4 Simulation design and analysis

Often in simulations one is interested in determining
9:EﬂX):/¢@Mm
Here, X has density f, and ¢(z) = ¢(z)f(z). We think of 6 as a parameter

connected with some stochastic model. To estimate 6, the model is simu-
lated to obtain the output Xi,..., X, which are such that § = E¢(X;),1 =
1,...,n. Thus we can estimate 6 by the so-called raw estimate or crude
Monte Carlo estimate
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From the law of large numbers, this is an unbiased estimate of 8, and
. 1
Varfy = —Vard(X).
n

Here we will analyze estimates 0 of 6 with respect to their variance. In
particular, the aim of variance reduction is to produce an alternative esti-
mator of # having hopefully a much smaller variance than fo. Note that the
order of magnitude cannot be improved in general.

Example 1 Suppose we want to estimate
1
0= / V1 — z?dzx.
0

(We know that § = T ). Then nVar(éo) can be calculated to be %—% = .0498.
This example is from Morgan (1984) and will recur.

Remark: Hit-or-miss Monte Carlo. If ¢ is zero outside a finite interval
(a,b) and 0 < ¢(z) < ¢ for some constant ¢, and for all z, one could think of
estimating # = [7 4 (x)dz by simulating (X;,Y;),i = 1,...,n uniformly from
the box [a,b] x [0,¢] and count the number of observations that fall under
the curve 9, that is,
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—9) Zj: 1(Y; < ¥(X5)).
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This yields again an unbiased estimate of #. It can easily be seen, see, for
example, Ripley (1?87), p. 121, that this hit-or-miss Monte Carlo method is
less efficient than #y. In particular

P(Y; <¢(X;) =

- (b—a)c/a ¥(i)de;

1(y; < ¥(xi))dy;dz;

so that
O(c(b— a) —0)

Var(él) =
2
= —/ —ad:v—g—
n
02
> —/¢ (b— a)dz — =
n
= Var&o,

where we took f(z) to be the uniform density on [a,b]. Note that equality
holds only if ©» = ¢, in which case both variances vanish. Hit-or-miss is
always worse than crude Monte-Carlo.

In Example 1, it can be shown that nVar(él) = W(ﬁgw) ~ .1685.

Note that hit-or-miss and crude Monte Carlo differ in replacing the indicator

1(Y; < ¥(X;)) by its conditional expectation given X;, namely ¢(X;)/c.
This illustrates a general principle for variance reduction: If, at any point of
a Monte Carlo simulation, we can replace an estimate by an exact value, we
shall reduce the sampling error in the final result.

4.1 Stratified sampling

If v was piecewise constant, then we could easily estimate # by sampling
one observation each from of the intervals where ¢ is constant. The idea of
stratified sampling for

0= Bo(X) = [ v(x)de
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on a finite interval (a,b) is to break the interval (a,b) into pieces where ¢
is approximately constant. This idea is related to stratified sampling from
populations. Say, we partition

a=ag< o <---<a,==b

X

and sample n; observations from (o;_1,0;),7 = 1,..., k. Let Xy;, Xo;,..., X ;
be i.i.d. uniform on («a;_1,@;). Then we use the crude Monte Carlo estimate
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on each of the intervals, and we combine them to give

k
E Oé] 1 — Oé]
J=1

Due to the independence of the components, we obtain

WW®==Z%(@—%@AJ

> a_l V2 (z)dz — {/:il ;/)(;t:)dx} )
]; )
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say. If A= 2521 \/aj, then a Lagrange multiplier argument shows that the
optimal allocation is to have n; = %&,/a;,7 = 1,...,n. Unfortunately the
a;’s are typically not available.

In Example 1, when splitting the range of integration at the point z = %, the

minimum variance obtainable is %

sizes in the ratio 1 : 1.249.

, and this is achieved with the sample

4.2 Importance sampling

The idea here pushes the stratified sampling approach further: sample more
frequently from those parts of the curve that display more variability. Now,
for

9_/¢ dx_/¢ )dz = E(X),
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we would choose f non-uniform. Ideally, we would like to choose f(z) = w(ew)’

but of course 6 is not available. In general, if ¢ is another density, we can

write

P (x)
/Mx)dx B /g(fﬂ)

where Y has density g, and p(x) =

g(x)dz = Ep(Y),

Y(x)
9(z)"

Suppose that Y, are i.1.d. with
density g, then put

g - L0
;= .
no. 9(Yi)

If a density function ¢ can be chosen so that the random variable %é—l) has a
small variance, then this approach can result in a more efficient estimator of
6. Thus a good choice of g would be one that mimics the shape of .

In Example 1, g(z) = 2(1—x) gives nVar(é) = .1331, whereas g(z) =

A

gives nVar(0) = .01339.

(2—2)

2
3

Example: Exponential tilting. (See Ross (1996), p.170 ff.) If 8 is very
small, then exponential tilting might be useful. Let M(t) = [ €™ f(z)dz be
the moment-generating function corresponding to the density f. Then the
density

is called a tilted density of f, —oc < 1 < oco. Similarly a tilted probability
mass function can be defined. For a Bernoulli(p)-variable, for example, we

have f(z) = p”(1 —p)'=*, M(t) = pe' + 1 — p and

L U e Y (el I

This is the probability mass function of Bernoulli(pe!/(pe’ +1 — p)). Note

that
i = o) (155) o

In certain situations, the quantity of interest might be the sum of independent
random variables Xy,..., X, with density f each. In this case, the joint
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density f is the product of the one-dimensional densities. In this situation
it may be useful to generate the X;’s according to their tilted densities. For
instance, suppose we are interested in estimating the probability that a sum
Sy, of n independent Bernoulli-random variables, X; ~ Be(p;),i = 1,...,n,
exceed a large value a. Then

6 =E1(S, > a).
Thus ¢(z1,...,2,) = 13", 2; > a). Now simulate Y; according to the
t-tilted Bernoulli distribution with parameter
pie'
Then the importance sampling estimator of 8 is

DPti = 1 =1 n.

ge ey

where M () = [T, M;(1). Since ¢ > 0 it follows that 0 < § < M(t)e_tzzb:l Y
To make the bound as small as possible, choose ¢ to minimize M (¢)e~"*. Tt
can be shown that this minimizing ¢* satisfies

Pz’t
E S S —
2—: ;1_P2+P26t

The optimal choice of ¢ can be approximated numerically.

For example, if n = 20,p; = .4,a = 16, then E(}_L, Y;) = 2055 this

equals 16 is t = In 6. the importance sampling estimator is

1YY > 16)67 iz 1320,
=1

t+67

It can be shown that Varf < 2.9131 x 1077, whereas Varfy = 3.160 x 1074
NOte that 6 ~ 3.17 x 107*.

In general, variance reduction may or may not be obtained, depending on
the choice of g.



4.3 Control variates

The idea behind control variates is formally related to regression. Suppose
we have Y (perhaps Y = ¢(X)) and we want to estimate its mean

0 = EY.
If 7 is a related random variable with known mean g, then put
W=Y —¢cZ—u)

for some constant ¢. Then EW = 6 for any ¢. Thus, if Wy,.... W, are i.i.d.
with same distribution as W, then

is unbiased for #. Moreover,

nVar = VarW
= VarY +c*VarZ —2cCov(Y, 7)

< VarY ifand only if Cov(Y,7) > %VarZ.

The above variance is minimized for

. Cov(Y,7)
= VarZ

Then we obtain
Cov*(Y, 7)
VarZ
Thus, variance reduction is always achievable by suitable choice of ¢ whenever

Cov(Y,Z) #0.

VarW = VarY —

Example 2 (See Ross (1996), p.144-145.) Suppose we want to use simula-
tion to compute

0 = EeV



for U ~U([0,1]). Note that nVarfy = .2402. A natural choice for a control
variate 1s U. We then have

Cov(e”,U) = EUe”) —EU)E(EY)
1 e—1
- /xewx— — 14086
0 2

Moreover, VarlU = L. Hence, with ¢* =12 x .14086 we have

nVarl = Var(e’)—12 x (.14086)?
A~ 2402 — 2380 = .0039.

In Example 1, with Z = 1 — X as control variate, ¢* = %7‘[‘ —4,and nVarf ~
.00752.

Of course this method can be generalized to

k
=" e Zg — )
i=1
when such Zy,..., 7, are available.

In general, ¢* will not be available. One could estimate ¢ from the experiment,
but then W = Ly W; will in general not be an unbiased estimator of .
Instead, it is better to use a pilot simulation to estimate ¢*, and then use
this estimated ¢* for the larger simulation.

It is appealing that even when this method is not very successful, the
resulting variance is never increased.

Due to the relation to standard regression analysis, often also the term
regression-adjusted control variates is used. The similarity is formal, though:
regression analysis via least squares is based upon the assumption of linear
dependence (and preferably normal errors) whereas nothing like this is needed
for regression-adjusted control variates.

4.4 Antithetic variates

Here the idea is to generate two (or 2n) correlated unbiased estimators Y7, Y,
of § with the same marginal distribution, described by Y, say. We then put

-1
b=-

2(Y1+Y2).



Thus |
Varf = §VarY(1 + corr(Y1,Ys)).

If
corr(Y1,Y2) <0

then we obtain a smaller variance than with independent estimators.

A standard way of generating such correlated unbiased estimators from a
distribution function F'is to put

Yi=F(U), Yo=FT(1-U),

where U ~ U([0,1]). Then the correlation is negative, following from (see

Ripley (1987), p.129)
Proposition 1 Suppose g is a monotonic function on (0,1). Then

corr(g(U),g(1 = U)) < 0.

In Example 1, letting Y1 = /1 — U? and Y3 = /1 — (1 — U)? gives Var =
.0052. In Example 2, with ¥; = eV and Y, = e'"Y, we obtain Varf =
1.2420(1 — .9677) = .0039.

4.5 Conditional Monte Carlo
In general, we have for any random variables Y, W that
EY — E(E(Y|W))
VarY — Var(E(Y|W))+EVar(Y|W)).

Hence Var(E(Y|W)) < VarY. If we can evaluate E(Y|W) analytically as a
function h of W, we can estimate § = EY by

where Wy, ..., W, are i.i.d. copies of W. If the distribution of Y is built
up by mixing over values of some W, this becomes an obvious target for the
technique.



Example: Suppose W ~ Poisson(A), and, given W = w, we have that
Y ~ Beta(w,w?+1). Then

EY|W = w) =

w
w2+ w+1°
Thus, to simulate § = EY, we simulate W,..., W, ~ Poisson(}) i.i.d. and
put

A1 & W,
0=—-y ——— .
n ; W2+ W;+1

Conditional Monte Carlo always provides variance reduction. The difficulty
is to find W such that the conditional expectation is computable.

4.6 Isolating known components

In many cases, some parts of the expectation # of ¢(X) can be evaluated
analytically. One may then attempt to organize the output analysis to that
these known parts need not be simulated.

Example. Let T},T5,... be i.i.d. and nonnegative with mean pu, and let
Z = supq{n : S, <t} be the number of renewals up to time ¢, where S, =
Ti+Ty+---+T,. Let 0 = EZ. Letting 7 = inf{n : S,, > t}, we then have
7 =71 — 1. By Wald’s identity,

ES; = pEr = p(0 +1).

This suggests the estimator

.S,
91 - — — 1
[
But we can write S, =1 + £, where £ = 5, — t is the overshoot. This yields
t+ E
g LHEC
[
and an alternative estimator is
A [
0, = j 1
[
For example, if the T; are standard exponential and ¢ = 50, then 7 ~
Poisson(50) so that Varf; = 50. In contrast, since ¢ is again standard

exponential, Var(ég) =1.



4.7 Experimental design

Many simulation experiments are designed to compare the effect of choosing
different parameter values in the model. In such cases, ideas from the design
of experiments can be used, see also Box et al. (1978). The analogue of a
randomized block is a set of random numbers which can be re-used (common
random numbers). Suppose we are simulating

E¢(X; ),

where « i1s a parameter value, to be varied. To assess the variation between
two different parameter values oy and a3, we are interested in

0= Eqb(Xa al) - E¢(X7 a?)‘

If we use the same random numbers X for both parts, it is likely that
Cov(d(X,a1),d(X,az) # 0, and so we would obtain a variance reduction
compared to choosing independent X's.

4.8 Discussion

Variance reduction techniques are typically most readily available for well
structured problems. Typically, they involve a fair amount of both theoretical
study of the problem and of additional programming effort. For this reason,
variance reduction is most often only recommendable for large experiments.

Different variance reduction techniques used in combination may produce
diminishing returns and may even conflict with each other to give adverse
results.

It will generally be advantageous to break down a problem into compo-
nents and to push the analytic treatment of the problem through as far as
possible.
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