5 Simulation of stochastic processes

Many stochastic processes can be described as Markov chains (in discrete
time) or Markov processes (in continuous time). A discrete-time Markov
chain { X, },en with state space S and transition matrix P can be simulated
as follows: If X,, = s then select X, 11 from the conditional distribution of
Xont1, given X, = s.

Example: A simple time series model. Consider the discrete-time model
i =ali g+ &, €~ N((LU?)’

where |a| < 1, and assume that {€:}:cz are independent. Then the con-
ditional distribution of Z; given Z;_y = z_y is N(az_1,0?), and {Z; }iez
is a Markov chain. (This model is called an autoregressive process of order
1). Thus, for any given starting point Xy, we can simulate the process by
simulating normal random variables.

An alternative approach is to simulate the time until the next jump, which
has a geometric distribution in the discrete-time case, and an exponential
distribution in the continuous-time case.

5.1 Construction of algorithms

The design of an algorithm may involve very varied methods, and much is
left to the ingenuity of the programmer. However, below is a selection of
simple points to observe.

Simulation via discrete events. Often stochastic processes can be de-
scribed by discrete events - the arrival of a customer, birth or death, jumps.
Typically a stochastic process would involve a time variable (the amount of
simulated time that has elapsed), counter variables (the number of times that
certain events have occurred by time t), and system state variables. When-
ever an event occurs, these variables are updated. We hence keep an “event
list”, which lists the nearest future events and when they are scheduled to
occur. Whenever an event occurs, we reset the time and all state and counter
variables and collect the relevant data.

For example, in an epidemic process with N individuals, assume that indi-
vidual ¢ gets infected at time A;, and it recovers at time A; + R;; assume
that the A;’s and the R;’s are independent. Then we would first generate
(A1, R1),...,(An, Rn) and then run the process, which is deterministic con-
ditioned on (Ay, R1),...,(An, Ry). Note that no Markovian structure is
required.

Example: A single-server queueing system. (See Ross (1996), p. 88-
89.) Customers arrive at a queue according Poisson process with parameter
A. There is a single server; when a customer arrives, if the server is busy
he/she joins the queue, and otherwise he/she enters service (“first-in first-
out queue”). The amount of time it takes to serve a customer is a random
variable, independent of all the other variates in the system, with distribution
G.

To simulate this system, we use as variables ¢, the time; N4(¢) the number
of arrivals by time ¢, Np(t) the number of departures by time ¢, and n(t)
the number of customers in the system at time ¢. There are two types of
events: arrivals and departures. The event list contains the time ¢4 of the
next arrival and the time ¢p of the departure of the customer presently in
service. If no customer is presently being served, put tp = oc. The output
variables are A(z) = the arrival time of customer ¢, and D(7) = the departure
time of customer . We restrict the simulation to a fixed time interval [0, T];
after time 7', no new customers are allowed in the system, although those
present will still be served. Let T}, be the time past 7' that the last customer
departs.

Algorithm.
1. Initialize t = Ny = Np = n = 0. Generate Ty from the exp(A)-
distribution, set t 4 = Ty, tp = o©
2. Let Y ~ (G. We distinguish 4 cases:

(a) Case 1. tA S tD,tA S T. Reset t = tA,NA = NA—I—l,n = n—l—l
Generate T} ~ exp(A), reset t4 = Ty. If n = 1, generate Y ~ &
and reset tp =t + Y. Collect output data A(N4) = ¢.

(b) Case 2. tD S tA,tD S T. Reset t = tD,ND = ND + 1,n =n—1.
If n = 0, reset tp = oo; otherwise, generate Y ~ G and reset
tp =t 4 Y. Collect the output data D(Np) = 1.

2

(c) Case 3. min(ta,tp) >T,n > 0. Reset t =tp,Np = Np+1,n=
n—1. If n > 0, generate Y ~ G and reset tp =t + Y. Collect
the output data D(Np) = t.

(d) Case 4. min(t4,tp) > T,n = 0. Collect the output data T, =
max(t —T,0).

Similarly, tandem queues or two-server queues can be included, see Ross

(1996).

Arrival times. If we wish to relax the restrictive assumption that an in-
dividual has an exponentially distributed arrival time, while maintaining a
Markovian structure, we can make him/her go through & stages in series be-
fore arrival, leading to a I'y distribution. More generally we can achieve an
arrival time having any distribution whose moment-generating function is a
rational function by choosing a suitable network of stages.

Non-homogeneous Poisson processes. Suppose we have a realisation
of a non-homogeneous Poisson process of intensity A(¢) on [0,7] and that
the total number of points sampled in a given realisation is n. Then their
distribution on the interval is identical to that of a random sample of size n
from the density function f(¢) = A(¢)/A, where A = [A(s)ds. Conversely,
an obvious way to generate a realisation from the process is to sample from
Poisson(A) and choose this many points from f(?).

Exponential spacings. Let Iy, Fs, ..., E, 41 be independent exp(1)-variates.
Put S; =37, F;. Then {S;/Su4+1,7 = 1,2,...,n} have the same distribu-
tion as an ordered sample of n U([0, 1])- variates. This provides a neat way to
generate a sample of order statistics form ([0, 1]) and, by transformation,
from any univariate distribution with F~! available. This would be more
efficient than taking a random sample and sorting it for sufficiently large
samples since sorting takes time O(nlogn).

Simulating a two-dimensional Poisson process. (See Ross (1996).) A
2-dimensional Poisson (point) process having rate A > 0 is defined by two
properties:

1. The number of points in any region of area A is Poisson(AA)

2. The number of points occurring in disjoint regions are independent.

Suppose we want to generate a Poisson point process on the circle C'(r) with
radius r around the origin. Then, for any a, the number of points in the
circle C'(a) is Poisson(Ama®). For i > 1, let R; denote the distance from the
origin to its 1th nearest point. Then

P(rR}>z) = P <Rl > E)

T

= P<n0 point inC'< E))
s

e—/\r.
and, similarly,
P(rR; — 7R} > z|Ry = a)

2
= P(RQ> vt ma |B’,1:a)

T

P (no point in C' (: —I—WWGQ) \ C’(a))

e,

Similarly one can show that, with Ry = 0, the spacings 7 R?—m R?_, ~ exp(}),
for + > 1. Due to symmetry, the angles of the Poisson points are (0, 2m).
Hence we may use the following algorithm.

Algorithm.

1. Generate X1, Xs,... ~ exp()) independently, until

N:min(n:X1+---+Xn>7rr2).

2. If N = 1: stop, there are no points in C'(r). If N > 1: put

X 4+ 4+ X
RZ':\/L 1=1,...,N

” 5. ”
T

Note that then WR? =X+ + X,

4

3. Simulate independent Uy, ..., Uyx_1 ~ U([0,1])
4. the polar coordinates of the N — 1 Poisson points are

(R;,2=U;), i=1,...,N

The above algorithm can be generalized to simulating on any smooth
region.

Verification of the simulation model. To check the simulation,
e Try to debug in small subroutines

e Write the simulation as general as possible, to that a special case that
has been well studied, or that can be treated analytically, can be used
for a comparison

o In the testing stage of a program, make the program give as output all
the random quantities it generates

o When searching for errors, use a trace, so that the state variable, the
event list, and all the counter variables are printed out after each event
occurs.

Simulation languages. In simulation models there tend to exist similar
features. This has lead to the development of special purpose languages,

o GPSS: 7"General Purpose Simulation System”; relatively easy to learn;
no facilities for program structuring

o SIMSCRIPT: Originally based on FORTRAN; comprehensive language,
incorporating all that GPSS achieves, but with many other features,
resulting in it being more difficult to learn

o SIMULA: ALGOL related language; designed to be extendable by
classes, providing programming tools for specific needs, for example:
simulation, discrete-event systems, and combined simulations

o G.A.S.P.: “Genometric Analysis Simulation Program”; FORTRAN re-

lated; specifically geared to genetic analysis

Simview: Graphical language for PC

SLAM II: based on FORTRAN, geared to networks, discrete event

simulations, and continuous simulations

And many more

e Both SPLUS and MATLAB have convenient routines for simulation

5.2 Markov Chain Monte Carlo methods: The Gibbs
sampler

In general it is very difficult to simulate the value of a random vector X
whose component random variables are dependent. A powerful approach is
given by Markov chain Monte Carlo methods.

Let {X,}.en be a discrete-time Markov chain with finite state space
S and transition matrix P. Recall that a distribution 7 is a stationary
distribution of the Markov chain if

T=mkP.

The Markov chain is called reversible if the detailed balance equations hold:

m(x)P(z,y) = n(y)P(y,x) ,z,y €S (1)

If a Markov chain is reversible, then it follows that it has stationary distri-
bution 7. Under suitable conditions, the distribution of X, will tend to the
stationary distribution, no matter which starting point Xy has been chosen
for the chain.

Example: The simple time series model. Consider again the discrete-
time model

ly=oli 1+ €&, €~ N(0702)7

where |a] < 1, and {¢:}+cz are independent. Then it can be shown that the
process has stationary distribution N(0,0?/(1 — a?)), and that (1) holds.

Markov chain Monte Carlo methods build on the converse problem - given a
distribution 7, can we find a transition matrix (kernel) such that (1) holds?
If so, then we could simulate from the Markov chain corresponding to the

6

transition kernel, and use the convergence to the stationary distribution in
order to obtain (approximate) samples from .

The Gibbs Sampler. A popular Markov chain Monte Carlo method is the
Gibbs sampler. Let X = (X1,...,X,) be a random vector with probabil-
ity mass function p(x), which may only be specified up to a multiplicative
constant, and suppose that we want to generate a random vector whose dis-
tribution is that of the conditional distribution of X given that X € A for
some set A.

Algorithm.
1. Let x = (#1,...,2,) be a vector in A for which p(x) > 0.
2. Let I be uniformly chosen from {1,2,...,m}.

3. If I =1, generate the value of a random variable X such that

P(X =2)=P(X;=z|X; =;,j # i)

4. If X =z and (2q,...,2i21,2, Tig1,...,2,) € A then reset z; = .
5. Go to 2.

At each step, one of the variables X; is randomly chosen, and a random
variable having the conditional distribution of X; given that X; = z;,7 # 1
is generated. If the new vector, with this value replacing z;, is in A, then
that is the next state of the underlying Markov chain; if this vector is not in
A, the state remains unchanged.

Example. Let Xy,..., X, beindependent exponential variates, so that X; ~
exp(Ai),s = 1,...,n, and put S, = 37, X;. Suppose we want to generate
X = (Xi,...,X,) conditional on the event A = {S,, > ¢}, for some large c.
That is, X has density function

n

1
P(S, > ¢) J'_I

=1

flze,.. . z,) = Ae~ N, ZSL‘Z’>C.
i

Algorithm.
1. Let x = (#1,...,2,) be such that z; > 0,0 =1,...,n,and X", z; > c.
2. Let U ~ U([0,1]), put I = Int[nU + 1].

3. If I =1, generate X; ~ exp();) conditioned on the event X +3,., z; >
c,ie. X >c—374 ;. To do this, use the fact that the conditional
distribution of X, given X > ¢, is the same as the distribution of X +¢,
by the memoryless property of the exponential distribution. So

(a) Generate Y ~ exp();)

(b) Set
X=Y+(c—) z)"
J#
4. If X = z then reset z; = z.

5. Go to Step 2.

As the underlying Markov chain will converge to its stationary distribution,
the Gibbs sampler will converge to the correct distribution. An interesting
question with no clear answer is how many iterations would be needed to be
sufficiently close to the target distribution. This is sometimes also discussed
as burn-in problem.

The Gibbs sampler is a special case of

The Metropolis-Hastings algorithm. Let b(j),7 = 1,...,m be positive
numbers, and let B = 37, b(j). Suppose that B is difficult to calculate,
and that we want to simulate a random variate X with

PX=j)=n()=—~, j=1,....m

The idea is to simulate a Markov chain whose limiting probabilities are the

m(j)-

One starts with an acceptance-rejection idea. Suppose you have simulated

X,. If X,, =1, then choose X such that P(X = j) = ¢(¢,5), and put
Xn+1 = J with probability a(z,)
Xyn+1 = 1 with probability 1 — a(z, j).

with some a1, j) to be determined. Then
P = Q(i J) (2,9); J?éi

Pm’ = 1,1 —|— Eq 1 — a k))
k#2

is a Markovian transition matrix. This Markov chain will have stationary
distribution 7 if

1.e.

w(1)q(i,5)e(i,g) = 7(5)a(s,D)als0), JF1, (2)

satisfies (2). To see this, note that if a(i,j) = % then «a;,7) = 1 and

vice versa.

Algorithm.

1. Choose an irreducible Markov transition matrix @ = (¢(¢,7))ij=1,..m

Also choose k € {1,2,...,m}.
2. Let n = 0 and Xy = k.

3. Generate a random variable X such that P(X = j) = ¢(X,,J) and
generate U ~ U([0,1])

I
b(X)q(X, X»)

b(X,)q(Xn, X)
then put S = X;else S =X,

U<

.n=n+1,X,=25.
. Go to 3.

Further reading

. S. CoLESs. Computer-intensive statistics. Lecture notes at
http://www.statistics.bristol.ac.uk/ masgc/ast/notes.ps

. P. DiaconNis AND S. HoLMES (1995). Three examples of Monte-
Carlo Markov Chains: At the Interface between Statistical Computing,
Computer Science, and Statistical Mechanics. In Discrete Probability
and Algorithms (D. Aldous, P. Diaconis, J. Spencer, and J.M. Steele,
eds). Springer-Verlag, 43-56.

. S. GEMAN AND D. GEMAN (1984). Stochastic relaxation, Gibbs dis-
tributions, and the Bayesian restoration of images. IFEFE Transactions
on Paltern Analysis and Machine Intelligence 6, 721-724.

. P.J. GREEN (2000). A primer on Markov chain Monte Carlo. In
Complex Stochastic Systems, O.E. Barndorff-Nielsen, D.R. Cox and

Claudia Klippelbert, eds. Chapman and Hall: Boca Raton etc. pp.
1-62.

. N. METROPOLIS, A.W. ROSENBLUTH, M.N. ROSENBLUTH, A.H.
TELLER, AND E. TELLER (1953). Equations of state calculations by
fast computing machines. J. Chem. Phys. 21, 1087-1092.

. E.A. THOMPSON (2000). Monte Carlo methods on genetic structures.
In Complex Stochastic Systems, O.E. Barndorff-Nielsen, D.R. Cox and

Claudia Klippelbert, eds. Chapman and Hall: Boca Raton etc., pp/
175-218.

10

6 Statistical Inference

6.1 Monte Carlo tests
The Monte Carlo test, attributed to Dwass (1957) and Barnard (1963), is an

exact procedure of virtually universal application and correspondingly widely
used. We only need to be able to simulate a random sample Ty, To, . . . from
the distribution Fy determined by the null hypothesis. We assume that £y is
continuous, and, without loss of generality, that we reject Hy for large values

of To. Then, provided that o = 7 is rational, we can proceed as follows.

1. Observe the actual value ¢* calculated from the data
2. Simulate a random sample of size n from Fj
3. Order set {t*,to1,...,ton}

4. Reject Hy if the rank of t* in this set (in decreasing order) is > m.

The basis of this test is that, under Hy, the random variable 7™ has the same
distribution as the remainder of the set and so, by symmetry,

m

n+1

P(t* is among the largest m values) =

The procedure is exact however small n might be. However, increasing n
increases the power of the test. The question of how large n should be
is discussed by Marriott (1979), see also Hall and Titterington (1989). A
reasonable rule is to choose n such that m > 5. Note that we will need more
simulations to test at smaller values of a.

An alternative view of the procedure is to count the number M of simulated
values > t*. It is easy to see that P = % is an unbiased estimator of the
true significance level P achieved by the data, i.e.

P =P(Ty > t*|Hy).

In discrete data, we will typically observe ties. We can break ties randomly,
then the above procedure will still be valid.

Unfortunately this test does not lead directly to confidence intervals.

11

6.2 Confidence intervals

The relationship between significance tests and confidence intervals suggests
that we can construct the latter by simulation, but the problem is more
difficult, as we need to estimate critical values for 7" with sufficient precision.
For an exact interval we would need infinite precision at the critical values.

For a confidence interval for a population mean we would need an estimate for
the population variance also, for example. One method is to choose first an
acceptable value d for the standard deviation of the estimator, and continue
to generate random variates until this number k is such that S/vEk < d,
where S is the estimated standard deviation.

More precisely, suppose that 0 is an unbiased estimator of f, with distribution
function Fy. Let 6 be a sample from F;. We want to make inference about

the variation of § around by studying the variation of §* around 0.

Example. (See Ripley (1986), p.176.) Suppose we sample from a location-
family model, such that

0 — 0~ Fy; (3)
then
0* - é ~ F().

A (1 — a) two-sided confidence interval for 8 could then be constructed as
follows. Put

L« A L«
L= B (5) =04 (3)
_ (e ~ _ «
Ro= o (1-g) =0+ m (1)
Then an exact (1 —) two-sided confidence interval for 8 is
0 é—F—1<1—3> é-F*(g)}
€ { 0 2)’ 0 \2
= (20— R,20—L).

This is only exact if (3) holds. Otherwise it could serve as an approximation.
For more discussion, see Ripley (1986).

12

If we estimate a parameter using simulations from a Markov chain, then this
dependence has to be taken into account.

Example: The simple time series model. Consider again the discrete-
time model

Zy =alig &, €~ N(07‘72)7

where |a| < 1, and {¢ }iez are independent. Suppose we want to estimate
6 = EZ;. We could do this by simulating 71, ..., Z, from the Markov chain,
starting with the stationary distribution. and use § = X. Then

Var(X;) = =:v
and it can be calculated that
Cov(X;, Xiyr) = viaF #0,

so that
02 2

Var(X) = — (n + gz(n - i)af) 4 %

n2

6.3 Output analysis

Output analysis is concerned with the analysis of the results of simulation
experiments. This may involve special difficulties either because the experi-
ments are large and it is difficult to infer general conclusions from the results,
or, more particularly, because the results are correlated. The latter will hap-
pen, for example, in the simulation of stochastic processes.

To some extent the methods of time series analysis will be appropriate for
the output from one-dimensional stochastic processes. The problems fall into
two groups according to whether we are considering the transients of a process
or the equilibrium state. For the former - for example, the first passage time
from a particular state - we will usually obtain a single observation from
each of a number of independent runs of a process. The more challenging
problems are associated with processes in or near to equilibrium. One major
problem is concerned with then we can consider a process to have reached
equilibrium. To treat this problem, one could, for example,

e estimate and use the correlation structure (time series methods)

13

o take the means of successive blocks of the observations, exploiting the
fact that these will be more nearly uncorrelated.

Further reading

1. G. BARNARD (1963). Contribution to the discussion of Bartlett’s pa-
per. J. Roy. Statist. Soc.B, 294.

2. M. Dwass (1957). Modified randomization tests for nonparametric
hypotheses. Ann. Math. Stat. 28, 181-187.

3. F. MARRIOTT (1979). Barnard’s Monte Carlo tests: how many simu-
lations? Appl. Statist. 28, 75-77.

4. P. HALL AND D.M. TITTERINGTON (1989). The effect of simulation
order on level accuracy and power of Monte Carlo tests. J. Roy. Statist.

Soc. B, 459.

14

