of random num-
ber generators. Ann. Appl. Probab. 1, 462-480.

M. MATSUMOTO AND T. NISHIMURA (1998). Mersenne Twister:
A 623-dimensionally equidistributed uniform pseudorandom generator.
ACM Transactions on Modeling and Computer Simulations: Special
Issue on Uniform Random Number Generation.

B.D. RIPLEY (1990). Thoughts on pseudorandom number generators.
J. Comput. Appl. Math. 31, 153-163.

G.R. SHORACK (2000). Probability for Statisticians. Springer.

R.C. TAUSWORTHE (1965). Random numbers generated by linear re-
currence modulo two. Math. Comp. 19, 201-209.

S. TEZUKA (1995). Uniform Random Numbers: Theory and Practice.
Kluwer; Norwell, Mass.

S. TEzUKA, P. L’ECUYER, AND R. COUTURE (1993). On the lat-
tice structure of the add-with-carry and subtract-with-borrow random

number generators. ACM Transactions on Modeling and Computer
Simulations 3, 315-331.

WEGENKITTL, S. (1999). Monkeys, gambling, and return times: As-
sessing Pseudorandomness. Proceedings of the 1999 Winter Simulation

Conference, IEEE Press, 625-631.

14



Some useful URLs

Pierre [.’Ecuyer’s home page
http://www.iro.umontreal.ca/~lecuyer/

Mersenne Twister home page
http://www.math.keio.ac.jp/~matumoto/emt.html

Marsaglia’s random number CDRom at
http://stat.fsu.edu/~geo

P-Lab
http://random.mat.sbg.ac.at/

3 Generators for other distributions

Suppose we know how to generate a random variable U having ([0, 1])
distribution. How can we use this to produce a random variable X having a
certain distribution function F'7

3.1 The inverse transform method

Proposition 3 Define F~' by F~'(u) = min{z : F(z) > u}. Then, if
U ~ U([0,1]), the random variable X = F~'(U) has distribution function F.

Proof. First note that F(F~'(u)) > u, and F~'(F(z)) = min{y : F(y) >
F(z)} <. Thus we have

{(uyz): F7 ' (u) <z} = {(u,z) :u < F(z)},
and

P(X <z)=P(F'(U) <z) = P(U < F(X)) = F().

Example: Generating from a discrete distribution. Suppose that X
has the probability mass function

P(X:q;]):p]’ ]:071,2,, Zp]:1
J

15



Let U ~ U([0,1]). Construct X by

o 1fU<p0
zy ifpe < U <po+p

z; if Zf;é pi <UL Z?:o Pi

Then it is easy to check that P(X = z;) = P(ZZ;& <U < ZLO) = p; for
J=0,1,...
Algorithm

1. Generate a random number U
2. U < pg set X = z¢ and stop

3. U < p, + p1 set X =z and stop

4. U < ZZZO pi set X = x; and stop

Example: exponential distribution. Suppose
Flz)=1—¢e 2>0.

Then |
F_l(u) = —Xln(l —u)

and, if U ~ U([0,1]),

I3

1
——1InU.

FYU) = —~In(1 — 1) ;

A

If we want to generate from the Gamma I'(n, A)-distribution, we could sum
up n independently generated exponential variables. In particular, suppose
we want to generate from the y3-distribution. Note that y2 = T (1, 5 =

exp (%) . Thus we can generate X ~ y2 by X = —2InU.

16



Example: Box-Muller method for generating normal variates (in
pairs). Suppose we want to generate a pair (Y1,Y3) of independent A (0, 1)
random variables. Let R and © denote the polar coordinates of (Y7, Y3), that

18,

RQ — )/12 _I_ )/22
Y5
tan®@ = ?j,

so that
Y, = Rcos® and Y; = Rsin 0.

Note that R* = Y? + Y} has x3-distribution. Thus we can generate R? by

R?* = —2In Uy, where U; ~ U([0,1]). Moreover, the joint density of R* and
O is given by

1 1
f(?“,g) = % X 56_5,
see Ross (1996), p. 73. Hence R? and © are independent, with © being

uniformly distributed over (0,27). Thus we can generate (Y7, Ys) by

Y, = \/TnUlcos(Qng)
Y, = \/TnUlsin(Qng),

where Uy, Us ~ U([0,1]). Unfortunately this is computationally not very
efficient.

Warning: This algorithm, as well as all the other algorithms, assume that
the underlying uniform variables are truly random. When they are not,
strange effects can occur, see Ripley (1987), p.56-58.

Example: Poisson process. Suppose we want to generate the first n event
times of a Poisson process with rate A. Recall that the interarrival times FE;
for such a process are independent and exp(A)-distributed, hence we can use

Ei=—tInU,i=1,....n, where Uy,...,U, are i.i.d. U([0,1]). Let N(t) be

the number of events by time ¢, and let S, = Ky + --- + E,. Then

17



So
N(t) = max{n:S5, <t}

= max{n : _§Zani gt}

=1

= max{n : Eani > —)\t}

=1

= max{n:In(U;---U,) > =t}
= max{n U - U, > e_M}.

Thus we generate successively U([0, 1]) random numbers until their product
falls below e ™, and then N equal to 1 less than the number of random
numbers required, N(t) = min{n : U --- U, < e”} — 1.

Algorithm
1. Set N=0,P =1
2. Repeat. Generate U;, P =P x U;;, N = N + 1 until P < e~
3. X =N —1~ Poisson(At).

Example: Random permutation. Suppose we want to create a random
permutation of {1,...,n}, so that all orderings are equally likely. We could
first choose one of 1,...,n at random, and put it in position 1. Then choose
one of the remaining n — 1 numbers, put it in position 2, and so on. Note,
though, that we do not have to consider exactly which of the numbers remain
to be positioned. Starting with an initial ordering P, P, ..., P,, we pick one
of the positions 1,...,n at random and then interchange the number in that
position with position n. Now we randomly choose one of the positions
1,...,n — 1 and interchange the number in this position with the one in
position n — 1, etc.

Fxample. Suppose n = 4, and we start with the permutation (4,3,1,2). We
pick 3, and interchange positions 3 and 4, yielding (4,3,2,1). In the next
step, suppose we pick 2. Thus we interchange positions 2 and 3, yielding
(4,2,3,1). Lastly, suppose we pick 2, nothing to exchange; we have obtained
(4,2,3,1).

18



Algorithm
1. Let (P1,..., P,) be any permutation of {1,...,n}
2. Set k=n
3. Generate U ~ U([0,1]), let I, = Int[kU] + 1
4. Interchange the values of P, and P
5. Let k=% —1and if £ > 1 go to Step 3
6. (Pi,...,P,) is the desired random permutation.

This procedure can also be used to create random subsets, such as a simple
random sample of size n from a population of N individuals.

Problem: Sometimes =1, and indeed F', are not explicitly available; an
example is the Gamma I'(e, A) distribution with general . Another example
are multivariate distributions. See also: exact sampling, next term.

3.2 The acceptance-rejection method

Suppose we want to simulate from a distribution ¥ with density f, where F'=1
is difficult to calculate. The idea is to start from a random variable Y with
a density g(z) which is easily simulated and has the property f(z) < Cg(z),
where ' < oo 1s a}(constant. Given Y = z, one accepts Y and let X =Y

with probability Téﬁ))' Otherwise a new Y is generated, and one continues

until eventual acceptance. The function ¢ is also called an envelope function.

Algorithm
1. Generate Y from the density g(z)
2. Generate U ~ U([0,1])

3. U <L Cf;(i;)) let X =Y, this is called acceptance. Otherwise (rejection)

return to Step 1.

19



Note that then

P(X €dz) = P(Y € dx|acceptance)
P(Y € dx;acceptance)
P (acceptance)

o) @)/(Cle))

JZo 9) f(y)/(Cyly))dy
)

J2% f(y)dy

= f(z)dz,
thus X has the desired density.

How many runs would we need to accept a value? Let Z be the number
of attempts until we accept an X, and let p = P(acceptance) at each step.
Then Z ~ Geometric(p). Note that

g;i(yy))g(y)dy

p = P(acceptance) = /
1

ok
Thus the expected number of attempts needed to get anew X isEZ = 7% = (.
Hence we want C' to be small.

Example. Suppose we want to sample from a density f on (0,1) that is
bounded by f,.4.. Choose
glz)y=1, O0<z<l1

, and generate Y ~ U([0,1]). Generate U ~ U([0,1]), and accept ¥ when

U, < 0, reject and restart otherwise.

fmaz’
Example. Suppose we want to sample from
f(z) =20z(1 —2)*>,0 <z < 1.
Choose g(z) =1,0 < z < 1. Differentiating yields that
3)3 135

0><1><<— =—=2C.
4 4 64

IA
)

20



Thus generate Y, Uy ~ U([0,1]). Tf Uy < & x 20Y(1 — Y)? then stop, set

135
X =Y otherwise sample again.

Example: Generating a normal variable. Suppose we want to generate
Z ~ N(0,1), that is,
1 2

PR
2

B \ 2T ’

—oo < r <o,

Use g(z) = e™*, x> 0. We have

@) _ 2.
g(x) m '

Calculus shows that

C = max SN 2
glz)  g(1) m
Then
f(f(?) — em—”é—% _ 6_($—21)
Cy(z)
Algorithm.

1. Generate Y, an exponential random variable with rate 1

2. Generate U ~ U([0,1])

2

3. U <e” 5 set X = Y, go to Step 4; otherwise return to Step 1

4. Generate U ~ U([0,1]) and set

, _ X U<
Tl =X ifU >

B [ =00 | =

21



This algorithm can be simplified, see Ross (1996), p.71, to yield
Algorithm.

1. Generate Y], an exponential random variable with rate 1

2. Generate Y5, an exponential random variable with rate 1

3. Y, — @ > 0set X =Y, go to Step 4; otherwise return to Step 1

4. Generate U ~ U([0,1]) and set

, X U<
Tl =X ifU >

B[ =D | =

For a N (p,a?)-variable just take a7 + p.

Example: Marsaglia’s polar method for the normal distribution.
To construct ¥; and Y, as independent A/(0, 1)-variables we employ an idea
related to the Box-Muller method, where we used

Y, = \/TnUlsin(Qng)
Y, = \/TnUlcos(Zng),

where Uy, Uy ~ U([0,1]). Instead of simulating all the angles, we contain
the unit circle in a unit box and use the acceptance-rejection method. First
generate independent Vi, Vo ~ U(—1,1), (by setting V = 2U — 1) so that
(Vi, V3) is uniformly distributed over [—1,1]?. Let S and © denote the polar
coordinates of (V7, V2), that is,

SQ — ‘/IZ_I_‘/QQ
tan® = %

Let R have the conditional distribution of S? given that S? < 1. Then
(see Ross (1996)), R* and O are independent, with R* ~ ([0, 1]) and © ~

22



U(0,2m). Since O is a uniformly chosen angle, we can generate the sine and
the cosine of © by setting

ne = 2__ Vo
R /‘/12_|_V22
s = oW
R /‘/12_}_‘/22
Now set

Vi = VoM —
/‘/12 + ‘/22
Y, = VoW
/‘/12 + ‘/'22
where U ~ U([0,1]). Indeed, R? ~ U([0,1]), and we could use S = R* =
V2 + V,2. This gives the following algorithm for generating a pair (Y1, Y3) of

independent A (0, 1) random variables.
Algorithm

e Generate Uy, Uy ~ U([0,1]) independent
¢ Put Vi =20, — 1, Vy =205 — 1,5 = V2 4+ 12

o If S > 1 return to Step 1

e Put
—2In S
Y, = Sn v,
—2In S
Y, = 5 Vi

Example: The Gamma distribution. Suppose we want to generate from
the Gamma I'(a, A)-distribution, a, A > 0. In general, this distribution has
no simple closed form for which we could find an inverse; hence it still poses a
problem. First note that given X ~ I'(a, 1) we can obtain a I'(ar, \) variable

23



by putting Y = AX. So we only need to worry about I'(e, 1), and indeed for
a # 1. For @ < 1 a good method seems to be the algorithm in Dagpunar
(1988), p.109, which is based on an approach by Ahrens and Dieter, com-
bining acceptance-rejection and inversion. For o > 1, the algorithm by Best
based on acceptance-rejection based on a student variate is recommendable,

see Dagpunar (1988), p.111.

3.3 The composition method
Suppose we want to generate from a mixture distribution, with density
f=mfi+-+mfe

where m > 0,5, 7, = 1, and each f; is a probability density. Then pick 2
with probability m;, and generate from f;.

Example. The double-exponential distribution. This distribution has
density

flz) = %efl(fc <0)+ %e“ml(:ﬁ > 0),

Algorithm
e Generate Uy, Uy ~ U([0,1]) independent
® IfUl S % lethang

o fU; > c-let X =—InU,.

nO =

3.4 Ratio of uniforms method

Suppose (U, V) is a uniformly distributed point within the unit disc. Then
the ratio % has the Cauchy distribution (Exercise). Thus a simple way of
sampling from the Cauchy distribution is given by the following algorithm.

Algorithm

1. Generate Uy, Uy ~ U([0,1]), independent

24



2. Let V=2U; -1
3. U+ V2 <1 let X = =, otherwise return to Step 1.

In general, the ratio of uniforms method is based on the acceptance-
rejection method for a distribution generated from the ratio of two random
numbers. It relies on the following result, see Dagpunar (1988), p.60.

Proposition 4 Let C' = {(u,v): 0 <u < f1/2( )}. Suppose points with co-
ordinates (U, V') are uniformly distributed over C'. Then the densily function

of% is f(z).

Proof. Consider a transformation (U, V) — (U, Z) where Z = Y—, The
Jacobian of the transformation is U. Thus the density of (U, Z) is

fuz(u,z) = 100 < u < fY2%(2)).

[ dudv

Hence the marginal density of 7 is

f1/2(2)

o udu
J2(z) = [ Jo dudv

1 /()
2 [ fodudv’

Since fz and f are both probability densities, it follows that f; = f. This
completes the proof.

Thus, for the ratio-of-uniforms method, we need to generate numbers within
C. One way of doing this is to bound the C region by a rectangle [0, a] x [b, c|.
To determine a, b, ¢ note

0 < Ugsupfl/Q(:r:) =:a

V V
_ < 1/2(,

for =z <0:V> $f1/2($); put b:= inf :cfl/Q(;L’)

for =z 20:V§xf1/2( ); put ¢ _SUPTfI/Q( )
x>0

25



Algorithm

1. Find bounding rectangle [0, a] x [b, ¢] for C
2. Generate Uy, Uy ~ U(]0,1]), independent

3. Set U =alU;,V =>b+ (c—b)U,

4. MU < f1/? (%) set X = %, otherwise return to Step 1.

3.5 Multivariate distributions

We have already seen how to generate pairs of independent normal variates;
by a linear transformation, a sample of n i.i.d. A(0,1) variates can be
transformed into a sample from a multivariate normal distribution. The
multinomial distribution is easily simulated using the methods for discrete
variables: label the cells and sample the values of the label.

In general, the inverse transform does not work directly. The acceptance-
rejection method however is straightforward and useful.

Example: Bounding by product densities. Assume that we want

to generate a sample X from a multivariate density f(xy,22,...,24) on
[0, 00)? which is ortho-monotone, that is, f(zy,2,...,24) is nonincreasing
in xy,x3,...,24. Then we have

flz1, 20, 2q) <min{f(x1,0,...,0),..., f(0,...,0,24)}.

Set fi(u) = f(0,...,0,u,0,...,0) gives
d 1
J(@y, 29,05 2g) < min fi(zi) < Hfﬁ(l'i)-

Let Qi = [o” [ (2)dx.
Algorithm
1. For 1 <i < d generate X; from the density fﬁ(;r:z)/QZ

2. Generate U ~ U([0,1])

26



CIEUTIE, f9(X)) < f(Xiye o, Xa) let X = (X1,...,X,). Otherwise
return to Step 1.

Further reading

. L. BARABESI (1993). Random Variate Generation by Using the Ratio-
of-Uniforms Method. Universita degli Studi di Siena Dipartimento di
Metodi Quantitativi Collana di Pubblicazioni, Siena, 1993.

. J. DAGPUNAR (1988). Principles of Random Variate Generation. Ox-
ford University Press.

. L. DEVROYE (1986). Non-Uniform Random Variate Generation. Sprin-
ger, New York.

. L. DEVROYE (1996). Random variate generation in one line of code.
1996 Winter Simulation Conference Proceedings, J.M. Charnes, D.J.
Morrice, D.T. Brunner, and J.J. Swain, eds., ACM, 265-272. Springer,
New York.

. L. DEVROYE (1997). Random variate generation for multivariate uni-
modal densities. ACM Transactions on Modeling and Computer Sim-

ulation 7, 447-477.

. M.E. JOHNSON (1987). Multivariate Statistical Simulation. Wiley,
New York.

Luc DeVroye’s web page

http://cgm.cs.mcgill.ca/ luc/rng.html

Wolfgang Hormann’s web page

ttp://statistik.wu-wien.ac.at/sta oermann/publications.htm
h p// | ik 1 / ff/h /p bli | html

4 Simulation design and analysis

Often in simulations one is interested in determining

9:E@X):/¢@Mx

27



Here, X has density f, and ¢(z) = ¢(x)f(x). We think of 6 as a parameter
connected with some stochastic model. To estimate 6, the model is simu-
lated to obtain the output Xi,..., X, which are such that § = E¢(X;),1 =

1,...,n. Thus we can estimate 6 by the so-called raw estimate or crude
Monte Carlo estimate

A 1.2

o= -3 6(X:)

From the law of large numbers, this is an unbiased estimate of 8, and
A 1
Varty = —Vare(X).
n

Here we will analyze estimates 0 of 0 with respect to their variance. In
particular, the aim of variance reduction is to produce an alternative esti-
mator of # having hopefully a much smaller variance than 0o. Note that the
order of magnitude cannot be improved in general.

Example 1 Suppose we want to estimate
1
0= / V1 — z?dx.
0

(We know that 6 = 7). Then nVar(éo) can be calculated to be %—% = .0498.
This example is from Morgan (1984) and will recur.

Remark: Hit-or-miss Monte Carlo. If ¢ is zero outside a finite interval
(a,b) and 0 < ¢(z) < ¢ for some constant ¢, and for all z, one could think of
estimating 6 = [’ Y(x)dz by simulating (X;,Y;),7 = 1,...,n uniformly from
the box [a,b] x [0,¢] and count the number of observations that fall under
the curve 9, that is,

0, = 1(Y; < 9(X))).

n —1

k3

c(b—a) &

This yields again an unbiased estimate of #. It can easily be seen, see, for
example, Ripley (1987), p. 121, that this hit-or-miss Monte Carlo method is

28



less efficient than ;. In particular,

P SU(X) = 5 fa)c [ [ 10 < )y,
1 b
- @_@aé¢wwa
0
 (b—a)c’
so that
Var(él) _ O(c(b —na) —0)
= )b ayie - -
> %/;W(x)(b— a)dz — 1—2
= Varéo,

where we took f(z) to be the uniform density on [a,b]. Note that equality
holds only if ©» = ¢, in which case both variances vanish. Hit-or-miss is
always worse than crude Monte-Carlo.

In Example 1, it can be shown that nVar(él) = W(ﬁgﬂ) A .1685.

Note that hit-or-miss and crude Monte Carlo differ in replacing the indicator
1(Y; < ¢(X;)) by its conditional expectation given X;, namely ¢(X;)/c.
This illustrates a general principle for variance reduction: If, at any point of
a Monte Carlo simulation, we can replace an estimate by an exact value, we
shall reduce the sampling error in the final result.

4.1 Stratified sampling

If v was piecewise constant, then we could easily estimate # by sampling
one observation each from of the intervals where ¢ is constant. The idea of
stratified sampling for

0= B4(X) = [ v(x)de

29



on a finite interval (a,b) is to break the interval (a,b) into pieces where ¢
is approximately constant. This idea is related to stratified sampling from
populations. Say, we partition

a=ag<a;<---<a,=2b

X

and sample n; observations from (a;_1,a;),7 = 1,..., k. Let Xy;, Xo;,..., X ;
be i.i.d. uniform on (a;_1,a;). Then we use the crude Monte Carlo estimate

Z@b

nle

3

on each of the intervals, and we combine them to give

k
E Oé] 1 — Oé]
J=1

Due to the independence of the components, we obtain

WM®==Z%(W—%@AJ

> a_l V2 (z)dz — {/:il ;/)(;t:)dx} )
]; )
_ Zﬁf

say. If A= 2521 /aj, then a Lagrange multiplier argument shows that the
optimal allocation is to have n; = %,/a;,7 = 1,...,n. Unfortunately the
a;’s are typically not available.

In Example 1, when splitting the range of integration at the point = = %, the

minimum variance obtainable is %

sizes in the ratio 1 : 1.249.

, and this is achieved with the sample

4.2 Importance sampling

The idea here pushes the stratified sampling approach further: sample more
frequently from those parts of the curve that display more variability. Now,
for

9_/¢ dx_/¢ )dz = E(X),

30



we would choose f non-uniform. Ideally, we would like to choose f(z) = w(ew)’

but of course 6 is not available. In general, if ¢ is another density, we can

write

P (x)
/Mx)dx B /g(fﬂ)

where Y has density g, and p(x) =

g(x)dz = Ep(Y),

Y(x)
9(z)"

Suppose that Y, are i.1.d. with
density g, then put

g, — Ly o)
“on =1 9(Yi)

If a density function ¢ can be chosen so that the random variable %é—l) has a

small variance, then this approach can result in a more efficient estimator of

6. Thus a good choice of g would be one that mimics the shape of .

In Example 1, g(z) = 2(1—x) gives nVar(é) = .1331, whereas g(z) =

A

gives nVar(0) = .01339.

(2—2)

2
3

Example: Exponential tilting. (See Ross (1996), p.170 ff.) If 0 is very
small, then exponential tilting might be useful. Let M(t) = [ €™ f(z)dz be
the moment-generating function corresponding to the density f. Then the
density

is called a tilted density of f, —oc < 1 < oco. Similarly a tilted probability
mass function can be defined. For a Bernoulli(p)-variable, for example, we

have f(z) = p”(1 —p)'=*, M(t) = pe' + 1 — p and

L e e e I (el

This is the probability mass function of Bernoulli(pe!/(pe’ +1 — p)). Note

that
i = o) (155) o

In certain situations, the quantity of interest might be the sum of independent
random variables Xy,..., X, with density f each. In this case, the joint

31



density f is the product of the one-dimensional densities. In this situation
it may be useful to generate the X;’s according to their tilted densities. For
instance, suppose we are interested in estimating the probability that a sum
Sy, of n independent Bernoulli-random variables, X; ~ Be(p;),i = 1,...,n
exceed a large value a. Then

6 =E1(S, > a).

Thus ¢(z1,...,2,) = 13", 2; > a). Now simulate Y; according to the
t-tilted Bernoulli distribution with parameter

3

pie’ .
1 —pi + pie’’

Then the importance sampling estimator of 8 is
; fi(Y)
b = Y, >a
1y H V)
Y 2 a) [T Mi(t)e™™

DPti = 1 =1 n.

ge ey

where M (t) = [T/, M;(t). Since ¢ > 0 it follows that 0 < 8 < (t)e_tzn

i:lYi_

To make the bound as small as possible, choose ¢ to minimize M (¢)e™**. It

can be shown that this minimizing t—s&t—rsﬁes—t
—Pi & pi€

The optimal choice of E(E %eza&):rommated numerically.

=1 =1
For example, if n = 20,p; = 4,a = 16, then E(3X,Y;) = 2055

equals 16 is t = In 6. the importance sampling estimator is

1YY > 16)67 2
=1

f+6’ this

=1 Z‘320‘

It can be shown that Varf < 2.9131 x 1077, whereas Varfy = 3.160 x 1074
NOte that 0 ~ 3.17 x 107*.

In general, variance reduction may or may not be obtained, depending on
the choice of g.

32



4.3 Control variates

The idea behind control variates is formally related to regression. Suppose
we have Y (perhaps Y = ¢(X)) and we want to estimate its mean

0 = EY.
If 7 is a related random variable with known mean g, then put
W=Y —¢cZ—u)

for some constant ¢. Then EW = 6 for any ¢. Thus, if Wy,.... W, are i.i.d.
with same distribution as W, then

is unbiased for #. Moreover,

nVar = VarW
= VarY +c*VarZ —2cCov(Y, 7)

< VarY ifand only if Cov(Y,7) > %VarZ.

The above variance is minimized for

. Cov(Y,7)
= VarZ

Then we obtain
Cov*(Y, 7)
VarZ
Thus, variance reduction is always achievable by suitable choice of ¢ whenever

Cov(Y,Z) #0.

VarW = VarY —

Example 2 (See Ross (1996), p.144-145.) Suppose we want to use simula-
tion to compute

0 = EeV

33



for U ~U([0,1]). Note that nVarfy = .2402. A natural choice for a control
variate 1s U. We then have

Cov(e”,U) = EUe) —EU)E(EY)
1 e—1
- /xe%l:c— — 14086
0 2

Moreover, VarlU = % Hence, with ¢ =12 x .14086 we have

nVarl = Var(e’)—12 x (.14086)?
A~ 2402 — 2380 = .0039.

In Example 1, with Z = 1 — X as control variate, ¢* = %7‘[‘ —4,and nVarf ~
.00752.

Of course this method can be generalized to

k
=" e Zg — k)
i=1
when such Zy,..., 7, are available.

In general, ¢* will not be available. One could estimate ¢ from the experiment,
but then W = Ly~ W; will in general not be an unbiased estimator of 6.
Instead, it is better to use a pilot simulation to estimate ¢*, and then use
this estimated ¢* for the larger simulation.

It is appealing that even when this method is not very successful, the
resulting variance is never increased.

Due to the relation to standard regression analysis, often also the term
regression-adjusted control variates is used. The similarity is formal, though:
regression analysis via least squares is based upon the assumption of linear
dependence (and preferably normal errors) whereas nothing like this is needed
for regression-adjusted control variates.

4.4 Antithetic variates

Here the idea is to generate two (or 2n) correlated unbiased estimators Y7, Y,
of § with the same marginal distribution, described by Y, say. We then put

-1
b=-

2(Y1+Y2).

34



Thus |
Varf = §VarY(1 + corr(Y1,Ys)).

If
corr(Yy,Y2) <0

then we obtain a smaller variance than with independent estimators.

A standard way of generating such correlated unbiased estimators from a
distribution function F'is to put

Yi=F(U), Yo=FT(1-U),

where U ~ U([0,1]). Then the correlation is negative, following from (see

Ripley (1987), p.129)
Proposition 5 Suppose g is a monotonic function on (0,1). Then

corr(g(U),g(1 = U)) < 0.

In Example 1, letting Y1 = /1 — U? and Y3 = /1 — (1 — U)? gives Var =
.0052. In Example 2, with ¥; = eV and Y, = e'"Y, we obtain Varf =
1.2420(1 — .9677) = .0039.

4.5 Conditional Monte Carlo
In general, we have for any random variables Y, W that
EY — E(E(Y|W))
VarY — Var(E(Y|W))+EVar(Y|W)).

Hence Var(E(Y|W)) < VarY. If we can evaluate E(Y|W) analytically as a
function h of W, we can estimate § = EY by

where Wy, ..., W, are i.i.d. copies of W. If the distribution of Y is built
up by mixing over values of some W, this becomes an obvious target for the
technique.

35



Example: Suppose W ~ Poisson(A), and, given W = w, we have that
Y ~ Beta(w,w?+1). Then

EY|W = w) =

w
w2+ w+1°
Thus, to simulate § = EY, we simulate Wy,..., W, ~ Poisson(}) i.i.d. and
put

A1 & W,
=~y ——— .
n ; W2+ W;+1

Conditional Monte Carlo always provides variance reduction. The difficulty
is to find W such that the conditional expectation is computable.

4.6 Isolating known components

In many cases, some parts of the expectation # of ¢(X) can be evaluated
analytically. One may then attempt to organize the output analysis to that
these known parts need not be simulated.

Example. Let T},T5,... be i.i.d. and nonnegative with mean pu, and let
Z = supq{n : S, <t} be the number of renewals up to time ¢, where S, =
Ti+Ty+---+T,. Let 0 = EZ. Letting 7 = inf{n : S, > t}, we then have
7 =7 — 1. By Wald’s identity,

ES; = pEr = p(0 +1).

This suggests the estimator

.S,
91 - — — 1
]
But we can write S, =1 + £, where £ = 5, — t is the overshoot. This yields
t+ E
g LHEC
[
and an alternative estimator is
A [
0, = j 1
[
For example, if the T; are standard exponential and ¢ = 50, then 7 ~
Poisson(50) so that Varf; = 50. In contrast, since ¢ is again standard

exponential, Var(ég) =1.

36



4.7 Experimental design

Many simulation experiments are designed to compare the effect of choosing
different parameter values in the model. In such cases, ideas from the design
of experiments can be used, see also Box et al. (1978). The analogue of a
randomized block is a set of random numbers which can be re-used (common
random numbers). Suppose we are simulating

E¢(X; ),

where « i1s a parameter value, to be varied. To assess the variation between
two different parameter values oy and ay, we are interested in

9 = Eqb(X, Oél) — E@(X, Oéz).

If we use the same random numbers X for both parts, it is likely that
Cov(d(X,a1),d(X,az) # 0, and so we would obtain a variance reduction
compared to choosing independent X's.

4.8 Discussion

Variance reduction techniques are typically most readily available for well
structured problems. Typically, they involve a fair amount of both theoretical
study of the problem and of additional programming effort. For this reason,
variance reduction is most often only recommendable for large experiments.

Different variance reduction techniques used in combination may produce
diminishing returns and may even conflict with each other to give adverse
results.

It will generally be advantageous to break down a problem into compo-
nents and to push the analytic treatment of the problem through as far as
possible.

Further reading

1. S. ASMUSSEN (1999). Stochastic Simulation with a view towards stochas-
tic processes. MaPhySto, University of Aarhus. On the web at
http://www.maphysto.dk

2. G.E.P. Box, W.G. HUNTER, AND J.S. HUNTER (1978). Statistics
for Ezxperimenters. Wiley.

37



5 Simulation of stochastic processes

Many stochastic processes can be described as Markov chains (in discrete
time) or Markov processes (in continuous time). A discrete-time Markov
chain { X, },en with state space S and transition matrix P can be simulated
as follows: If X,, = s then select X, 11 from the conditional distribution of
Xony1, given X, = s.

Example: A simple time series model. Consider the discrete-time model
Zy =aliq &, €~ N(070-2)7

where |a| < 1, and assume that {€:}:cz are independent. Then the con-
ditional distribution of Z; given Z;_y = z_y is N(az_1,0?), and {Z; }iez
is a Markov chain. (This model is called an autoregressive process of order
1). Thus, for any given starting point Xy, we can simulate the process by
simulating normal random variables.

An alternative approach is to simulate the time until the next jump, which
has a geometric distribution in the discrete-time case, and an exponential
distribution in the continuous-time case.

5.1 Construction of algorithms

The design of an algorithm may involve very varied methods, and much is
left to the ingenuity of the programmer. However, below is a selection of
simple points to observe.

Simulation via discrete events. Often stochastic processes can be de-
scribed by discrete events - the arrival of a customer, birth or death, jumps.
Typically a stochastic process would involve a time variable (the amount of
simulated time that has elapsed), counter variables (the number of times that
certain events have occurred by time t), and system state variables. When-
ever an event occurs, these variables are updated. We hence keep an “event
list”, which lists the nearest future events and when they are scheduled to
occur. Whenever an event occurs, we reset the time and all state and counter
variables and collect the relevant data.

38



For example, in an epidemic process with N individuals, assume that indi-
vidual 7 gets infected at time A;, and it recovers at time A; + R;; assume
that the A;’s and the R;’s are independent. Then we would first generate
(A1, R1),...,(An, Rn) and then run the process, which is deterministic con-
ditioned on (Ay, R1),...,(An, Ry). Note that no Markovian structure is
required.

Example: A single-server queueing system. (See Ross (1996), p. 88-
89.) Customers arrive at a queue according Poisson process with parameter
A. There is a single server; when a customer arrives, if the server is busy
he/she joins the queue, and otherwise he/she enters service (“first-in first-
out queue”). The amount of time it takes to serve a customer is a random
variable, independent of all the other variates in the system, with distribution
G.

To simulate this system, we use as variables ¢, the time; N4(¢) the number
of arrivals by time ¢, Np(t) the number of departures by time ¢, and n(t)
the number of customers in the system at time ¢. There are two types of
events: arrivals and departures. The event list contains the time ¢4 of the
next arrival and the time ¢p of the departure of the customer presently in
service. If no customer is presently being served, put tp = oc. The output
variables are A(z) = the arrival time of customer ¢, and D(7) = the departure
time of customer . We restrict the simulation to a fixed time interval [0, T];
after time 7', no new customers are allowed in the system, although those
present will still be served. Let T}, be the time past 7' that the last customer
departs.

Algorithm.
1. Initialize t = Ny = Np = n = 0. Generate Ty from the exp(A)-
distribution, set t4 = Ty, ip = oo
2. Let Y ~ GG. We distinguish 4 cases:

(a) Case 1. tA S tD,tA S T. Reset t = tA,NA = NA—I—l,n = n—l—l
Generate T} ~ exp(A), reset t4 = T;. If n = 1, generate Y ~ &
and reset tp =t 4+ Y. Collect output data A(N4) =t¢.

(b) Case 2. tD S tA,tD S T. Reset t = tD,ND = ND + 1,n =n—1.
If n = 0, reset tp = oo; otherwise, generate Y ~ G and reset
tp =t 4 Y. Collect the output data D(Np) = 1.

39



(c) Case 3. min(ta,tp) >T,n > 0. Reset t =tp,Np = Np+1,n=
n—1. If n > 0, generate Y ~ G and reset tp =t + Y. Collect
the output data D(Np) = t.

(d) Case 4. min(t4,tp) > T,n = 0. Collect the output data T, =
max(t —T,0).

Similarly, tandem queues or two-server queues can be included, see Ross

(1996).

Arrival times. If we wish to relax the restrictive assumption that an in-
dividual has an exponentially distributed arrival time, while maintaining a
Markovian structure, we can make him/her go through k stages in series be-
fore arrival, leading to a I'y distribution. More generally we can achieve an
arrival time having any distribution whose moment-generating function is a
rational function by choosing a suitable network of stages.

Non-homogeneous Poisson processes. Suppose we have a realisation
of a non-homogeneous Poisson process of intensity A(¢) on [0,7] and that
the total number of points sampled in a given realisation is n. Then their
distribution on the interval is identical to that of a random sample of size n
from the density function f(¢) = A(¢)/A, where A = [ A(s)ds. Conversely,
an obvious way to generate a realisation from the process is to sample from
Poisson(A) and choose this many points from f(?).

Exponential spacings. Let Iy, I, ..., E, 41 be independent exp(1)-variates.
Put S; =37, F;. Then {S;/Su+1,7 = 1,2,...,n} have the same distribu-
tion as an ordered sample of n U([0, 1])- variates. This provides a neat way to
generate a sample of order statistics form ([0, 1]) and, by transformation,
from any univariate distribution with F~! available. This would be more
efficient than taking a random sample and sorting it for sufficiently large
samples since sorting takes time O(nlogn).

Simulating a two-dimensional Poisson process. (See Ross (1996).) A
2-dimensional Poisson (point) process having rate A > 0 is defined by two
properties:

1. The number of points in any region of area A is Poisson(AA)

40



2. The number of points occurring in disjoint regions are independent.

Suppose we want to generate a Poisson point process on the circle C'(r) with
radius r around the origin. Then, for any a, the number of points in the
circle C'(a) is Poisson(Ama®). For i > 1, let R; denote the distance from the
origin to its 1th nearest point. Then

P(rR}>z) = P <Rl > E)

T

= P<n0 point inC'< E))
s

e—Ax
and, similarly,
P(rR; — 7R} > z|Ry = a)

2
_ p(32> b ml:a)

T

P ( no point in C' ( : —I—WWGQ) \ C’(a))

e,

Similarly one can show that, with Ry = 0, the spacings 7 R?—m R?_, ~ exp(}),
for + > 1. Due to symmetry, the angles of the Poisson points are (0, 2m).
Hence we may use the following algorithm.

Algorithm.

1. Generate X1, Xs,... ~ exp()) independently, until

N:min(n:X1+---+Xn>7rr2).

2. If N = 1: stop, there are no points in C(r). If N > 1: put

X 4+ 4+ X,
RZ':\/L r=1,...,N

”
™

Note that then WR? =X+ + X,

41



3. Simulate independent Uy, ..., Uyx_1 ~ U([0,1])
4. the polar coordinates of the N — 1 Poisson points are

(R;,2=U;), i=1,...,N

The above algorithm can be generalized to simulating on any smooth
region.

Verification of the simulation model. To check the simulation,
e Try to debug in small subroutines

e Write the simulation as general as possible, to that a special case that
has been well studied, or that can be treated analytically, can be used
for a comparison

o In the testing stage of a program, make the program give as output all
the random quantities it generates

o When searching for errors, use a trace, so that the state variable, the
event list, and all the counter variables are printed out after each event
occurs.

Simulation languages. In simulation models there tend to exist similar
features. This has lead to the development of special purpose languages,

o GPSS: 7General Purpose Simulation System”; relatively easy to learn;
no facilities for program structuring

o SIMSCRIPT: Originally based on FORTRAN; comprehensive language,
incorporating all that GPSS achieves, but with many other features,
resulting in it being more difficult to learn

e SIMULA: ALGOL related language; designed to be extendable by
classes, providing programming tools for specific needs, for example:
simulation, discrete-event systems, and combined simulations

o G.A.S.P.: “Genometric Analysis Simulation Program”; FORTRAN re-

lated; specifically geared to genetic analysis

42



Simview: Graphical language for PC

SLAM II: based on FORTRAN, geared to networks, discrete event

simulations, and continuous simulations

And many more

e Both SPLUS and MATLAB have convenient routines for simulation

5.2 Markov Chain Monte Carlo methods: The Gibbs
sampler

In general it is very difficult to simulate the value of a random vector X
whose component random variables are dependent. A powerful approach is
given by Markov chain Monte Carlo methods.

Let {X,}.en be a discrete-time Markov chain with finite state space
S and transition matrix P. Recall that a distribution 7 is a stationary
distribution of the Markov chain if

T=mkP.

The Markov chain is called reversible if the detailed balance equations hold:

m(x)P(z,y) = n(y)P(y,x) ,z,y €S (1)

If a Markov chain is reversible, then it follows that it has stationary distri-
bution 7. Under suitable conditions, the distribution of X, will tend to the
stationary distribution, no matter which starting point Xy has been chosen
for the chain.

Example: The simple time series model. Consider again the discrete-
time model

ly=oli 1+ €&, €~ N((LUQ)’

where |a] < 1, and {¢:}+cz are independent. Then it can be shown that the
process has stationary distribution N(0,0?/(1 — a?)), and that (1) holds.

Markov chain Monte Carlo methods build on the converse problem - given a
distribution 7, can we find a transition matrix (kernel) such that (1) holds?
If so, then we could simulate from the Markov chain corresponding to the

43



transition kernel, and use the convergence to the stationary distribution in
order to obtain (approximate) samples from .

The Gibbs Sampler. A popular Markov chain Monte Carlo method is the
Gibbs sampler. Let X = (X1,...,X,) be a random vector with probabil-
ity mass function p(x), which may only be specified up to a multiplicative
constant, and suppose that we want to generate a random vector whose dis-
tribution is that of the conditional distribution of X given that X € A for
some set A.

Algorithm.
1. Let x = (#1,...,2,) be a vector in A for which p(x) > 0.
2. Let I be uniformly chosen from {1,2,...,m}.

3. If I =1, generate the value of a random variable X such that

P(X =2)=P(X; =z|X; =2;,j # i)

4. If X =z and (2q,...,2i21,2, Tig1,...,2,) € A then reset z; = .
5. Go to 2.

At each step, one of the variables X; is randomly chosen, and a random
variable having the conditional distribution of X; given that X; = z;,7 #1
is generated. If the new vector, with this value replacing z;, is in A, then
that is the next state of the underlying Markov chain; if this vector is not in
A, the state remains unchanged.

Example. Let Xy,..., X, beindependent exponential variates, so that X; ~
exp(Xi),t = 1,...,n, and put S, = 37, X;. Suppose we want to generate
X = (Xi,...,X,) conditional on the event A = {S,, > ¢}, for some large c.
That is, X has density function

n

1
P(S, > ¢) J'_I

=1

flze,... x,) = Ae~ N, ZSL‘Z’>C.
i

44



Algorithm.
1. Let x = (#1,...,2,) be such that z; > 0,0 =1,...,n,and X7, z; > c.
2. Let U ~ U([0,1]), put I = Int[nU + 1].

3. If I =1, generate X; ~ exp();) conditioned on the event X +3,., z; >
c,ie. X >c—374 ;. To do this, use the fact that the conditional
distribution of X, given X > ¢, is the same as the distribution of X +¢,
by the memoryless property of the exponential distribution. So

(a) Generate Y ~ exp();)

(b) Set
X=Y+(c—) ;)"
J#

4. If X = z then reset z; = z.

5. Go to Step 2.

As the underlying Markov chain will converge to its stationary distribution,
the Gibbs sampler will converge to the correct distribution. An interesting
question with no clear answer is how many iterations would be needed to be
sufficiently close to the target distribution. This is sometimes also discussed
as burn-in problem.

The Gibbs sampler is a special case of

The Metropolis-Hastings algorithm. Let b(j),7 = 1,...,m be positive
numbers, and let B = 37, b(j). Suppose that B is difficult to calculate,
and that we want to simulate a random variate X with

PX=j)=n()=—~, j=1,....m

The idea is to simulate a Markov chain whose limiting probabilities are the

™(j)-

45



One starts with an acceptance-rejection idea. Suppose you have simulated

X,. If X,, =1, then choose X such that P(X = j) = ¢(¢,5), and put

Xn+1 = J with probability a(z, )
Xyn+1 = 1 with probability 1 — a(z, j).

with some a1, j) to be determined. Then
P; = Q(i J) (4,7), J?éi

Pm’ = 1,1 —|— Eq 1 — Ot k))
k#1

is a Markovian transition matrix. This Markov chain will have stationary
distribution 7 if

i.e.

m(1)q(i, 7)eli,g) = 7w(5)q(s, Dels, i), JF 1, (2)

satisfies (2). To see this, note that if a(i,j) = % then «a;,7) = 1 and

vice versa.

Algorithm.

1. Choose an irreducible Markov transition matrix @ = (¢(¢,7))ij=1,..m

Also choose k € {1,2,...,m}.
2. Let n = 0 and X, = k.

3. Generate a random variable X such that P(X = j) = ¢(X,,J) and
generate U ~ U([0,1])

46



I
b(X)q(X, X»)

b(X,)q(Xn, X)
then put S = X;else S =X,

U<

.n=n+1,X,=25.
. Go to 3.

Further reading

. S. CoLESs. Computer-intensive statistics. Lecture notes at
http://www.statistics.bristol.ac.uk/ masgc/ast/notes.ps

. P. DiaconNis AND S. HoLMES (1995). Three examples of Monte-
Carlo Markov Chains: At the Interface between Statistical Computing,
Computer Science, and Statistical Mechanics. In Discrete Probability
and Algorithms (D. Aldous, P. Diaconis, J. Spencer, and J.M. Steele,
eds). Springer-Verlag, 43-56.

. S. GEMAN AND D. GEMAN (1984). Stochastic relaxation, Gibbs dis-
tributions, and the Bayesian restoration of images. IFEF Transactions
on Paltern Analysis and Machine Intelligence 6, 721-724.

. P.J. GREEN (2000). A primer on Markov chain Monte Carlo. In
Complex Stochastic Systems, O.E. Barndorff-Nielsen, D.R. Cox and

Claudia Klippelbert, eds. Chapman and Hall: Boca Raton etc. pp.
1-62.

. N. METROPOLIS, A.W. ROSENBLUTH, M.N. ROSENBLUTH, A.H.
TELLER, AND E. TELLER (1953). Equations of state calculations by
fast computing machines. J. Chem. Phys. 21, 1087-1092.

. E.A. THOMPSON (2000). Monte Carlo methods on genetic structures.
In Complex Stochastic Systems, O.E. Barndorff-Nielsen, D.R. Cox and

Claudia Klippelbert, eds. Chapman and Hall: Boca Raton etc., pp/
175-218.

47



6 Statistical Inference

6.1 Monte Carlo tests
The Monte Carlo test, attributed to Dwass (1957) and Barnard (1963), is an

exact procedure of virtually universal application and correspondingly widely
used. We only need to be able to simulate a random sample Ty, To, . . . from
the distribution Fy determined by the null hypothesis. We assume that £ is
continuous, and, without loss of generality, that we reject Hy for large values

of To. Then, provided that o = 75 is rational, we can proceed as follows.

1. Observe the actual value ¢* calculated from the data
2. Simulate a random sample of size n from Fj
3. Order set {t*,to1,...,ton}

4. Reject Hy if the rank of t* in this set (in decreasing order) is > m.

The basis of this test is that, under Hy, the random variable 7™ has the same
distribution as the remainder of the set and so, by symmetry,

m

n+1

P(¢" is among the largest m values ) =

The procedure is exact however small n might be. However, increasing n
increases the power of the test. The question of how large n should be
is discussed by Marriott (1979), see also Hall and Titterington (1989). A
reasonable rule is to choose n such that m > 5. Note that we will need more
simulations to test at smaller values of a.

An alternative view of the procedure is to count the number M of simulated
values > t*. It is easy to see that P = % is an unbiased estimator of the
true significance level P achieved by the data, i.e.

P =P(Ty > t*|Hy).

In discrete data, we will typically observe ties. We can break ties randomly,
then the above procedure will still be valid.

Unfortunately this test does not lead directly to confidence intervals.

48



6.2 Confidence intervals

The relationship between significance tests and confidence intervals suggests
that we can construct the latter by simulation, but the problem is more
difficult, as we need to estimate critical values for 7" with sufficient precision.
For an exact interval we would need infinite precision at the critical values.

For a confidence interval for a population mean we would need an estimate for
the population variance also, for example. One method is to choose first an
acceptable value d for the standard deviation of the estimator, and continue
to generate random variates until this number k is such that S/vk < d,
where S is the estimated standard deviation.

More precisely, suppose that 0 is an unbiased estimator of f, with distribution
function Fy. Let 6* be a sample from F;. We want to make inference about

the variation of § around by studying the variation of §* around 0.

Example. (See Ripley (1986), p.176.) Suppose we sample from a location-
family model, such that

0 — 0~ Fy; (3)
then
0* - é ~ F().

A (1 — a) two-sided confidence interval for 8 could then be constructed as
follows. Put

L« A L«
L= B (5) =04 (3)
_ (e ~ _ «
Ro= o (1-g) =0+t (1)
Then an exact (1 — ) two-sided confidence interval for 8 is
0 é—F—1<1—3> é-F*(g)}
€ { 0 2/’ 0 \2
= (20— R,20—L).

This is only exact if (3) holds. Otherwise it could serve as an approximation.
For more discussion, see Ripley (1986).

49



If we estimate a parameter using simulations from a Markov chain, then this
dependence has to be taken into account.

Example: The simple time series model. Consider again the discrete-
time model

Zy =alig &, €~ N(07‘72)7

where |a| < 1, and {¢ }1ez are independent. Suppose we want to estimate
6 = EZ;. We could do this by simulating 71, ..., Z, from the Markov chain,
starting with the stationary distribution. and use § = X. Then

Var(X;) = =:v
and it can be calculated that
Cov(X;, Xiyr) = viaF #0,

so that
2

Var(X) . (n + ”Z:: 2(n — i)ai) + %

n2

6.3 Output analysis

Output analysis is concerned with the analysis of the results of simulation
experiments. This may involve special difficulties either because the experi-
ments are large and it is difficult to infer general conclusions from the results,
or, more particularly, because the results are correlated. The latter will hap-
pen, for example, in the simulation of stochastic processes.

To some extent the methods of time series analysis will be appropriate for
the output from one-dimensional stochastic processes. The problems fall into
two groups according to whether we are considering the transients of a process
or the equilibrium state. For the former - for example, the first passage time
from a particular state - we will usually obtain a single observation from
each of a number of independent runs of a process. The more challenging
problems are associated with processes in or near to equilibrium. One major
problem is concerned with then we can consider a process to have reached
equilibrium. To treat this problem, one could, for example,

e estimate and use the correlation structure (time series methods)

50



o take the means of successive blocks of the observations, exploiting the
fact that these will be more nearly uncorrelated.

Further reading

1. G. BARNARD (1963). Contribution to the discussion of Bartlett’s pa-
per. J. Roy. Statist. Soc.B, 294.

2. M. Dwass (1957). Modified randomization tests for nonparametric
hypotheses. Ann. Math. Stat. 28, 181-187.

3. F. MARRIOTT (1979). Barnard’s Monte Carlo tests: how many simu-
lations? Appl. Statist. 28, 75-77.

4. P. HALL AND D.M. TITTERINGTON (1989). The effect of simulation
order on level accuracy and power of Monte Carlo tests. J. Roy. Statist.

Soc. B, 459.

51



