Couplings for Normal Approximations with Stein’s Method
Gesine Reinert

ABSTRACT. Coupling constructions for Poisson approximation using the Chen-
Stein method is now a standard technique; a systematic study of related cou-
plings for normal approximation using Stein’s method has begun only a few
years ago. This small survey of coupling methods for normal approximations
includes size-bias couplings, which are natural for nonnegative random vari-
ables such as counts, and zero-bias couplings, which may be applied to mean
zero variables and are especially useful for random variables with vanishing
third moments.

1. Introduction

In 1972, Stein [47] published a very elegant method to prove normal approx-
imations. It is based on the fact that a random variable Z is standard normal if
and only if for all smooth, real-valued functions f,

E{Zf'(2) - f"(Z2)}=0.
(This is easily seen using dominated convergence and integration by parts.) Stein
[47] then showed that for any smooth, real-valued function h there is a function f
solving the now-called “Stein equation”

(L.1) zf'(z) — f"(z) = h(z) — A,

®h denoting the expectation of h with respect to the standard normal density.
Moreover, there is a solution f of the Stein equation (1.1) satisfying

™ .
(12) 171 [ @l 151 < Guph—infR); 5] < 20

where || - || denotes the supremum norm (see Stein [48], p.25 and Baldi et al. [5]).
Now, for any random variable W, taking expectations in (1.1) gives
(1.3) Eh(W) — ®h = EW f'(W) — Ef""(W).

Thus the distance of W from the normal, in terms of a test function h, can be
bounded by bounding the right-hand side of (1.3); the immediate bound on the
distance is one of the key advantages of Stein’s method compared to moment-
generating functions or characteristic functions. Typical classes of test functions h
are C*(R) (for weak convergence), or the class of indicator functions of half-lines
(giving the Kolmogorov distance).
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Nearly twenty years later, Barbour [7] and G6tze [32] proved similar results for
more general Gaussian approximations; Barbour [7] considered diffusion approxi-
mations, G6tze [32] multivariate normal approximations, with the bound

(1.4) 1D <7D, =1,2,...

A key tool for solving the higher-dimensional case is the generator method devel-
oped by Barbour [6], [7], [8]; the left-hand side of (1.1) can be written as Af(z),
where A is the generator of an Ornstein-Uhlenbeck process. Thus semigroup theory
can be applied to solve the generator equation. Note that the target distribution,
here the standard normal, is the stationary distribution of this Markov process.

Stein’s method has been generalized to many other distributions, foremost the
Poisson distribution (see Chen [21], Arratia et al. [1], Barbour et al. [15], Aldous
[2], to cite but a few). Other distributions include the uniform distribution (Diaco-
nis [26]), the binomial distribution (Ehm [28]), the compound Poisson distribution
(Barbour et al. [9], Barbour and Utev [17], Roos [46]), the multinomial distribu-
tion (Loh [36]), the gamma distribution (Luk [38]; for the x? distribution see also
Mann [39]), the geometric distribution (Pek6z [40]) and, more generally, Pearson
curves (Diaconis and Zabell [27], Loh [37]).

The most obvious advantage of Stein’s method is that it yields immediate
bounds on the distance. Moreover in many situations where dependence comes
into play the application is straightforward; many examples are of combinatorial
nature. An early success of Stein’s method is the work by Bolthausen [18] for a
combinatorial central limit theorem; he was the first to obtain the correct order for
this approximation. In examples from random graph theory, where the method of
moments used to be the most popular technique, Stein’s method allowed not only
to provide rates of convergence for the first time, but also to weaken conditions; see,
for instance, Barbour et al. [16]. Another advantage of Stein’s method is that it
can also be used to derive lower bounds for the approximations; Hall and Barbour
[34] applied it to give lower bounds for the rate of convergence in the central limit
theorem for independent random variables.

Unfortunately such a straightforward application of Stein’s method may not
yield the correct order for the rate of convergence; additional work may be needed
to sharpen the bounds. An example are dependency graphs; first, Baldi and Rinott
[3] proved a normal approximation using the method of moments, without any
result on the rate of convergence. Next, Baldi and Rinott [4] employed Stein’s
method to obtain a bound of the order n~'/4; Baldi et al. [5] derived related results
for the number of local maxima in a graph whose vertices are randomly ranked.
About five years later, Rinott [43] improved the bounds considerably to the correct
order n~1/2, for bounded random variables. Shortly after, Dembo and Rinott [25]
simplified this bound, whereas Goldstein and Rinott [31] and Rinott and Rotar
[44] provide multivariate extensions. Another, earlier example that illustrates the
effort in obtaining optimal bounds is Bolthausen’s [18] proof of the Berry-Esséen
theorem, the first to yield the correct order when applying Stein’s method.

Evidently, Stein’s method is in place when the right-hand side of (1.3) is easier
to bound than the left-hand side of (1.3). A typical approach for evaluating the
right-hand side of (1.3) is to employ couplings, and often the success of the method
is connected with finding an effective coupling for the right-hand side of (1.3).

In what follows, we will only consider random variables W that are the sum
of n random variables Xi,...X,; that is, W = 7 | X;. For convenience we
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will assume throughout that Var(W) = 1. Moreover we will only discuss smooth
test functions, because the treatment of nonsmooth test functions is slightly more
technical, and the purpose of this paper is to lay out the basic methods. References
for nonsmooth test functions will be given. As our main two examples, we will
firstly consider that X7, ...X,, are independent, and secondly that Xi,...X, is a
simple random sample from a finite population. Moreover, for || f"|| in (1.2), Stein
[48] proved the bound 2||h — ®h||; Baldi et al. [5] showed the improved inequality
n (1.2). In what follows, we will use the improved inequality for theorems we cite,
even if the theorems used the first inequality.

In Section 2 we describe the perhaps most common coupling, the “local” ap-
proach. It is very effective if each X; depends only on a small number of the other
Xj,j #1i. Typical examples are m-dependent sequences.

In case of global but weak dependence between the Xi,...X,,, exchangeable
pair couplings are usually more natural. This approach is discussed in Section 3.

Section 4 gives a coupling that is particularly adapted to describe counts; the
size bias coupling. In Barbour et al. [15] it has been developed as a major tool
for proving Poisson approximations; its importance for normal approximations has
been described in Baldi et al. [5], Goldstein and Rinott [31], and Stein [49]. A
drawback in the context of normal approximations is that it requires W to be
nonnegative, with positive mean.

For mean zero W, and in particular for symmetric W, the zero bias coupling
discussed in Section 5 might give better results, especially when the test functions
are smooth. The zero-bias coupling is a “second-order” refinement of exchangeable
pair ideas .

Finally, Section 6 collects other couplings that work well in special cases. It
illustrates that specific problems may benefit from constructing couplings that do
not fit into the above classes, and thus illustrates the dynamical structure of the
field.

2. The local approach
Suppose Xi,...X, are independent, mean zero, and let 0? = Var(X;). Put
W =3%",X;, and let Var(W) = >" ,0? =1. Foreachi=1,... ,n put
(2.1) Wi=W-X;=)» X;.
J#i
Thus W and W; are defined on the same probability space. For any smooth function
f we have, by Taylor expansion

EW f'(W)

Z EX; f'(W)

= Y EX; /(W) + ) _EX]f"(Wi) + R,
i=1 i=1
where

1 n
B < SOy B
i=1
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Using the independence we obtain for the right-hand side of (1.3), with x = 0, that

> EXTEf(W;) —Ef"(W)+ R

i=1

> GBS (Wi) — £ (W)} + R.
i=1

EW f'(W) — Ef"'(W)

Taylor expansion and the bounds (1.2) now give the following theorem.

THEOREM 2.1. Suppose X1,...X, are independent, mean zero, and let o? =
Var(X;). Put W = Y1 | X;, and let Var(W) = 1. For any continuous, bounded
function h with piecewise continuous, bounded first derivative, we have

[ER(W) — @R < [IK|| (2203 +ZEIX?I> :
i=1 i=1

This approach, first used by Stein [47], was employed by Bolthausen [18] to
obtain sharp rates in the Berry-Esséen Theorem, by Barbour and Hall [13] for
smoother metrics, by Barbour and Hall [14] for the non-identically distributed
case, and by Hall and Barbour [34] for reversing the Berry-Esséen Theorem. For
more general Gaussian approximations of sums of independent random elements, it
was employed by Barbour [7] for a functional CLT, by Gotze [32] for a multivariate
CLT, and by Reinert [41] for a Gaussian approximation of empirical measures.

The local approach might well be the most widely applied coupling approach
for Stein’s method, being both effective and easy to construct in situations of local
dependence; the amount of literature where it is used is large, and listing it all would
be beyond the scope of this paper. As briefly mentioned in the introduction, the
correct bound on the rate of convergence for bounded variates has been obtained
by Rinott [43]; Goldstein and Rinott [31] and Rinott and Rotar [44] give multi-
variate extensions. Important applications include m-dependent sequences, where
the generalization using Taylor expansion is straightforward, dependency graphs
(Rinott [43]), and sums of dissociated random variables (Chen [22], Barbour and
Eagleson [10]). Refinements with different types of neighborhoods are derived by
Chen [23], and by Barbour et al. [16] for decomposable random variables; typical
applications are graph-related statistics, see also Goldstein and Rinott [31].

Moreover the local approach can be seen as a special case of a conditional
expectation coupling used by Stein [47], [48]. Let (€, B, P) be a probability space,
let B and C be sub-o-algebras of B, let G be a B-measurable random variable such
that E|G| < oo, and let W* be C-measurable. Put

W = E(G|B).
Assume EW = 0 and Var(W) = 1. Then (see Stein [48], p.106, Theorem 1)

THEOREM 2.2. Let W = E(G|B) be constructed as above. For any continuous,
bounded function h : R — R with bounded, piecewise continuous derivatives, we
have

|[ER(W) — ®h| < (suph —inf h)\/E{1 — E(G(W — W*)|B)}2
+\/§Ilh — ®h||E[E(G|C)| + || [E|G|(W — W*)2.
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In the independent example, an index I would be chosen uniformly from
{1,...,n}; we would put B = o{Xy,...,X,, I}, B = o{Xi,...,X,}, and C =
o{X;,j # I;I}. Furthermore put G = nX; and W* = W — X;. Then we have
W =E(G|B) = Y.~ Xi. The conditional expectation formulation also extends to
mixing sequences (Stein [47], Chen [23]), and can be applied whenever the depen-
dence between any X; and Xj,j # ¢ is strong only for a few indices j, and very
weak for the other indices.

However, this approach does not work well for global weak dependence struc-
tures, such as given by the example of simple random sampling.

3. Exchangeable pair couplings

Note that the local coupling can be described in a more abstract setting as
follows. Let I be chosen randomly, uniformly from {1,...,n} and put W' = Wr;
recall (2.1). Assume as usual that Var(W) = 1. Then we have for all smooth
functions f that

(3.1) EW f'(W) = nE(W — W')(f'(W) = f'(W’)).
Taylor expansion gives
EWf' (W) —Ef'(W) = E{l-n(W-W')’}f"(W)+R,
where R is a remainder term that can be bounded by
IR| < SIS DUBW — W',
Using the Cauchy-Schwarz inequality gives
|EW ' (W) — Ef"" (W)
I/ IVEQ — nE(W - W")2[W) + gllf(3)llEIW —-w'p

IA

A

(sup h — inf h)\/E( — nE((W — W)2[W) + g||h’||IE|W W,

Indeed, all that is required for this derivation is an equation of the type (3.1).
Another method to achieve this type of equation is the method of exchangeable
pairs. A pair (W, W') of random variables defined on the same probability space is
called ezxchangeable if for all measurable sets B and B’,

P(W e B,W' e B')y=P(W € B',W' € B).

Following Stein [48] we assume that W is mean zero, variance 1, and that there is
a 0 < A <1 such that

(3.2) E(W'|W) = (1— \)W.

This assumption can be related to regression; if (W, W') is bivariate normal with
correlation p, then 1 — A = p. Under (3.2) it is easy to see that

BIV /(W) = o BOW — W')(7' (W) — £'(W")),

so that equation (3.1) is satisfied with n replaced by % The same reasoning as
above gives the following result (see Stein [48]).
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THEOREM 3.1. Let (W,W') be an exchangeable pair satisfying (3.2) and as-
sume EW = 0, Var(W) = 1. For any continuous, bounded function h : R — R with
bounded, piecewise continuous derivatives, we have

[ER(W) — ®h)|

1 S |
< (suph—inf h)\/IE <1 - B - W’)2|W)) + I IEW - WP

EXAMPLE 3.2. Let us assume that Xi,...,X,, are independent, mean zero;
let o = Var(X;) and 31", 07 = 1. As usual, we consider W =} | X;. To
construct W’ such that (W, W') is an exchangeable pair, pick an index I uniformly
from {1,...,n}. If I =i, we replace X; by an independent copy X, and we put

(3.3) W' =W - X, + X}.

Then (W, W') is exchangeable, and
1 1
E(W' W) =W—EW+1EX}‘ = (1— H) w,

so (3.2) is satisfied with A = . Theorem 3.1 thus gives
|ER(W) — ®h|

1 1
< (suph— infh)\/IE (1 U W’)2|W)> + I IEW - W,

Bounding the expectations gives (see [48], p.37)

n 1 n
D EX} —of + §||h'|| > (BIXG)P +307).

i=1 i=1

|ER(W) —®h| < (suph —infh)

The construction used in Example 3.2 is typical for the exchangeable pair ap-
proach.

CONSTRUCTION 3.3. Let Xy,...,X, be possibly dependent, mean zero vari-
ates with existing variances, and let W = E?:l X;. Pick an index I uniformly from
{1,...,n}. If I =14, replace X; by an independent copy X}. If X} = =, construct
)fj,j # ¢ such that

(3.4) L(Xj,§ #1i) = L(X;,§ #i|X; = z).
Then put
(35) WI:ZXj"f-X}(.

J#

The pair (W, W') is exchangeable. If, in addition, (3.2) holds, then Theorem 3.1 can
be applied. However, not always will the exchangeable pair (W, W') constructed
above satisfy (3.2); see, for example, Rinott and Rotar [45].

Compared to Theorem 2.1 the bound obtained in Example 3.2 is worse. How-
ever, a similar construction leads to an exchangeable pair for the simple random
sampling example, which caused problems in the local approach; see Stein [48].
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ExXAMPLE 3.4. Let Xi,...,X,, be a simple random sample of size n from a
finite population A. Assume for convenience that all elements of A are distinct.
We follow Construction 3.3. To construct X]’, j # i satisfying (3.4), we choose
X;,j # i as a simple random sample of size n — 1 from A\ {X;}. In particular,
if X7 ¢ {X;,j # i}, then we may choose X; = X;,j #i. If X € {X;,j # i},
so that X7 = X, say, then let Xj = Xj,j #i,J, and choose X'j uniformly from
A\{X},X;,j #4,J}. Then (3.2) is satisfied with A = —2;. Note that W and W’
differ for at most two summands, so that the coupling is efficient.

Other examples where Construction 3.3 works well include random permuta-
tions (Stein [48], Fulman [29], for example), random allocations (Stein [48]) and
combinatorial central limit theorems (Bolthausen [18], Bolthausen and Gétze [19]).
Note that Construction 3.3, if repeated, yields a Markov chain - this relates to the
generator approach developed by Barbour [6], [7], [8]. Indeed, this construction
can be used to derive a generator associated with a target distribution; see, e.g.,
Reinert [41].

Conversely, an exchangeable pair can be constructed from a reversible Markov
chain; see Rinott and Rotar [45]. Let X1,..., X, be random variables, and suppose
that £(Xi,...,X,) is the stationary distribution of a reversible, ergodic Markov
chain (X1(t),...,Xn(t))t=0,1,..- Let W = W(Xy,...,X,) be the quantity of in-
terest. Put

W = W(Xi(t),...,Xn(t))
W' = W(Xi(t+1),...,X,(t+1)),
then (W, W') is an exchangeable pair.
Moreover, the approach is not restricted to requiring that Condition (3.2) is

satisfied. Following Rinott and Rotar [45], assume that (W, W') is an exchangeable
pair such that EW = 0,EW? =1, and let R = R(W) be such that

(3.6) E(W'|W) = (1 - W + R

for some 0 < A < 1. Similarly as for Theorem 3.1, we can show that, under the
above setting, for W real-valued,

THEOREM 3.5. Let (W, W') be an exchangeable pair such that Condition (3.6)
is satisfied, and assume EW = 0, Var(W) = 1. For any continuous, bounded func-
tion h with piecewise continuous, bounded first derivative, we have

[ER(W) — ®h| < (suph —inf h)\/IE(l _ %E((W _WRw)

1., "3 7l
+4)\||h |E(W — W']° + \/;)\Hh Oh||E|R|.

Thus, if R is small, the normal approximation will be good. Examples include
the anti-voter model and weighted U-statistics; see Rinott and Rotar [45].

Finally it must be remarked that the method of exchangeable pairs has a much
wider range than normal approximations; in particular it can be used to estimate
ratios of probabilities, see Stein [49]. Moreover Diaconis [26] employed it for for the
uniform distribution, and more generally, for the convergence of a Markov chain
to its stationary distribution. Recently, Mann [39] has applied it to yield a x?
approximation for statistics based on the multinomial distribution. This illustrated
the vast potential of the method of exchangeable pairs.
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In contrast to the local approach, where we used a coupling that reduced the
variability (by leaving out a summand, or by taking conditional expectations),
the exchangeable pair coupling introduces additional randomness. This is a first
example of what, following Stein [49], might be called the method of auxiliary
randomization. Section 4 and Section 5 provide more examples for this method.

4. Size-bias couplings

There are situations where couplings other than exchangeable pairs seem more
natural. A wide class of examples is provided in the context of Poisson approx-
imations, see Barbour et al. [15], where counts are considered. Then size bias
couplings seem to be more adapted. In the context of Stein’s method for normal
approximations, they have been explored by Baldi et al. [5], Stein [49], Goldstein
and Rinott [31], Dembo and Rinott [25], and Reinert [42]. In Baldi et al. [5], and
Stein [49], sums of 0 — 1 random variables are considered. Goldstein and Rinott
[31] generalize it to multivariate normal approximations of any sums, Reinert [42]
uses it for empirical processes, and Dembo and Rinott [25] prove approximations
for nonsmooth functions.

Let W be a nonnegative random variable, Var(W) =1, and EW = u > 0. W*
is said to have the W-size biased distribution if, for all functions g for which the
expectation exists,

EWg(W) = uEg(W™).

Thus, if w is discrete, say, then, for all w we have P(W* = w) = %IP’(W = w). This
illustrates that size biasing corresponds to sampling proportional to size; the larger
a subpopulation, the more likely it is to be in the sample.
If (W,W*) are defined on the same probability space, with W* having the
W -size biased distribution, then the right-hand side of equation (1.3) becomes
EW —wf(W —p) = pE(f'(W" —p) - f'(W - p))
= pEf"(W —p)(W* —W) +R,

using Taylor expansion, where
IR < pll fONEW — W),
Note that uE(W* — W) = EW? — u? = Var(W) = 1. Thus
HE"(W — ) (W™ = W) —Ef'(W —p) = Ef''(W—p)(E(W* - W|W) - 1)
1" VEREW* — WW) — 1)2
= [If"lpy/ VarE(W* — W|W).

IN

This gives (see Goldstein and Rinott [31])

THEOREM 4.1. Let W be nonnegative, EW = pu > 0, and Var(W) = 1. Let
W* have the W -size biased distribution. For any continuous, bounded function h
with piecewise continuous, bounded first derivative, we have

|ER(W — ) — @Al
< (sup h — inf h)u\/VarE(W* — W|W) + ||/ || uB(W* — W)2.
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EXAMPLE 4.2. let X4,...X,, be independent, nonnegative, EX; = u; > 0,
W =3%",X;,EW =y, Var(W) = 1. Choose an index I from {1,... ,n} according
to

(4.1) P =)=,

that is, choose index 4 proportionally to its expectation. If I = ¢, replace X; by X}
having the X;-size bias distribution, and put

(4.2) W* =W - X[ + X}.

Then W* has the W-size biased distribution. (Note the similarity to (3.3)). Using
Theorem 4.1 gives

[ER(W — ) —®h| < (suph— infh)% + IR ELXGR.
i=1
In the usual scaling , X; < ﬁ, in which case p < /n and the bound is of order ﬁ

Depending on o;,7 = 1,... ,n, this bound may be better than the one obtained in
Theorem 2.1 by the local approach.

Goldstein and Rinott [31] also give a general construction.

CONSTRUCTION 4.3. Let Xi,...X, be nonnegative, EX; = u; > 0, W =
Yo, Xi, EW = p, Var(W) = 1. Choose an index I from {1,...,n} according to
(4.1). If I =4, replace X; by a variate X having the X;-size bias distribution. If
X} =z, construct X'j,j # i such that

L(X;,5 # i) = L(X;,§ # il X; = 2).
Then
wW* = Z Xj + X}k
J#I
has the W-size biased distribution. (The difference from Construction 3.3 are the
choice of I and the distribution of X*.)

The above construction can also be applied to the example of simple random
sampling.

EXAMPLE 4.4. As in Example 3.4, let X3,...,X,, be a simple random sample
of size n from a finite population A, where all elements of A are distinct. We follow
Construction 4.3. Once X7 is constructed, we may continue as in Example 3.4; if
X3 ¢ {X;,j # I}, then we may choose X; = X;,j # I, whereas if X} = X for
some J € {j,j # I}, then let Xj = X;,j # I,J, and choose X uniformly from
A\ {X7, X j,J # I,J}. This procedure is known as Midzuno’s procedure, see Luk
[38], and is used to obtain unbiased ratio estimators. Note that, as again W and
W differ for at most two summands, the coupling is efficient.

Size bias couplings for functions of variables are described in Dembo and Rinott
[25]. Typical examples are counts, as occurring in random graphs (the number of
vertices of a fixed degree, for example) and in random allocations.

However, a necessary ingredient is that W is nonnegative. For bounded vari-
ables W one might shift the distribution to the positive axis, but this is not very
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natural, in particular when the distribution of W is symmetric around zero, be-
cause W should be closer to normal than any shifted version of it. This drawback
motivated the introduction of the zero bias coupling described in the next section.

5. Zero-bias couplings

Let W be mean zero, variance one. We say that a random variable W* has the
W -zero biased distribution if, for all g for which the expectation exists,

(5.1) EW g(W) = Eg' (W*).

This notion was introduced in Goldstein and Reinert [30]. Related analytical ideas,
without coupling constructions, appear in Ho and Chen [35], Chen [24], and in
Cacoullos et al. [20]. Bolthausen [18] uses a related coupling, without formalizing
it. As the standard normal distribution is the unique fixed point of (5.1), it seems
to be another natural approach for normal approximations.

Using (5.1), the right-hand side of Equation (1.3) can be written as

EW f'(W) —Ef' (W) = E(f"(W~) - f"(W))
< R,
where
IR < || fOIBW* —W|.

Thus we save a step in the Taylor expansion. Expanding one step further, though,
gives the following, sharper result, see Goldstein and Reinert [30], where we use
the bounds (1.4), as derivatives higher than second order occur.

THEOREM 5.1. Let W be mean zero, variance 1, and let W* have the W -zero
biased distribution. For any bounded, continuous function h with bounded deriva-
tives up to order 4, we have

1 1
|ER(W) — ®h| < gllh(3)||\/1E(1E(W* - Ww))? + gllh(“)llE(W - W)

EXAMPLE 5.2. Let X1,...X, be independent, mean zero, Var(X;) = ¢, W =
>, Xi, and assume Var(W) = 1. Choose an index I from {1,... ,n} according
to

B(I=i)=o?,
that is, choose index i proportionally to its variance. (This resembles (4.1), where
i is drawn proportionally to its expectation.) If I = i, replace X; by X having the
X;-zero biased distribution, and put
(5.2) wW*=W - X; + XJ.

Then W* has the W-zero biased distribution; note the similarity to (3.3) and (4.2).
Using Theorem 5.1 gives

1 LAY EX}
[BAW — )~ @] < gnh“"u\/E (Bx7 = 2) o+ gineon (B +Ex7)
In the special case that EX? = 0 we obtain

1 EX
6y W - -ah < O+ Ly (B 4 ex).
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With the scaling X; < ﬁ we thus obtain a X - bound on the rate of convergence
for smooth test functions.

The feature of a % - bound on the rate of convergence for smooth test functions
under vanishing third moment conditions is a main advantage of the zero bias cou-
pling. (It could also be derived using Edgeworth expansions, but those assume some
smoothness of the density, see for instance Hall [33], Chapter 2.8). For nonsmooth
test functions it is easy to see that the rate of ﬁ is unimprovable - consider the
sum of n independent centered binomials and, as test function, the indicator of the
negative half axis.

Despite the similarity of the construction for the independent case in Example
5.2 to Construction 4.3 and Construction 3.3, a general construction is much more
involved, unfortunately; see Goldstein and Reinert [30]. This more complicated
construction, Construction 5.3 below, makes it seem advisable to mainly consider
applications with vanishing third moments, as then there is hope for the better rate
for smooth test functions.

CONSTRUCTION 5.3. Let Xi,... X, be mean zero, W = 1" | X;, and assume
Var(W) = 1. Denote the distribution of Xi,...X, by dF,. Suppose that for each
i =1,...,n there exists a distribution dF,, ;(21,...,%i—1,2}, &}, Zit1,... ,2,) On
n + 1 random variables Xi,...,X;—1, X}, X}, Xiy1,... , X, such that

(Xla'-' 5Xi—17X»l{aXz{IaXi+la--- ;Xn) g (Xla"' 7Xi—17Xz{laXz{aXi+17"' 5Xn)7
and

(Xla"'aXz'flaXi;Xi+17-"7Xn) é (Xla-"aXz'flaXz{aXz'+1:-"7Xn)-
Suppose that there is a p such that for all f for which EW f(W) exists,

(5.4) Y EX[f(Wi+ X{) = pEWf(W),
i=1

where W; = W — X; asin (2.1). Let

n
Zv? >0 where vl-z =E(X] - le’)z,
i=1

and let I be a random index independent of the X's such that
n
P(I=1i)= 1)12/21)?
j=1

Further, for i such that v; > 0, let Xi,... ,Xi,l,X{,X;’,XHl,... , X be chosen
according to the distribution

- A ~ Al Al A
an,i(-'L'l,--- 3 Li—1,L59%5 3 Ti1y--- ,xn)
a0 ~11\2
(#F — &)
— 2 3 A A Al All A
= Tan’i(zh-” sy Li—1, L5, Ly 3 L1y - - - ,IL'n).

K3
Then, with U a uniform UJ[0, 1] variate which is independent of the X’s and the
index I,
W =UX;+(1-U)X] +>_ X,
i#l
has the W-zero biased distribution.
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Although this construction is rather involved, it is not so difficult to apply it
to the simple random sampling example.

EXAMPLE 5.4. As in Example 3.4, let X1,...,X,, be a simple random sample
of size n from a finite population A, where all elements of A are distinct. Assume
that - 4 a® = 0. In Construction 5.3, because of exchangeability we may choose
I = 1. Independently of X1, ..., X,, pick a pair (X!, X!") from the distribution

2
q(u,v) = %1({%1}} C A).
Firstly then, independently of the chosen sample X, pick (X/, X!) from the dis-
tribution ¢(u,v). The random variables (X}, X}') are now placed as the first two
components in the vector X. The remaining n — 1 random variables X are sampled
by rejection. If the two sets {Xa,...,X,} and {X], X'} do not intersect, fill in
the remaining n — 1 components of X with (Xs,...,X,). If the sets have an inter-
section, remove from the vector (Xao,...,X,) the two random variables (or single
random variable) that intersect and replace them (or it) with values obtained by a
simple random sample of size two (one) from A\ {X!, X!, X,,... ,X,}. This new
vector now fills in the remaining n — 1 positions in X. In Goldstein and Reinert [30]
it is shown that this construction satisfies Condition (5.4) with p = —n/(N — n),
and that it yields a bound of order % for the normal approximation of W, provided

the elements of A are scaled to be x L

7=

The zero-bias coupling also displays an interesting connection with the method

of exchangeable pairs. Let (W, W') be an exchangeable pair with distribution func-

tion dF such that Condition 3.2 is satisfied. Pick a pair (W, W’) from the distri-
bution

(0 — w')?
E(W — W")?
Let U be an independent U(0,1) variable. Then

dF (b, w').

W*=UW + (1 - U)W

has the W-zero biased distribution (see Goldstein and Reinert [30]).
Other examples where the zero bias coupling might be useful include the anti-
voter model, U-statistics, and permutation statistics.

6. Other couplings

There are many other couplings that work well in specific situations. One
example is symmetric arrays as treated by Barbour and Eagleson [10]. Assume

ai,...,an and bi,... b, are real numbers with 3° ; a; = 3°7_; b; = 0. Let 7 be
a random permutation of {1,...,n}, chosen uniformly, and put
Xi = azb,r(,)

Let, as usual, W = """ | X;. Assume that Var(W) = (n—1)"1 3" a? 3" b =

j=1"7
1. Now, if 7(¢) is known, we automatically know X;. This can be put to use as
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follows.
1 « N
EWf (W) = — > abE(f (W)[r(i) = j)
i,j=1
1 & ,
= =) abEf (W +Dyj),
n i,5=1
where
D;j = (ai — az—1(j))(bj — bra))-
Now

1 n
- > aibEf' (W + Dij)

i,j=1
1 & ,
N~ aibED; f(W)
.aj_l
= - Z ab; ZZ a; — a1)(b; — b)Ef" (W + D 1),
3,j=1 k#] I#i

where f)i,k;l,j = D; + D;,; whenever {n(i),n(j)} N {k,j} is empty, and when the
intersection is nonempty, the expressions are slightly modified. After some work
this yields a normal approximation. This approach can be generalized to obtain
a Wald-Wolfowitz Theorem for processes, see Barbour [7], [8] and Barbour and
Eagleson [11].

Furthermore, sometimes couplings for normal approximations are used in a
different sense. A variate T is first coupled to a variate Ty using the structure
inherent of the problem, and then a normal approximation is shown or known to
hold for Tp. This is applied by Bolthausen and Gotze [19] to multivariate sampling
statistics, and by Barbour et al. [12] to iterations of expanding maps.

Finally it should be emphasized that the above is a collection of techniques.
Depending on the problem that is to be solved, they might provide useful tools.
Yet there is always the possibility that a coupling of a different nature might yield
better results. Moreover, a concentration inequality approach has been proved to
be another powerful tool when using Stein’s method for normal approximations;
see Chen [24] for an overview.
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