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Overview

In the following lecture notes we give an overview on Stein’s method, focussing
on application to random measures. Stein’s method, based on a paper by Stein
[73], has been applied in numerous settings during the last ten or fifteen years.
Besides describing the method in general, here we will consider three main
cases, namely Gaussian approximations, laws of large numbers, and Poisson
approximations. Together with the theory we will introduce couplings as a set
of tools that have proved to be useful in connection with Stein’s method.

We will see that in particular if the random elements underlying the empirical
measure are dependent, Stein’s method is an excellent way of bounding distances
to the target distribution. It must be emphasized that Stein’s method is not only
useful in proving weak convergence, but moreover provides an explicit bound
on the distance to the limiting distribution.

In Section 1 we describe Stein’s method for real-valued random elements. For
historical reasons, we first introduce Stein’s method for normal approximations,
before describing the approach for the weak law of large numbers and for Poisson



approximations. As main couplings, the local approach, exchangeable pairs, size
biasing and zero biasing are introduced. To keep this introduction short, the
only example discussed is the sum of i.i.d. variates.

Section 2 gives the setting for expanding Stein’s method to measure-valued
random elements. The theoretical results for laws of large numbers, for Gaussian
approximations, and for Poisson (point process) approximation, are given. Here
we treat the law of large numbers first, because it is the easiest case. The normal
case can be investigated by related means. As the Poisson case will turn out to
be of different nature, we put it at the end of the section.

Stein’s method reveals much of its power when investigating dependent ran-
dom elements. The last sections give some examples that illustrate how to apply
Stein’s method to sums of dependent variates.

In Section 3, as examples for the law of large numbers we first give a disso-
ciated array, illustrating the local coupling. Furthermore an immigration-death
process and the general stochastic epidemic are considered. The latter two
examples show how Stein’s method can be applied to stochastic processes.

Section 4 discusses iterates of random maps, and simple random sampling,
as examples for Gaussian approximations.

Lastly, in Section 5 Poisson (point process) approximation is illustrated by
the example of counting joint occurrences of multiple words in DNA sequences.
We will see that Poisson approximations for measure-valued elements can be
treated as Poisson process approximations, and hence the well-developed the-
ory on Poisson process approximations can be applied here (see Section 1 for
references). Thus many more examples can be found in the literature.

1 Stein’s Method for Real-Valued Random Ele-
ments

1.1 Stein’s Method for Normal Approximations
1.1.1 Stein’s Equation

In 1972, Stein [73] published a very elegant method to prove normal approxi-
mations. It is based on the fact that a random variable Z is standard normal if
and only if for all smooth, real-valued functions f,

E{f"(2)-2f(2)} =0.

(This is easily seen using dominated convergence and integration by parts.)
Stein [73] then showed that for any smooth, real-valued function h there is a
function f solving the now-called “Stein equation”

f"(@) = zf'(z) = h(z) — h, (1)



®h denoting the expectation of A with respect to the standard normal density.
Moreover, there is a solution f of the Stein equation (1) satisfying

o .
||f'||s\/;||h—<1>h||; 17l < uph—inf ) O <2 (@)

where || - || denotes the supremum norm and f*) denotes the kth derivative of
f (see Stein [74], p.25 and Baldi et al. [8]). Now, for any random variable W,
taking expectations in (1) gives

Eh(W) — ®h = Ef""(W) — EW f'(W). (3)

Thus the distance of W from the normal, in terms of a test function h, can be
bounded by bounding the right-hand side of (3); the immediate bound on the
distance is one of the key advantages of Stein’s method compared to moment-
generating functions or characteristic functions. Typical classes of test functions
h are C*(R) (for weak convergence), or the class of indicator functions of half-
lines (giving the Kolmogorov distance).

Nearly twenty years later, Barbour [11] and Gotze [42] derived alternative
bounds for the solution f of (1), namely

IFON <M RPN, j=12,... )

The main advantage of these bounds is that they can easily be extended to more
general Gaussian approximations; Barbour [11] considered diffusion approxima-
tions, Gotze [42] multivariate normal approximations.

Evidently, Stein’s method is in place when the right-hand side of (3) is easier
to bound than the left-hand side of (3). A typical approach for evaluating the
right-hand side of (3) is to employ couplings, and often the success of the method
is connected with finding an effective coupling for the right-hand side of (3).

1.1.2 The Local Approach

Suppose X1,...X, are independent, mean zero, and let 07 = Var(X;). Put
W =37, X, and assume Var(W) = >" 07 =1. Foreach i = 1,... ,n put

Wi:W—X,':ZXj.
J#

Thus W and W; are defined on the same probability space. For any smooth
function f we have, by Taylor expansion

EWf(W) = > EXif'(W)

S EXif'(Wi) + > EX]f"(W:) + R,
i=1 i=1



where
1 n
IR < SI1FO1 Y Bl
i=1
Using the independence we obtain for the right-hand side of (3) that

i EXZEf"(W;) —Ef"'(W)+ R

i=1

> o¥E{f"(Wi) — f"(W)} + R.
i=1

EW /(W) —Ef"(W)

Taylor expansion and the bounds (2) now give the following theorem (see Bar-
bour [9]).

Theorem 1 Suppose Xi,...X, are independent, mean zero, and let o? =
Var(X;). Put W = Y. | X;, and assume Var(W) = 1. For any continu-
ous, bounded function h with piecewise continuous, bounded first derivative, we
have

i) - anl < ) (232 + 3w
i=1 i=1
This approach can be generalized for locally dependent variables; we will see
examples later.
1.1.3 Exchangeable Pair Couplings

A pair (W,W') of random variables defined on the same probability space is
called exchangeable if for all measurable sets B and B’,

P(WeB,W €B)=P(W € B',W' € B).

Following Stein [74] we assume that W is mean zero, variance 1, and that there
isa 0 < A <1 such that

E(W'|W) = (1 - )W. (5)

This assumption can be related to regression; if (W, W') is bivariate normal
with correlation p, then 1 — X = p. Under (5) it is easy to see that

BIV /(W) = oy BOV — W) (/W) — £/(W")). (©

Taylor expansion gives the following result (see Stein [74]).



Theorem 2 Let (W,W') be an exchangeable pair satisfying (5) and assume
EW = 0,Var(W) = 1. For any continuous, bounded function h : R — R with
bounded, piecewise continuous derivatives, we have

|ER(W) — ®h|

1
< (suph— infh)\/E (1 - ﬁE((W - W’)2|W)> + 5 I IEIW — W

Example 1 Let us assume that X,...,X, are independent, mean zero; let
o? = Var(X;) and Y., 07 = 1. As usual, we consider W =37 | X;. To con-
struct W' such that (W, W') is an exchangeable pair, pick an index I uniformly
from {1,...,n}. If I =1, we replace X; by an independent copy X}, and we
put

W'=W — X1 + XJ. (7
Then (W, W') is exchangeable, and

1 1
E(W'|W) =W — ~W +EX] = (1 - E) W,

so (5) is satisfied with A\ = L. Theorem 2 thus gives
|[ER(W) — ®h|

< (suph — inf h)\/E (1 - gE((W - W’)2|W)) + %||h'||E|W -W'p.

Bounding the ezxpectations gives (see Stein [74], p.37)

[ER(W) — ®h|
: Lo s
< (suph —inf h) §||h'||;(E|Xi|3+30?)-

z": EX} —o})
i=1

The construction used in Example 1 is typical for the exchangeable pair
approach.

Construction 1 Let X1,...,X, be possibly dependent, mean zero variates
with ezisting variances, and let W = " | X;. Pick an index I uniformly
from {1,... ,n}. If I =i, replace X; by an independent copy X. If X* =z,
construct X;,j # i such that
L(Xj,j #1i) = L(X;, #i|X: = x).
Then put
= Z Xj + X;
i#l
The pair (W, W') is exchangeable. If, in addition, (5) holds, then Theorem 2 can

be applied. However, not always will the exchangeable pair (W, W') constructed
above satisfy (5); see, for example, Rinott and Rotar [68].



1.1.4 Size Bias Couplings

It is not always easy to construct an exchangeable pair for a given problem. The
so-called size bias coupling provides an alternative, and sometimes an improve-
ment on the exchangeable pair coupling.

Let W be a nonnegative random variable, Var(W) = 1, and EW = p > 0.
W* is said to have the W -size biased distribution if, for all functions g for which
the expectation exists,

EWg(W) = uEg(W*).

Thus, if W is discrete, say, then using g(z) = 1,(z) yields that for all w we
have P(W* = w) = %P(W = w). This illustrates that size biasing corresponds
to sampling proportional to size; the larger a subpopulation, the more likely it
is to be in the sample.

If (W, W*) are defined on the same probability space, with W* having the
W -size biased distribution, then with g(x) = f'(x — u) the right-hand side of
equation (3) becomes

EW —pu)f'(W—-p) = pE(f'(W* —p) - f'(W—-p))
pE{f"(W —p)(W* = W)} + R,

using Taylor expansion, where
|R| < ullfONEW* —W)2.
Note that using g(z) = z yields pE(W* — W) = EW? — u? = Var(W) = 1.
Thus
PES" (W — p)(W* = W) —Ef"(W — p)
= Ef'(W - p)(pEW* -W|W)-1)
1" IVEMEW* = W|W) - 1)2
1£" I/ VarE(W* — W[W).
This gives (see Goldstein and Rinott [44])

Theorem 3 Let W be nonnegative, EW = p > 0, and Var(W) = 1. Let W*
have the W -size biased distribution. For any continuous, bounded function h
with piecewise continuous, bounded first derivative, we have

[ER(W — 1) — 1
< (sup h — inf h)u\/VarE(W* — W|W) + ||I'|pE(W* — W)2.

IA

Example 2 let X1,... X, be independent, nonnegative, EX; = u; > 0, W =
S, Xi, EW = pu, Var(W) = 1. Choose an indezx I from {1,... ,n} according
to

PI=i)=", (8)



that is, choose index i proportionally to its expectation. If I =i, replace X; by
X} having the X;-size bias distribution, and put

W* =W - X, + X}. (9)

Then W* has the W -size biased distribution. (Note the similarity to (7)). Using
Theorem 3 gives

n
IER(W — p) — ®h| < (suph — inf h)% +IR S EIXP.
i=1
In the usual scaling , X; < \/iﬁ, we have p < v/n and the bound is of order ﬁ
Depending on o;,©@ = 1,...,n, this bound may be better than the one obtained
in Theorem 1 by the local approach.

Goldstein and Rinott [44] also give a general construction.

Construction 2 Let Xi,... X, be nonnegative, EX; = p; >0, W =" X;,
EW = u, Var(W) = 1. Choose an index I from {1,... ,n} according to (8).
If I = i, replace X; by a variate X} having the X;-size bias distribution. If
X} =z, construct X}-,j # 1 such that

L(X;,5 #14) = L(X;,] # i|X; = z).
Then

W* = ZX] +X}k
J#I

has the W -size biased distribution. (The difference from Construction 1 are the
choice of I and the distribution of X}.)

1.1.5 Zero Bias Couplings

The size bias coupling above is only defined for nonnegative random variables.
Random variables that could also assume negative values could be truncated and
shifted, but this procedure does not appear very natural. Instead the so-called
zero bias coupling is much better adapted to this situation.

Let W be mean zero, variance one. We say that a random variable W* has
the W-zero biased distribution if, for all g for which the expectation exists,

EWg(W) =Eg'(W"). (10)

This notion was introduced in Goldstein and Reinert [43]. Related analytical
ideas, without coupling constructions, appear in Ho and Chen [47], Chen [30],
and in Cacoullos et al. [26]. Bolthausen [24] uses a related coupling, without
formalizing it. As the standard normal distribution is the unique fixed point of
(10), it seems to be another natural approach for normal approximations.



Using (10), the right-hand side of Equation (3) can be written as

EWf'(W)-Ef'(W) = E(f'(W") - f"(W))
= R,

where
|R| < If|EW* —W|.

Thus we save a step in the Taylor expansion. Expanding one step further,
though, gives the following, sharper result, see Goldstein and Reinert [43], where
we use the bounds (4), as derivatives higher than second order occur.

Theorem 4 Let W be mean zero, variance 1, and let W* have the W -zero bi-
ased distribution. For any bounded, continuous function h with bounded deriva-
tives up to order 4, we have

1 1
[BR(W) = @h| < S|P |VEEW* = WIW))? + 2B [BW - W),

Example 3 Let Xi,...X, be independent, mean zero, Var(X;) = o2, W =
>, Xi, and assume Var(W) = 1. Choose an indez I from {1,... ,n} accord-
g to

P(I =i) = o2,

k3

that is, choose index i proportionally to its variance. (This resembles (8), where
i is drawn proportionally to its expectation.) If I =i, replace X; by X} having
the X;-zero biased distribution, and put

W* =W - X, + X}. (11)

Then W* has the W -zero biased distribution; note the similarity to (7) and (9).
Using Theorem / gives

[BAW — 1) — @)

w
< —||h<3>||\/ (B =) Lo (4 ).

In the special case that EX? = 0 we obtain

1 EX
Bhv - - ek < SO+ 0 (B eexg). a2

With the scaling X; < \/Lﬁ we thus obtain a % - bound on the rate of convergence
for smooth test functions.



Unfortunately, for sums of dependent random variables the construction is
more involved. The following construction of such a coupling when W is the
sum of the dependent variates Xi,...,X, is given in Goldstein and Reinert
[43].

Given the vector X = (X;,... ,X,) with distribution dF'(x), for every i one
constructs a vector X; = (X1,...,X;—1, X/, X/, Xit1,... , Xp) with distribu-
tion dF,; such that v? = E(X] — X/")> > 0, and where removing either X/ or
X' results in a vector with the original distribution dF(x). Now consider an
n + 1 vector Xz = (Xl, . ,Xifl, X;, Xz{l, X,’.,.l, - ,Xn) with distribution

(#; — 7)°
v}

dpn,i(f(i) = an,z ()A(z)

Suppose that there is a p such that for all f for which EW f(W) exists ,

Y EX{f(Wi+X[) = pEWf(W),

i=1
where W; = W — X,;. Let U be an independent uniform variate on [0, 1], and
set

A

X5 =(X1,..., Xi , UX+ (1 —U)X!, Xiga, .-, Xn), (13)
and
W =UX]+(1-U)X!+)_ X;.
JFi
With I an independent random index taking on the value ¢ with probability
proportional to v, it is shown in Goldstein and Reinert [43] that the mixture

W =w; (14)

has the W-zero bias distribution. This construction agrees with the one given
previously when the X -variates are independent.

This particular coupling of W and W* requires the construction of a vector
of n + 1 elements for each of the n variates of X, which may be difficult to
achieve in certain cases.

1.2 Stein’s Method in General

The general procedure is: Find a good characterization of the desired distribu-
tion in terms of an equation, that is of the type

L(X)=p < EAf(X) =0, for all smooth functions f,

where A is an operator associated with the distribution g. (Thus, in the stan-
dard normal case, Af(z) = f'(z) —xf(x).) Then assume X to have distribution
1, and consider the Stein equation

h(z) — En(X) = Af(x), = €R. (15)

10



For every smooth h, find a corresponding solution f of this equation. For any
random element W,

Eh(W) — Eh(X) = EAf(W).

Hence, to estimate the proximity of W and X, it is sufficient to estimate
EAf (W) for all possible solutions f of (15).

However, in this procedure it is not completely clear which characterizing
equation for the distribution to choose (one could think of a whole set of possible
equations). The aim is to be able to solve (15) for a sufficiently large class of
functions g, to obtain convergence in a known topology, and to obtain rates of
convergence in a known metric.

1.2.1 The Generator Method

A key tool for solving the higher-dimensional case is the generator method
developed by Barbour [10], [11], [12]. Observe that the left-hand side of (1)
can be written as Af(z), where A is the generator of an Ornstein-Uhlenbeck
process. Thus semigroup theory can be applied to solve the generator equation.
Note that the target distribution, here the standard normal, is the stationary
distribution of this Markov process.

In general, Barbour [11] suggested employing as operator A in equation
(15) the generator of a Markov process, which then provides a way to look for
solutions of (15). This is what in the following will be called the generator
method. Suppose we can find a Markov process (X (t));>o with generator A
and unique stationary distribution u, such that £(X (t)) 2 u (t = o0). Then,
if a random variable X has distribution g,

EAf(X)=0
for all f € D(A). Now a method for solving equation (15) is provided by

Proposition 1.5 of Ethier and Kurtz ([38], p. 9; for the argument, see Barbour
[11]). Let (T;)¢>0 be the transition semigroup of the Markov process (X (£))¢>o-

Then
t
Tih — h = A(/ Tuhdu).
0

As (Ti)s>0 is a strongly continuous contraction semigroup, A is closed (Ethier
and Kurtz [38], Corollary 1.6), and we could formally take limits:

h(z) — Eh(X) = —A(/Ooo Tyh du).

Thus f = — fooo T h du would be a solution of (15), if this expression exists and
if f € D(A). This will in general be the case only for a certain class of functions
g. However, the latter conditions can usually be checked.

11



This generator method has proved to be very useful for convergence towards
Wiener measure (Barbour [11]) and for Poisson process approximations (see,
e.g., Barbour et al. [19]).

However, for a given distribution u, there may be various Markov processes
with p as stationary distribution, and it is still not completely clarified which
process to take to obtain good results (though many persons have a good intu-
ition on it).

1.2.2 Further Examples

Stein’s method has been generalized to many other distributions, foremost the
Poisson distribution (see Chen [27], Arratia et al. [2], Barbour et al. [19],
Aldous [4], to cite but a few). Other distributions include the uniform dis-
tribution (Diaconis [33]), the binomial distribution (Ehm [39]), the compound
Poisson distribution (Barbour et al. [13], Barbour and Utev [21], Roos [69]),
the multinomial distribution (Loh [52]), the gamma distribution (Luk [54]; for
the x? distribution see also Mann [55]), the geometric distribution (Pekoz [56])
and, more generally, Pearson curves (Diaconis and Zabell [34], Loh [53]).

1.3 Stein’s Method for the Law of Large Numbers

For the law of large numbers, Stein’s method has been worked out by Reinert
[61]. Although the weak law of large numbers has been very well studied by
many methods, for the real-valued case, we give the Stein approach here to
motivate the weak law of large numbers for empirical measures in Section 2.

1.3.1 Stein’s Equation and the Generator Method

Intuitively, point mass can be seen as an extreme case of the normal distribution
with zero variance. Hence we put

(Af)(z) = —af'(z), z€R.

Then A is a good candidate for the weak law of large numbers - generator. Note
that A is the generator of the deterministic Markov process (Y (t))¢>o that is
given by

PlY(t)=zet | Y(0)=2x]=1, z€R.

The corresponding transition semigroup is
Tih(z) = h(ze™),

and the unique stationary distribution is dq.
According to the general equation (15), the Stein equation in this context is

h(z) — h(0) = —zf'(z), = €R. (16)
Let CZ(R) be the space of all bounded, twice continuously differentiable real-

valued functions on R with bounded first and second derivatives, and let D2 (R.)

12



be the space of all twice continuously differentiable functions f : R — R with
bounded first and second derivatives. Using the semigroup approach the follow-
ing proposition is easy to derive.

Proposition 1 For any h € CZ(R), there is a function f = ¢(h) € DZ(R)
that solves the Stein equation (16) for h. Furthermore, for the derivatives,
1AL < AR/ N1, and [1f7]] < [[R"]]-

Now we have all the ingredients to derive weak laws of large numbers.
Theorem 5 Let (X;)ien be a family of random variables on R, defined on the

same probability space, with finite variances. Put

n

Y, = Z(X,' —EX;).

i=1
Then, for all h € C}(R)

n

[BA(Ya) — h(0)] < [|n"|[Var (Y Xs).

i=1

As C?(R) is convergence-determining for weak convergence of the laws of
real-valued random variables, a weak law of large numbers follows from Theorem
5 provided that

Var(iX,-) =0 (n— ).

i=1

Proor orF THEOREM 5 Suppose without loss of generality that EX; = 0 for
all i € N. Let h € CZ(R). As the solution f = ¢(h) of the Stein equation (16)
satisfies f € DZ(R), it is enough to bound E[Af(Y,)] for all f € DZ(R). For
such f, we have

EAf(Y,)
B x)r(Xx)
_E(iXi)f’(O) —E/OELX{ (ix —t) £ ()dt,

where we used Taylor’s expansion. As we assumed the X; to have zero mean,
we hence get

S X [0 2
EAf(Yn)z—E/O - <2Xi—t> f"(t)dt
=1

13



Thus

n

BAS) < IB[( X))

=1

This proves the theorem.

1.3.2 The Local Approach

The method for proving Theorem 5 can be generalized to local dependence.
Suppose (X;)ier is a family of random variables with finite first and second
moments. In addition assume that for each ¢ € I there is a set (neighborhood)
B; C I such that X; is independent of o(X;,j ¢ B;). Then, using Taylor
expansion, we have the following proposition.

Proposition 2 We have that
[ER(W) = h(w)| < IR"]1Y_ Y E|(X; - EXy)(X; - EX;)|.
i€l jEB;
This result can be generalized to allow for weak dependence between X; and
0(X;,j ¢ B;); we will encounter related theorems later.
1.3.3 Exchangeable Pair Couplings
Theorem 5 can also be obtained using exchangeable pairs. Let W have mean

zero, and suppose (W, W') is an exchangeable pair satisfying (5). Recall (6)

EW (W) = 52 B(W = W)((0V) - f(W"),

giving in particular that
E(W — W')? = 2\Var(W).

With Taylor expansion we thus recover Theorem 5. In particular, if W is the

sum of n ii.d. random variables, then A = % as before. This result may be

generalized to cases of global weak dependence.

1.3.4 Size Bias Couplings

The size bias coupling gives a slightly differently flavoured result. Let W be
nonnegative with positive mean, and let W?* have the W-size bias distribution.
Then, for all smooth f,

EW — ) f'(W) = uE(f'(W) = f' (W),

so that we obtain the following proposition.

14



Proposition 3 For all smooth functions g,
|EA(W) — h(p)] < ||h"||LE[W — W*|.

In particular, if W is the sum of n i.i.d. random variables X7, Xs.... , X, having
the same distribution as X, then E[W —W*| = E|X;— X}| < /Var(X) —2(c?+
©’) + +EX?,

1.3.5 Zero Bias Couplings

Using the zero bias coupling, Theorem 5 is immediate. For Y having mean zero
and finite variance, a random variable Y* having the Y-zero bias distribution
exists, and satisfies

EYg(Y) = Var(Y)Eg'(Y")

for all functions g for which both sides of the equation exist. PuttingY = W —p
we have

E(W —p)f'(W)

EY f'(Y + p)
Var(Y)Ef"(Y* + p)
= Va(WEf"(Y* + p).

Thus we immediately obtain Theorem 5.

1.4 Stein’s Method for Poisson Approximation

In the context of Poisson approximation Stein’s method is called the Chen-Stein
method, in honor of Louis Chen [27], who in 1975 published this method as part
of his Ph.D. thesis under Charles Stein. It phrases the approximation in terms
of the total variation distance. A friendly exposition is in Arratia et al. [2] and a
description with many examples can be found in Arratia et al. [3] and Barbour
et al. [19].

For any two probability measures pu; and p2 on the same measurable space
E, the total variation distance is defined to be

dry(ui,pe) = sup |p1 (B) — p2(B)|

BCE,measurable

sup | / hdpi, — / hdps| -
h:E—[0,1],measurable

(Note that there are two different definitions of the total variation distance
in use, differing from each other by a factor of 2; the definition of the total
variation distance in Arratia et al. [2] is twice as large as the one used here.)

For the Poisson distribution with parameter A the corresponding Stein equa-
tion is

h(z) — Po(\h = Af(z + 1) — zf(2). (17)
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It is easy to show that for any indicator function h the Stein equation (17) has
a solution f; Barbour et al. [19] show that this solution satisfies

Al = S€11ZP+|f($)|SmiH(17>\_1/2) (18)
Af = sup [f@+1) - f(@)] < min(l, A7),
z€Zt

To see how the Stein equation (17) fits into the generator approach, write f(x) =
g(z) — g(x —1). Then the operator Af(z) = Af(z+1) —zf(z) in equation (17)
becomes

Ag(z) = Ag(z + 1) + zg(z — 1) = (X + z)g(z).

This is the generator of an immigration-death process with immigration rate A
and unit per-capita death rate.

Example 4 Let Iy,...,I, be i.i.d. Bernoulli indicator random variables with
EL =pi,i =1,...,n, and put W = Y." | I;. Let \ =3 pi = EW. Put
W; =W — X;. Then we have for any function f

EWfW) = 3 BXif(W)

= Y EBLf(Wi+1L)

i=1

i=1

where we used the independence. Thus

NEFQV +1) ~BWSW) = 3 pB(OY +1) ~ £+ 1)

= Zng(f(W,- +2) = f(W; + 1)),

where we conditioned on I; = 1. Employing the bounds (18) we obtain that

n

dry (L(W), Po(Y)) < min(1,X7") Y " .

i=1

1.4.1 The Local Approach

Taylor expansion leads to a very convenient result for proving Poisson approxi-
mations.

Theorem 6 (Chen [27], Arratia et al. [3], Barbour et al. [19]) Take any
index set I. For each o € I, let I, be a Bernoulli random variable with 7, =
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P(I, = 1) > 0. Suppose that, for each a € I, we have chosen B, C I with
Q€By. Lt W=3 ;Ioand A=) ;7o < 00. Then

drv (L(W),Po(\)) < min (1,A7) (by +by) +min (1,173 ) bs,

where

bh = Z Z ToT3

a€cl BeEB,

by = > > E(l.Ip)

a€l BEB,,fF#a

by = Y E|E{l,—malo(Is,8 ¢ Ba)}l-

acl

Note that b3 = 0 if I, is independent of o(Ig, ¢ Bo}. We think of B, as a
neighborhood of strong dependence of I, .

1.4.2 Size Bias Couplings

Size biasing in the Poisson context has been discussed in detail in Barbour
et al. [19], where it is called the coupling approach. Observe that the size
bias distribution of a nontrivial indicator random variable is point mass at 1.
Recalling Construction 2, for W = Y1 | I; being the sum of indicators with
EI; = p;, a random variable W* having the W-size bias distribution can be
constructed as follows.

Choose an index I from {1,...,n} according to P(I = i) = p;. If I =1,
replace I; by 1, and construct I}, j # ¢ such that

L(Ij,5 #1) =L, #illi =1).
Then
W= I+1.
J#I
has the W-size biased distribution. If I =i, put
W=7
J#i

Then Barbour et al. [19] prove (Theorem 1.B in Barbour et al. [19], with
different notation) the following proposition.

Proposition 4 We have

drv (L(W), Po(A)) < min(1,A7") Y piE|W — Wj.

i=1
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2 Stein’s Method for Measure-Valued Random
Elements

Now we turn our attention ot measure-valued random elements. To make use of
the bounds on convergence that Stein’s method provides we need to construct a
metric on the space of measures that is defined in terms of smooth test functions.
Most of what follows can be found in Reinert [61], [62].

2.1 The Space of Measures

Let E be alocally compact Hausdorff space with a countable basis (for instance,
E =R%), let £ = B(E) be the Borel-o-field of E, and let MP(E) the space of all
bounded Radon measures on E, equipped with the vague topology. Let C.(E)
be the space of real-valued continuous functions on E with support contained
in a compact set. Convergence in the vague topology means the following.

Up=yv < forall f € C.(E) :/ fdvy, —)/ fdv  (n — o00).
E E

For p € MP(E), set [|u|| = sup s [(A)]. Let
MY(E) = {n € M(E) : ||ull < co}
be the space of finite Radon measures, and let
Mi(E) = {in € M(B) : u positive, ||ul| < 1}

be the space of all positive Radon measures with total mass smaller or equal to
1. The space M7 (E) will be needed for Gaussian approximations, whereas the
space M, (E) is sufficient to describe laws of large numbers.

As FE has a countable basis, M (E) is Polish with respect to the vague topol-
ogy. Moreover M7(E) is locally compact with a countable basis (see Reinert
[64]). Furthermore, MP(E) is a topological linear space over R. Denote by
Dg(A; @) for the set of all Gateaux-differentiable functions f : A — @G, and
denote by f'(a)[u] the Gateaux derivative of f at the point a in direction g. In
general, denote by f(¥)(a)[v*)] the kth derivative of f in a, as a linear form, ap-
plied to the vector v¥) = (v,... ,v) € (MP(E))¥; and let DE(A; G) denote the
set of all k times Gateaux-differentiable functions f : A — G. For f: A — R,
we have Taylor’s theorem. We need some more notation. Put

IF' @I = sup{|f'W)n)| : n € MP(E), [lnll <1},
£ @ = sup{|F" @), bl = 0, € MP(E), |Inll <1, |l < 1};
I = sup [If@)I,
vEMP(E)
I = sup (f*@)I.
vEMP(E)
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Moreover we abbreviate the integral

(o, ) = /E pdp.

Vague convergence can be described via Lipschitz functions. Fix a € E and
define S, = {z : d(z,a) <m},m=1,2,.... Form =1,2,..., put

FLm(E) ={ f:E->R;[f(z) - f(y)| < ksd(z,y), 2,y € E,
for some constant k; depending only on f; f(z) = 0,2 € S},

and
FL(E) =UnFLn(E).

For (Vn)TLENaV € M(E):
vp=v iff for all f € FL(E), (vn, f) = (v, f).

This is shown in Rachev [59], p.209, Corollary 10.2.1 and equation (10.2.5),
for nonnegative measures; using the Hahn decomposition theorem, it is easily
extended to signed measures. Note that the definition of FL,, (E) differs slightly
to the one in Rachev [59] in not requiring the Lipschitz constant to be 1; our
definition ensures that FL(F) is closed under multiplication with scalars.

Moreover, the space FLT(E) of nonnegative functions in FL(E) is also
convergence-determining for vague convergence in MP(E); this can be seen by
decomposing functions into their positive and negative part.

Let C be a convergence-determining class for vague convergence on M7 (E).
For simplicity, from here on we will assume that C = FL(E), C = FL(E),
C = C.(E) orC = C."(E), the latter being the space of all nonnegative functions
in C.(E) . Put

Fe(MT(E)) := {F € Cy(M/(E)): F has the form
foran m € N, f € C;°(R™)
with [[f] < LIl < LI < 1,
and for ¢; € C with ||¢;]| < 1,i=1,...,m}.

Similarly we define F¢(M;(E)) by replacing M7 (E) with M;(E) in (19). This
construction is similar to the algebra of polynomials used by Dawson, see for ex-
ample Dawson [31]. We abbreviate J¢,; = Fc(M/(E)), and F¢ = Fe(M;(E)).

Denote by Co(E) the space of all continuous real-valued functions f on E
that vanish at infinity (for all € > 0, there is a compact set K outside of which
|f(z)] < €). The following proposition can be shown by the Stone-Weierstrass
Theorem.

Proposition 5 Cc(M/(E)) is dense in Co(M7 (E)) with respect to the topology
of uniform convergence.
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Now let F be a dense subset of Co(M7(E)). The following proposition shows
that F is convergence-determining.

Proposition 6 Let U be a locally compact Hausdorff space with a countable
basis, and let F C Co(U) be a class of functions that is dense in Co(U) with
respect to the norm of uniform convergence. Let (Vn)nen,v € Mi(U). If, for
all f € F,

W ) = (0, ) (> o),

then
Un=V (n — 00).

If (Un)nen, v € M1(U) are laws of finite random measures, we obtain weak
convergence:

Corollary 1 Let (&,)nen, & be random measures taking values in M7 (E) al-
most surely, where E is a locally compact Hausdorff space with a countable
basis. Let F C Co(MY(E)) be a class of functions that is dense in Co(M'(E))
with respect to the norm of uniform convergence. Suppose that for all f € F,

(L(&n), ) = (L(E), ) (n— o0).

Then
L) = L(E) (n— o0).

The proof of Corollary 1 is immediate.

The above considerations justify introducing the following metric. In general,
if (U,d) is a separable metric space, and if Cy(U) is the set of all bounded
continuous functions on U, then, for each subset F of Cy(U), the functional (r
on MF(U) x M¥(U) given by

C]:(Van) = sup |<V7f) - <777f)|
fer

defines a semimetric on M/ (i) (see Rachev [59], p.72) and is called the Zolotarev
(F-metric. (Rachev [59] uses this definition only for probability measures, but
the notion can obviously be generalized for measures in Mf(U).) Here (r is
actually a metric.

Proposition 7 Let U be a separable metric space and F C Cyp(U) a class of
functions that is convergence-determining for vague convergence in U. Then (r
is a metric on MT(U).

Proor. We only have to show that, if {(v,7) = 0, then v = 5. As F is
convergence-determining, it is also measure-determining. Thus, for all v # u €
MF(U), there is an f € F such that (v, f) # (n, f). Therefore, if v # 7, then
¢x(v,m) # 0. This proves the assertion.

Note that the above results remain true of M/ (E) is replaced by M;(E).
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2.2 Couplings for Random Measures

Similarly as in the real-valued case, we can define exchangeable pairs as well as
size bias couplings and zero bias couplings for measure-valued random elements.

Firstly, exchangeable pairs can be defined analogously to the definition for
real-valued random elements. Let £ be a random measure with expectation
measure p, and let & be another random measure with the same distribution
as £. We say that (£,&') is an exchangeable pair if for all sets B, B' € £,

P(¢eB,' e B)=P(¢e B¢ €B).

Similarly to Condition (5) we define Condition (20) by requiring that there
is a 0 < XA < 1 such that for all ¢ € C

E((£,9)I(§,8) = (1 = N)(&, ¢)- (20)

For example, if £ = """ | dx,, with Xy,..., X, being i.i.d, then it is easy
to check that, just like in the real-valued case, picking an index I uniformly
form {1,...,n}, replacing X; by an independent copy X} and putting ' =
§ — 0x, + dx; gives an exchangeable pair, and Condition (20) is satisfied with
A=1

Sinze—biasing can also be defined for random measures. In this case the size
bias measure is well-known as the Palm measure. Let n be a nonnegative random
measure, let C be a convergence-determining class on E, let ¢ € C with E(n, ¢) >
0 and ¢ > 0. We say that n® has the n-size biased distribution in direction ¢ if,
for all f for which the expectations exist,

Ef(n)(n, ¢) = (En, $)Ef(n”).

Moreover we will define zero-biasing for random measures, as indicated in
Goldstein and Reinert [43]. Firstly we introduce zero-biasing for vectors of
random variables. Given a mean zero vector X = (Xi,... ,X,) with covariance
matrix X, we say the collection of vectors X* = (Xj;) has the X-zero bias
distribution if

p p
EZXifi(x) =E Z 035 fi;(X3;), (21)
=1

i,7=1

for all smooth f. Here f; and f;; denote the partial coordinates of f with respect
to the indicated coordinates.

Now let H be the class of functions ¢ from £ to the reals such that, with
{1, @) = [ pdu, we have E{¢,¢) = 0 and 0 < E(£, ¢)2 < 0o. Given a collection
{&(¢), ¢ € H} of real valued mean zero random variables with nontrivial finite
second moment, we say the collection {E;d,,d),@b € #H} has the &-zero biased
distribution if for all p = 1,2,... and (¢1, ¢2,... ,¢p) € HP, the collection of
p-vectors (Xj;) has the X-zero bias distribution, where, for 1 <4,j < p,

(X5j) = (6:0, (1), -+ 65,6, (),
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and

X = (£(¢1)7 v a£(¢ﬂ))

Note that, by choosing other sets #, this definition can be extended to
include the case of real-valued random variables, as well as the case of random
processes.

2.3 The Law of Large Numbers for Measure-Valued Ran-
dom Elements

Throughout this section, let (X;);en be a family of random elements on E, de-
fined on the same probability space, let u; = £(X;),i € N, put i, = % Sy Wi
and assume that

there is a pu € M1(E) such that fp,=,p (n — o0).

Let &, =1

n

>, 8x, be the empirical measure of (Xi,...,X,).

Definition 1 We say that the weak law of large numbers for empirical measures
holds if
L&) 26, (n— ).

This definition may require some remarks.

1. L&) Y Oy (n — o00) means that, for every f € C.(M(E)),
/ FO)PEn € dv] - / F@)0u(av) = f(i) (n = o0).

2. The name “weak law of large numbers” is based on the following fact (see
Dudley [36], p.305, Proposition 11.1.3., e.g.)

If (S,d) is a metric space, p € S, and (Y;)ien 15 a family of random
elements on E, defined on the same probability space, with L(Y3) =

0p (n — o0), then Y, 5 p. As My(E) is Polish, we can find a met-
ric d on My (E) to make it a metric space. The weak law of large numbers
holds iff, for all € > 0,

Pld(L(&n),0,) > €] >0 (n— 00).
Thus the situation is analogous to the real-valued case.

3. Take C to be a convergence-determining class for the vague convergence
on E. Then the weak law of large numbers holds iff

EG(&,) = G(p) (n — o) for all G € Ce(M1(E)).
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This is equivalent to having for all m € N, for all f € C;°(R™), and for
all ¢1,...,0m €C,

E[f((¢n, #1)s--- 5 &ns m))] = FUp, 1), 5 (1 0m)) (0 = 00);
that is,

Ef(z¢1 Z¢m i )
- 1), ,<u,¢m)) (n — o).

To describe the connection with the classical weak law of large numbers
for random variables, we thus have, for n — oo,

L) 20, = Y (X)) 5 /¢du for all ¢ € C.
=1

Observe that now (¢(X;));en are real-valued random variables. Therefore
we could prove the weak law of large numbers for empirical measures to
hold by proving the weak law of large numbers for random variables to hold
for all (¢(X;))ien, ¢ € C. From this viewpoint, the standing assumption
of having a measure p with fi, = p (n = 0o0) means that, for all ¢ € C,

ZE¢ —>/¢du

This is the classical assumption on the average of the expectations in the
weak law of large numbers for the real-valued case. However, we would
like to have a result that takes the structure of the space of empirical
measures more into account, and that also describes convergence to 4, for
more general random measures.

The corresponding Stein equation for the weak law of large numbers for
random measures is

h(v) = (u, by = f'(V)[p —v], v € Mi(E). (22)

This equation can easily be solved using the generator method, see Reinert
[62].

Proposition 8 For any function H € F¢, there is a function Y (H) € F¢ that
solves the Stein equation (22) for H. If

H(V) = h(<V:¢1>a"' =<V7¢m>)a

then
¢(H)(V) = f((yad)l)v' .- 7<V7¢m))
for a function f € C3°(R™) with ||f®|| < ||A®)|| for all k € N.
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Thus we have established the ingredients for Stein’s method, yielding the
following theorem, which is our basic formulation of the weak law of large num-
bers.

Theorem 7 Let (nn)nenN be a family of random elements with values in My (E),
defined on the same probability space. Let y € My(E). Then

L(n,) = 0y (n— o0)
iff for all f € F¢ we have

Ef' () =] =0 (n— o0).

Instead of using F¢, other classes of functions are of course possible. The
next corollary gives an example for such a result.

Corollary 2 If for all f € D% (M, (E),R) with bounded first and second deriva-
tives,
Ef (&)lp—&] =0 (n— o),

then
L&) 2 Oy (n— o0).

The assertion of Corollary 2 is not an if-and-only-if-statement, because
Gateaux-differentiability does not imply continuity (see Yamamuro [78], p.7).
Thus, if for f € DZ(M,(E),R), we put h(v) = f'(v)[p — v],v € M*(E), then f
solves (22) for h, but it is not necessarily true that h € C(M;(E)).

Almost immediately we get a (rather formal) estimate on the rate of conver-
gence.

Corollary 3 If n is a random measure on M;(E),
(e (L), 0rpy)) : f € Fe} < sup{[Ef' ()lu—n]|: f € Fc}..
In particular

CFe(L(€n);6,)) < sup{|Bf (&)l — &l - f € Fe}-

Similarly to the real-valued case we can obtain a criterion for the weak law
of large numbers in terms of the variance.

Proposition 9 We have

(Fe(L(€n),6,) < sup  [{p—fin, @)+ sup  (u — fin, 4)’

peC,|igli<1 peC,|Igl<1
1 n
+ sup Var(— qb(Xi)).
$ec,llgl<1 n ;
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In particular, if F € F¢ such that F(v) = f({v,¢1),... ,{v, dm)), we have

|EF'(&)[n— &l < A | — un,¢,)l+1r<nag< (B = fin, $;)

+ lmja&xm Var( ; or (Xi)) .

Proor: With the Stein equation, we have that for all g € F¢, if ¢(h) denotes
the solution of the Stein equation (22) for h, that

Eh(&) — (u,h) = E«‘W(h)( n)
= (h)( )[M—fn]-i'Rh

where R; is the remainder term in the Taylor expansion. Thus
Eh(&n) — (1, h) = ' (h) (W) [ — fin] + R
Now, if h € F¢, we have

'gb(h)(l/) = f(<1/, ¢1)7 R =<V7 ¢m>)

for an m € N, f € C°(R™) with Y7, [[fyll < 1 Z’J lfanll < 1, and
D1y, Om € C with ||¢i]| < 1,4=1,...,m. Thus

|Zf(z)(<:u/7 ¢1)5 s 7<ua¢m))<ua¢i>|

¥ (h) () [ — ]|

IA

max (= fin, $5)1.

Furthermore, by Taylor’s expansion,

S IBKp = &ny did (1 — &n, 65)]

i,j=1

Z ||f(z,1)|| max E|<N §HJ¢]) |

“~ 1<j<m
i,j=1

max E(p— &, ¢;)”.

1<j<m

| Ry |

IN

IN

IN
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AS <€n; ¢> = %Z?Zl ¢(Xz), we have

E</~‘L - £Ha¢>2
= E<M - ﬂn + ﬂn - §n1¢j>2

<,u_/7'm¢j)2+2<,u_ﬂm¢] Hna¢] ZE¢J

+E {% i(‘bj(Xi) — Eg; (Xi))}

i=1

<,U_/7/na¢] +Var( Z¢J )

and the assertion follows.

2.3.1 The Local Approach

The above results can be specified for random elements having local dependence.
Using Taylor expansion, the following result is not hard to show (see Reinert

[61]).

Corollary 4 Assume that for all i,n € N there is o T7(i) C {1,...,n} such
that, for each i, X; is independent of 0(X;,5 ¢T7(i)). Then

@00 < O g 2 S BIX.X.

=1 jerz (i)

2.3.2 Size Bias Couplings

Moreover the size bias coupling can be applied to the law of large numbers for
measure-valued elements. For ¢ as above, similarly to Section 1, we construct
&9 as follows. Pick an index V € {1,... ,n} according to

E¢(X,)
(fin, @)

If V =, take 0% to have the dx, size biased distribution in direction ¢. Thus,
considering f(v) = 14,(v), we have

PV =v] =

P[0%, € dn] = (n,¢)Plox, € dn].

1
(fin, 9)
If 6%, = n, choose 6% ,u # v, such that

L(0%, ,u#v)=L(0x,,u=1,...,n|dx, =17).
Put

1 n
=ﬁ;5§¢u-
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Then we have

Ef(&))

-1

(50

(Fin,
1E<f§,¢>) /MI(E) { (%uil )‘ X, =n}P[5}v € dn)
= m/M { (l i%) ‘6xu = n}P[&XU € dn]

u=1
= E Ef(£n)(dx,,9)
n(fin, $) =

v

I
M=

1

Thus &, has the &, size biased distribution in direction ¢.

Corollary 5 Let C = C.(E,Ry) or C(‘)’?b(Rk), if E=RF*. Then
GelLEn)8)) < el + max BIEL — &, 0.

Finally, similarly to the real-valued case, zero biasing provides a fast proof for
Proposition 9, restricted to those functions ¢ for which E¢(X;) =0,i =1,... ,n

2.4 Gaussian Approximations for Measure-Valued Ran-
dom Elements

This section is based on Reinert [64]. Throughout this section, we assume that
b:C? — R is an operator such that, for any m € N and for all ¢1,... , ¢, €C,

B = B(¢17 v a¢m) = (b(¢1; ¢j))i,j:1,... ,m

is a symmetric, positive definite matrix. Similarly to the real-valued case, for
F € F¢ 5 with representation (19), we define the generator

= _Zf(j)(<ya¢1)a-"7<V7¢m))<ya¢j)
+ Z f(j,k)((ya¢l)7"' 5(V7¢M>)b(¢ja¢k)‘
k=1

We say that 4 is the generator associated with the operator b, or, slightly
abusing notation, associated with the matrix B.

Let ¢ be a random measure taking values in M/ (E) almost surely such that,
for all m € N, ¢1,... ,¢m €C,

L((Ca(ﬁl)a K 5<C7¢m>) = MVNm(OaB)a
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where MVN ,,,(0, B) denotes the multivariate normal law with mean vector 0
and covariance matrix B. Let A be the generator associated with B. Then £(()
is stationary for A. Thus, for H € F¢ 7 of the form

H(V):h(<V,¢1),... :<V7¢m>)a (23)
the Stein equation corresponding to the Gaussian random measure ( is
h((’/: ,(/}1)7 tre <Va ¢m)) - E[h(<Ca ¢1>7 sy (Ca ¢m)) (24)

NE

f(j)((ya ¢1>a s :<Va ¢m>)<ya ¢J>

J

+

\ER

o (v, 1), oo s (¥, 8m))b(9j, dr).

1

J

)
Il

This equation can be solved using the semigroup technique as in Barbour [10].
Lemma 8 For F(v) € F¢ ¢, and for t > 0, define the operator Ty by

T,F(v) = EF(ve '+ 1—e2().
Then, if H € Fc ¢ has the form (23), the function

Fo) == [T - B}

solves (24) for H. Moreover, F' € F¢ ¢, and there is a function f € Cp°(R™)
such that F(v) = f((v,¢1),- .., (v, 90m)), I[P < |hF)]|,k € N, and [|FP]| <
IH®O|, k€ N,

Theorem 9 Let (9,)nen be a family of random measures taking values in
MY (E) almost surely. Let ¢ be a random measure taking values in M7 (E)
almost surely such that, for allm € N, ¢q,... ,¢m €C,

Let A be the generator associated with B. Suppose that for all F € F¢ ¢,
EAF(n,) =20 (n— o0).

Then
L(nn) = L) (n — o0).

PROOF. By the generator method, EAF(n,) - 0 (n — o) for all F € F¢ 5
implies that, for all G € F¢ y,

EG(n,) —EG() -0 (n— o).

Furthermore, M/ (E) is locally compact. Corollary 1 gives the assertion.
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Theorem 9 assumes the existence of a Gaussian random measure ( that is fi-
nite almost surely. In general, the almost sure finiteness is not guaranteed. How-
ever, if E is compact, then, with C = C.(E),Cf(E),FL(E) or C = FL(E),
we have

Hence, |((E)| < oo almost surely, and thus ¢ takes values in M/(E) almost
surely.

Stein’s method also allows us to compare random measures with Gaussian
random measures.

Proposition 10 Let ¢ be a random measure taking values in M7 (E) almost
surely such that, for allm € N, ¢1,... ,¢, € C,

LG 01);- - (G bm)) = MVYN (0, B),

where B = (b; j)i,j=1,...,m = (b(¢s, D;j))i,j=1,...,m 15 symmetric, positive definite,
and let A be the generator associated with B. Then, for any random element n
taking values in MY (E) almost surely,

CFe, s (L), £(C)) < sup [EAF(n)|.

FeFe s

ProOF. By Lemma 8, we have

(re s (L), £(C)) = sup [(L(n), f) = (L), f)| < sup |[EAF(n)|.

FeFe.f feFe.f

This proves the assertion.

We now consider the case of empirical processes. Throughout this section,
(Xi)ien is a family of (possibly dependent) random elements on E with laws
L(X;) = pi, and

1 n
én = % izzl((in - Hi)

denotes the corresponding (nth) empirical process. For all m € N and for all
h1,--- s Om € C, let

B = (bal63:00) 1= (3 20 Cov @06 X))
ii=1 3 k=1,....m

be the corresponding covariance matrix, and let A,, be the generator associated
with B,,. Let

C.={6eC: gl <1}

From Proposition 10 we obtain the following corollary.

Corollary 6 Let ¢ be a random measure taking values in M7 (E) almost surely
such that, for allm € N, ¢1,... ,0m €C,,

ﬁ((cnaqsl): R <€na¢m)) = MV./\/m(O,C),
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where C = (c(¢r, P1))k,i=1,... ,m is symmetric and positive definite, and let A be
the generator associated with c. Then

(Fe s (£(6n), £(C)) < sup |EAnF(§n)|+¢§pu€%*|bn(¢,¢)—C(¢,¢)l-

FeFe s

PROOF. Let (, be a random measure taking values in M/(FE) almost

surely such that, for all m € N,¢1,... ,¢m € C, LUCn, P1)5--- ,{Cn, Pm)) =
MVN (0, B,). From Proposition 10,

C]:C,_f ('C(En)a 'C(C)) < C]‘-C,f (£(§H)7 'C(Cn)) + C.'Fc,f ('C(Cn)a E(C))

< sup [BAFE) + sup [BAF(G).
FE]‘—C’f FEJ:C,f

For the second summand, let F' € F¢ ; have the representation (19). Then

EAF (¢a)
= = Ef) (G- s (G bm)){Cns 65)
j=1
+ Z Ef(],k)(((na(ﬁl)a . 7<Cna¢m))c(¢j7¢k)
j k=1
= ) Efn (G b1, (Cnr bm)) (c(85, 61) — bul(di, dr))
G k=1

using that ¢, is Gaussian. Taking absolute values proves the assertion.
To illustrate the use of Proposition 10, we derive a Gaussian approximation
in the independent case (see also Ledoux and Talagrand [51]).

Corollary 7 Assume that (X;)i;en is a family of independent random elements
on E. Let ¢, be a random measure taking values in MY (E) such that, for all
meN,¢1,... ,0, €C,

L((Cﬂ) ¢1>; v 7<CTL7 ¢m>) = MVNm(O;Bn)
Then

C]:C,f (£(§H)> £(Cn)) <

Bk

PRrROOF. Let F € F¢ ¢, so that

EA.F(£,)
= = DB (i) (s Bm))ns 85)
+%Z D Efw (s 1), (€n, m))Cov (¢5(Xi), 1 (Xi)).
i=1 j,k=1
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Put & = \/_ > i (0x; — pj). By Taylor expansion, we obtain for the first term

D EfG) ((Enrb1)s - 5 (Ens Sm)) (Ens 65)

=1

> > Efi5) (s d1), - s (ns om)) (O = pis 65)

j=1

f(j,k) (<§;,a¢1>7 . a< ;;,;¢m>)<5X1 _/J/ia(;sk)(&Xi - /J/iaqu)

Me 4
Ty}

o~
Il

1

<.
I

13,

+R,

using the independence. Here,

|R| < \/—Ilf"'ll x [l

Hence, using independence and Taylor expansion again,
O e 3
EUFEN < il max 6

Asin F¢ 5, we have || f"'|| <1 and ||¢;|| < 1, the assertion follows using Propo-
sition 10.
2.4.1 The Local Approach

Taylor expansion gives the following result for the sum of locally dependent
random measures.

Corollary 8 For all i,n € N let T',(1) C {1,...,n} be a set such that for
each | & T (i), X; is independent of X;. Let v, = max;—1.... n|Tn(i)|. Let (,
be a random measure taking values in MY (E) almost surely such that, for all
meN,¢1,... ,6m €C,

Then, for each H € F¢ s of the form (23) we have

20 N3~2
[BH(E:) ~BH(G) < ") max 167

Moreover,

C}"c,f ('C(é-n) (Cn)) = \/—
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2.4.2 Size Bias Couplings

Similarly as in the context of random measures, we obtain a coupling result
using size biasing for random measures.

Theorem 10 Let (X;)ien be a family of random elements on E with laws
L(X;) = pi, and let &, be the corresponding empirical process. Choose C =
CI(E) or C = FLY(E). Let ¢, be a random measure taking values in M7 (E)
such that, for allm € N, ¢1,... ,¢m €C,

E((Cna¢1)’ R a(Cna d)m)) = MVNm(OaBn)a

where

B = (065,900 s, = (2 2 Cov (65050, 00(0) ) ,

il=1 jyk=1,...,m

and let A, be the generator associated with B,. Let n = \/iﬁ >, 6x;, so that
& =n—En. Let n® = ﬁEL dxy have the size-bias distribution of n in
direction ¢ as constructed in Subsubsection 2.3.2. Then, for all F' € F¢ s of the
form (19),

N

BAF ) < Y 1w IKEn, ¢5)[{ VarE((n® —n, ¢)ln)}

J.k=1

5 30 Wi KB, 6B —n, 6u)n® — .00

Ji.k,I=1

and

Cre(LEn), £(Gn)) < max (<En,¢>{Var<E<<n¢—n,w>|n)}%)

@, pec*

+% ¢,$§é{c* (<E,’77 ¢>E|<,’7¢ =1, ¢)<T]¢ -, 7—)|> .

2.4.3 Zero Bias Coupings

Using Taylor expansion, the zero bias coupling immediately yields the following
theorem.

Theorem 11 Let (X;)ien be a family of random elements on E with laws
L(X;) = pi, and let &, be the corresponding empirical process. Choose C =
Ce(E) or C = FL(E). Let H = {¢ € C : E({n,¢) = 0}. Let ¢, be a random
measure taking values in M7 (E) such that, for allm € N, ¢1,... ,¢m € H,

£(<C7w¢1>7 R 7<Cna ¢m)) = MVNm(OaBn);
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where

B = (05:60) s = (3 D CvBC000))

=1 J.k=1,...,m

and let A, be the generator associated with B,. Let &, have the &n-zero
biased distribution as described in Subsection 2.2 and assume that &n>&n, 60 aTe
constructed on the same probability space. Then, for all F' € F¢ ; of the form

(19),

m

[BAFED) < D bales 061Gk IEIE S 6,60 — &ns B0)]-

Jk,l=1

2.5 DPoisson Approximations for Point Processes

In the case that we want to approximate the distribution of a point process
¢= Z Oals
a€l

with (I, € T') a collection of indicators, by the Poisson measure Po(w) on I’
with intensity (74, € T'), we may conveniently use the total variation distance.
Let £ = ) crdaZo be an element of the space Z of configurations of point
processes over I, so that x, € ZT for each a € I'. Then, following Barbour et
al. [19], p. 207, the generator is

AF(©) = mal(f(E+8a) = F() + D walf(E—a) — £(5)),

for f : Z — R bounded. The Chen-Stein equation becomes

h(§) — Po(m)h = Af(£). (25)

In Barbour et al. [19], Lemma 10.1.31, it is shown that for f being the solution
of equation (25) for h(§) = I(£ € A), the following bounds hold.

Af o= Eeséuperlf(£+5a)—f(§)|§1
Aof = sup  |f(§+0a+0dp) — f(E+6a) — F(E+ ) + f(O] < 1.
EeZ,a,B€l

2.5.1 The Local Approach

Assume I, and By, a € T, are as in Theorem 6. Barbour et al. [19] give the
following theorem.

Theorem 12 For each o € T, put Z, = EﬁeBa Is. We have

dTV(»C(C); PO(’/T)) < Z {ﬂ—i +mEZ, + E(IaZa)} + b3,
acl

where bz is as in Theorem 6.
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2.5.2 Size Bias Couplings

Again, size biasing of point mass is particularly easy. Barbour et al. [19] obtain
the following theorem (Theorem 10.B in Barbour et al. [19]).

Theorem 13 Suppose that, for each a € T, a random element fa can be realized
on the same probability space as ¢ in such a way that L((y +4) = L(¢|I, = 1).
Then

drv(£((),Po(r)) < Y maElCa{B} - ¢{B}I-

a,Bel

3 Examples for the Law of Large Numbers for
Measure-Valued Random Elements

Most of the following examples can be found in Reinert [61]. We start with an
example for the local approach.

3.1 A Dissociated Array

Let (Y;)ien be a family of independent random elements on a space X, let k € N
be fixed, and set

T ={(,---,jk) € N¥:j, #js for r #s};
T = {1, jk) €Tt jiyeen i € {1,... ,n}}.

Suppose, (¥j,.... jx)(j1,... jx)er iS a family of measurable functions X* — E, and
put, for (ji,...,jx) €T,

Xijtyeosin = i in Vs -, Y )-
Then, (Xj,,... ji) (... ju)er is a dissociated family. Assume furthermore that
1
’I’L— C(le,...,jk)ivﬂ
(k) (d1see5dn) ET(W
for a pu € My(E), where
nk =nn-1)---(n—k+1).

Let

E" = L Z 6Xj1,---,jk'

(ke
(k) (41,--- »d) ET™)

Using the local approach, we obtain
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Theorem 14 For the above dissociated family, we have

Cfc(‘c(é.n)a(su) < CCC( )( . Z 'C(Xj1,...,jk)aﬂ>

n
®) (... gw)er
(k)

+—Z 0™ (4)

(k)z 1

Proof: For n € N fixed, the set (™) has n() elements. Fix a counting for
() If (iy,...,4;) is the ith element, identify (i1,...,4%) with 4, and set

Xil,---qik = Xi,n' Then
(k)
- Z X’z n"
n(k) i=1
For ¢ = (i1,... ,ix), define
7)) = {(ly,...,lg) €T s (1, ... 1) #is{lh, ..., e} N {in,... i} # 0}
Then, for all 1 < n(y),
Te(@)| = klk(n—1)(n—-2)---(n—k+1) —1]
< n(k) kZ
- n

Now let d € N be arbitrary, f € C°(R%),¢1,... ,¢4,¢ € C.(E). Put

§n,w,i:L Z (sXm,n-

k) érn (i)

Then, by the independence of X; ,, and X, ... 4, for (I1,...,l;) € T2 (i), we have

(k)
D DI BN RN [CE IR
i=1
(k)
= %ZE]C £nw’l;¢1 <§nwz;¢d>) [(b( ) — </L,¢)]
(k)

- % D BS (s #1)- - (En 9D [(L(Xin), 8) = (1 )] + R,

where

(k)

= — Z E <£n w,is ¢1> ) <fn,w,i7 ¢d>)

N(k) =1

_f(<€n7 ¢l>7 LR <£n7 ¢d)):|E|:¢)(Xz,n) - </‘L7 ¢>:| .
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By Taylor expansion,

1 (k) o
|Ra| < 2||<25||||f|| sup ||¢z|| >oIr6)
k) i=1

and the assertion follows.

Note that in the exchangeably dissociated case, i.e. (Y;); being i.i.d. and
Yijr,. i = @ for all (ji,...,5k) € T, the X, . ;.’s are identically distributed,
and thus the assumption about vague convergence is trivially satisfied.

3.2 An Immigration-Death Process

We consider the following immigration-death process with total population size
n. Let AK be the (positive) arrival time of the ith individual, and let Z; its life
span. Assume the (Z;); are positive, i.i. d. and independent of the (Af)z.’neN

(but allow for dependence between the (AX) imen)- Start at time ¢ = 0, and let

Then Jx» can be regarded as a measure on R?H where the half-open interval
[a,b) C [0 o0) is represented by the point (a,b) € [0,00)2, and

5xn([0,8] x [t,00)) = I[Af <t < Af + Z)).

Thus dxr describes the temporal evolution of the ith individual, and

1 n
=13
i
gives the “average” path behavior of the process.

Theorem 15 Let u; = L([AK, AK + Z,)). In the above setting,

Cfa(‘c(gn)a(su) < [{p — Nna¢]>|+ max <N_ﬂna¢j>2

max

1<j<m 1<j<m
1
_2

Z E[(AF — BEAK)(AK - EAK)).

PrOOF: We employ Proposition 9. Due to the second assumption, we only have
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to bound the variance term. We have for all ¢ € Cf°(R?)
Var( zn: (AK AK + Z,~)>
- iz Xn: E{E[($(AX, AKX + 7)) - E¢(AX, AK + 2,))
(¢(Af, AF + 7)) —E¢(AS AT + Z)1 Zi, Z5]}
_ % Ji_l E{E [/(¢(A{<,A{< + Z4) — dlz,x + Z:)) PIAK € da

[0 A% 4 7)oty + 2 PAK € dyuzz-,zj] }

Hence, using Taylor’s expansion, we get
9 )

1 n
q¢ ;¢<A5,Af -2)

< ||¢||2 ZE[I (4 = BAT)(AF —EAT)]],

3,j=1

and the assertion follows.

Note that under the conditions
1. 5 30 m El(AF —EA)(AF —EAF)[ -0 (n— )

2. there is a measure p € M; (R?2) with
n

; S L(AK, AK + Z)mop (0 oo)
=1

the weak convergence of the empirical measures follows. As an example, in
the following case it is easily checked that the conditions are satisfied. Let
(EM)iz1,... n bei.i.d. exp(n) random variables, and put AX = E] LEr G
is the distribution function of Z;, then the limiting measure p is such that for
real rectangles,

Bi2
p([B11, Pi2) X [Ba1, Ba2)) = / 110,11 (2)[G(B22 — ) — G(B21 — z)]dx.

B11

3.3 The General Stochastic Epidemic

The General Stochastic Epidemic (GSE) is perhaps the best-known stochastic
epidemic disease model (for a survey see Bailey [5]). Based on Sellke’s [71]
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approach, we construct a generalization of the GSE as follows. For more detail
see Reinert [63].

A population with total size K is considered. At time ¢t = 0, a fraction aK
of these individuals are infected by a certain disease (and are infectious - the
infectious period and the period of being infected are assumed to coincide); the
remaining bK individuals are susceptible to that disease; aK + bK = K. Infec-
tious individuals will get removed after some time, e.g., by lifelong immunity or
death, and are then no longer affected by the disease. (Thus, we have a so-called
SIR model, where the abbreviation stands for susceptible - infected - removed.)

Let (I;,7;)ien be a family of positive i.i.d. random vectors, and let (7;)ien
be a family of positive, independent random variables. Assume that the families
(li,ri)ien and (7;)ien are mutually independent.

An initially infected individual ¢ stays infectious for a period of length 7;,
then is removed. (That the 7#; need not be identically distributed reflects the
possibility that an infected individual has already been infectious for a certain
period before, at time ¢ = 0, it is observed.) An initially susceptible individual
i, once infected, stays infectious for a period of length r;, until removal. Fur-
thermore, an initially susceptible individual i accumulates exposure to infection
with a rate that depends of the evolution of the epidemic; if the total exposure
reaches [;, the individual 7 becomes infected. The possible dependence between
l; and r; for each fixed ¢ reflects the fact that both the resistance to infection and
the duration of the infection may, for a fixed individual, depend on its physical
constitution.

An initially susceptible individual 7 gets infected as soon as a certain func-
tional, depending on the course of the epidemic, exceeds the individual’s level [;
of resistance; denote its infection time by AX. If Zx (t) denotes the proportion
of infected individuals present in the population at time ¢t € R4, then AX is
given by

K3

AK = inf { teRy: | s, Zx)ds =1 } (26)

(0,4]
for a certain function A\. Thus AKX takes values in (0, co].

Since, for epidemics, the length of the infectious period of an individual is
usually very small compared to its life length, we neglect births and removals
that are not caused by the disease, as well as any age-dependence of the in-
fectivity or the susceptibility. Furthermore, the population is idealized to be
homogeneously mixing. Despite its simplicity, there are many useful applica-
tions of the model (cf. Berard et al. [22], Bailey [5]).

In special cases, there are already some asymptotic results for the proportion
of susceptible and infectious individuals. However, the previous results were
obtained for cases where [; and r; are independent and where the transition
behaviour is “Markovian”, i.e. £(l;) = exp(1). This case, in the special form
At,z) = A(=z(t)), was analyzed by Wang [76], [77]. For general A, Solomon [72]
has discussed a related, age-dependent population model that deals only with
one class of individuals. The very special case A(t,z) = z(t) and (#;), (r;) being
ii.d. exp(p) yields the classical GSE, as constructed by Sellke [71].

38



Employing Stein’s method we will not only investigate a more general model,
but also describe the asymptotic evolution in a more detailed form. As the
GSE is a birth-death process, as in the previous example the behaviour of an
individual 4 can be described by the indicator 1jo #,) (), if 7 is initially infected, or
Liax ax +r)(t), if @ is initially susceptible. A typical feature of investigation for
the GSE is the asymptotic behaviour of the proportion of infected individuals
and the proportion of susceptible individuals, as the population size tends to
infinity. More generally, we would like to obtain the asymptotic average path
behaviour, described via the limit behaviour of the empirical measure

¢k = KZ(on)Jr 25(AKA K 1)

considered as a substochastic measure on [0,00)?. The proportion of infected
individuals and the proportion of susceptible individuals can be reconstructed
via k. If t > 0, then £x ([0, ] X (¢, 00)) describes the proportion of individuals,
with respect to the total population, that are infected at time ¢, and £x (R4 %
[0,%]) gives the proportion of individuals that are removed at time ¢. However,
&k contains even more information. For instance,

£k ([0, 8] x (t,0)), t > s,

gives the proportion of individuals that were infected up to time s and are not
removed up to time ¢, that is the infectivity at time ¢ in the population resulting
from individuals that were infected before time s. Thus, by investigating £k we
gain new insights concerning the behaviour of the epidemic.

We need some more notation. Let ¥ be the common distribution function
of the (I;)ien, let ® be the common distribution function of the (r;);en, and
let (®;);en be the distribution functions of (#;)ien. Let D4 be the space of all
functions z : [0,00) — [—1,1] that are right continuous with left-hand limits,
and let A : Ry x Dy — R, be the “accumulation” function determining the
infection mechanism. Recall, for an initially susceptible individual 4, its infection
time AK is given by (26), with

1 aK
—Ezl[o,m) Zl © A% ;) (1)
j=1

being the proportion of infected individuals present in the population at time
t € Ry. (We use the notation 1¢(¢) to denote the indicator function on the
set C; the notation I[t € C] refers to the indicator of a set, not considered as a
function.) This completes the description of the model. Furthermore, we make
some technical assumptions.

1. There is a probability measure ji on R such that for all T € R,

o lox ZP[n<t A0, )] = 0 (K = o)
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denote its distribution function by &
2. The function A : R4 x Dy — R satisfies for allt € Ry, z,y € Dy
a) A(t,z) = \(t,x¢), where, for t,u € Ry, z € Dy, x¢(u) = 2(t A u);
b) there is a positive constant a such that

IA(t,z) = A(t,y)| < a sup |x(s) —y(s)[;
0<s<t

c) there is a positive constant v such that supg<,<; A(s,z) <.

3. There is a positive constant § such that, for each z € Ry, ¥,(¢) :=P[l; <
t|r; = ] fulfills, for all s,t € Ry,

(W2 (t) — Wa(s)] < Bt — 5.

The first task is to determine the limiting measure. We define, for f €
C(R4,R),t € Ry, an operator Z and an operator L:

Zf() = a(l— () +T(F(H) — b / U, (f(t - 2))Pr € dal,

(0,4]

Lf(t) A(s, Zf)ds

(042]

(as Zf € Dy, the latter expression is well defined). Let ||f||l7 = sup,<r |f(s)]
denote the supremum norm on C([0,T]). A contraction argument can be em-
ployed to prove the following assertion (see Reinert [63]).

Theorem 16 For T € R, the equation
f(@t) = (s, Z2f)ds, 0<t<T, (27)
(0,¢]
has a unique solution Gr.

Now we restrict the observations to finite intervals [0,T]x [0, T] for aT € Ry
arbitrary, fixed. This leads to some notation. For T € Ry, put [0,7]? =
[0,T] x [0,T], and By = B([0,T)?). Let v € M;(R?), then

vt = s,
is the restriction of v on Br (hence, vT € M,([0,T]?)). For A € B(R2), put
vI(A) =v(AN[0,T));

this defines v* also on B(R?). If in addition X is a random element with
L(X) =v, then, for all T € Ry, f € L1(v), A € B(R?),

E7f(X) = / @
PI[X c 4] = /1A(x)y (dz)
LYf(X) = LX),
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are the corresponding restrictions. With this notation we identify the following
limiting measure.

Theorem 17 For T € R, let Gt be the solution of (27) and i* € M,(E) be
given for r,s € (0,T] by

A0, x [0,5) = PTlly < Gr(r),ly < Gr(s—r1)).
Put
uT =a(d x )T + bt
Then
1 aK 1 bK
2 2 L0 7)) + 32 D LT (AF AF +ri))=on” (K = 00).
i=1 i=1
Using Stein’s method it can be seen that the following holds. The complete
proof is in Reinert [63]; below we give a brief sketch.
Theorem 18 Let u’ be as in Theorem 17. Then, for all T € R,
L(ER) % 6,r (K= ).
Sketch of Proof of Theorem 18

It suffices to show that for all T € Ry, for all m € N, for all f € C°(R™), and
for all ¢1,...,¢m, v € C°([0,T)%)

Ef((€k: 61),--- (k> dm)) (" — Ekr1b) = 0 (K — ).

Let f,é1,--.,m,% be as above and u”, 47, 7 as in Theorem 17. Then

bK
. 1
= Ef(<a(60 X p‘)T + E E :(ST(AZK,AIK+7-,-)J¢I)J = 17 .. 7m)
i=1

<:u’T - g};a"p) +R1
with

R = B[(f(gk o)l =1,...,m)— f((a( x )"

1bK

t3 D 6 Ak, S, L =1, m) (" — k)|
i=1
Now let § > 0 be arbitrary, fixed, and put

HT(sat) = ﬁT([O,S] X [Oat])
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and
ApmHr = Hr((k+1)8,(k+m +1)8) — Hr((k + 1)8, (k + m)d)

— Hy(kd, (k +m + 1)8) + Hr(ké, (k + m)J)
AT ([kS, (k +1)8) x [(k 4+ m)d, (k +m + 1)d)).

Then
Ef((é'};,QSl),l =1,... 7m)<p’T - EI?JP)

= Ef({a(d x )" +b Z A Hrd" (s, (kmys), 1), 1 =1,...,m)
k,m=0

<NT _§I€7¢>+R1 +R27

where
L
_ AT T _
By = B{f((aldox D)7 + 5 20"t aten 0= m)
— f((a@o x )T +b > ApmHrd" (ks (krmysy d1), L =1, ,m)}
k,m=0

<MT - 5]7;7 ,(p)
Using similar approximations for £% in (u? — £L, 1), we obtain
Ef (& o).l =1,... ,m){u” — &g, v)

= Ef({a(do x )" +b Z Apm Hro" (6, (kmysy, 1), 1 = 1,...,m)
k,m=0

Bia" =b > Ak HrS" (ks (krm)s)» ¥) + Bi + Ro + Rs + Ry,

k,m=0
where
Ry = Ef((a(dox )" +0 Z Ak Hro" (16, (kmys), 1), 1 = 1,... ,m)
k,m=0
< 60 X IU/ K Z 6(0 ;)
Ry = Ef((a(d x )" +b Z Abom H18" (15 (kvmys)> D) L = 1, ,m)
k,m=0
1 bK (o)
" — % SO Ak Hro" (ks (htmys) — 67 (4%, 4% 4r))> ¥)-
i=1 k,m=0
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The last term is deterministic: put

Rs = f({a(@ox )" +b > ApmHrd" (ks krmysy d1),1=1,...,m)
k,m=0
(b —b Z Ak,mHTéT(k(s,(k+m)5):¢>-
k,m=0

It remains to show that the remainders tend to zero, as 6 — 0 and K — oo.
Here the rate of convergence will depend on the rate of convergence in the
Glivenko-Cantelli Theorem.

4 Examples for Gaussian Approximations

4.1 Iterates of Random Maps

This example has been treated in Barbour et al. [16]. Let h: I =[0,1] — I be
piecewise monotone C' and uniformly expanding: that is, there is a finite set
U =U(h) of points

O=wuyg <u; < <Upy <Up,41 =1

in I such that, for each interval J; = J;(h) = (u;_1,u;), both h restricted to J;
and its continuous extension to [u; 1, u;] are C' and monotone, satisfying

1 <¢(h) < |W(z)] < C(h) < o0

for all z. We denote the rth iterate of h by h,.. A (measurable) set A is said
to have period r if h,.(A) = A, where A = B means that A(AanB) = 0 and A
denotes Lebesgue measure; if A has period 1, it is called invariant. An invariant
measure is a measure g such that u(h 1(A4)) = u(A) for all A. We assume the
following.

1. There are no periodic sets A with 0 < A(4) < 1.
2. There exists an 7 = 71 > 1 for which |k (z)| > 4 for all z ¢ h,.(U(h,)).
3. h' is piecewise Holder continuous with exponent ¢, for some 0 < ¢ < 1.

First in Lasota and Yorke [50] and then, more generally, in Keller [49],
it is shown that under these assumptions, there exists at least one invariant
probability measure p which is absolutely continuous with respect to A, and the
density f of u is of bounded variation.

Our interest lies mainly in the extent to which the properties of the h—
sequence {h,(zg),r > 0} mimic those of a more conventional stochastic process,
when z is suitably chosen at random. If zq is exactly known, the whole future
of the h—sequence is completely determined, and randomness does not enter at
all. However, in practice, o can never be known without error, and the small
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uncertainty in the value of 2o has an enormous effect on the later values in the
sequence. A Gaussian approximation for the empirical process of these iterates
is one example of the parallels to conventional stochastic processes.

First observe that if z¢ is chosen at random according to the invariant mea-
sure u, then the h—sequence is a stationary Markov chain taking values in I,
as is its time-reversal; see, for instance, the references given in Isham (1993,
Section 3.6.3). An advantage of considering the time-reversed process is that
randomness enters progressively at each step, and not only when setting the
initial state xg, making the analogy with classical stochastic processes clearer.
Secondly observe that the time reversal of the h—sequence of a uniformly expand-
ing map has an induced contraction property, which enables coupling methods
to be introduced. It is shown in Barbour et al. [16] that the first steps in a
time-reversed chain starting in z¢ and in one starting in xj can typically be
realized in such a way that, with high probability, after one time step the chains
take the values z; and z, respectively, such that ; = ¢(xo) and =} = ¢(z()
for the same branch ¢ of h~!. If this is the case, then

|71 — 21| = |$(z0) — ¢(ap)] < w0 — | Slél;{l/lh'(y)l} = c(h) " zo — x|,
Yy

and the positions of the two chains after one step are closer than they were
initially, at least by a geometric factor of ¢(h)~! < 1. With some effort, Bar-
bour et al. [16] prove that, however two time-reversed chains (Y,, n > 0) and
(Y, n > 0) are started, they can be realized simultaneously in such a way that

|Y,, = Y| < Zc(h)~™ for all n, where Z is a random variable with Pareto tail.
Theorem 19 There is a constant K > 0 and there are constants 0 < o, 8 < 1,

(related to the function h,) such that, if m = max{(2+ %)/ logc,2/log £} log N,
then

K
Cres(EniCn) < 20m°N™2 + KN 4 N7 {m +4(m + 1)K}
= O(N_% log? N).
A proof of this theorem can be found in Barbour et al. [16]. The main tools

used are, firstly, the exponential decay of correlations. Suppose that u; and us
are smooth integrable functions. For any g : [0,1] — R, we define

1
mgim) = / sup  |g(2) — g(2)| de;
0 {z:|lz—z|<n}nT

m,(g9) = Osmzln’”m(g,n);
<n<

mo(g) = Sungg(w)—g(y)l=m(g,1)-
z’y

Here T is a set of Lebesgue measure 0 that accounts for the jumps in h. Suppose
that Xy has a density go satisfying m.(go) < co. Then, for some K < oo, under
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smoothness conditions on the function g we have (see Barbour et al. [16])

B (Xo)ua (e (X))} = [ @) o [ wa(@)f (o) i

I

< Ko [ @)l de{ [ u@)lana) da +mo(goyms (] ).

The second ingredient is a coupling of the time reversal (Yi,...,Y,) of
(X1,...,X,) with an m-dependent process (Y{,...,Y;!). In particular, in Bar-

bour et al. [16] it is shown that for each n > 0, we have

PV, rn — Yogm| > 2™ < Kz=?, x>0,

so that, for instance,

N+m
P[J I -v|>N 2| <KN

j=m

whenever m > (2 + 3/3) log N/ log ¢, where ¢ = ¢(h).

Once this m-dependent approximation has been proved, all that remains is
to apply the results for the local approach. As this gives an explicit bound on
the distance, it is possible to optimize the choice of m.

4.2 Simple Random Sampling

Let A = {a1,... .,an} be a set of nonnegative numbers such that > a > 0.
a€A
Let us assume that the elements of A are distinct. Consider the random vector

X = (Xy,...,X,,) obtained by a simple random sample of size n from A, that
is, X is a realization of one of the equally likely N(,) n-dimensional vectors
of distinct elements of A (n < N). Let &, be the corresponding empirical
measure. The construction of the zero bias coupling for real-valued random
elements is given in Goldstein and Reinert ([43]). In the construction from
Section 1, because of exchangeability we may choose I = 1. Independently of
Xi,...,Xn, pick a pair (X!, X/) from the distribution

q(u,v) = %1({%@} C A).

Firstly then, independently of the chosen sample X, pick (X!, X?) from the
distribution g(u,v). The random variables (X!, X!) are now placed as the first
two components in the vector X. The remaining n — 1 random variables X
are sampled by rejection. If the two sets {Xs,... ,X,} and {X/, X!} do not
intersect, fill in the remaining n — 1 components of X with (X,,...,X,). If
the sets have an intersection, remove from the vector (Xs,...,X,) the two

random variables (or single random variable) that intersect and replace them
(or it) with values obtained by a simple random sample of size two (one) from
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A\ {X],X! X,,...,X,}. This new vector now fills in the remaining n — 1
positions in X. In Goldstein and Reinert [43] it is shown that this construction
yields a bound of order % for the normal approximation of W = Y7 | X;,
provided the elements of A are scaled such that a; = \C/—%, where ¢1,...,cy do
not depend on n.

Now we apply this construction to empirical measures. Pick a function
¢ € H, where H is the set of all function s ¢ € C such that E{£,¢) = 0.
Instead of considering the vector (Xi,...,X,), we now consider the vector
(¢(X1),...,0(Xy)). For simplicity assume that ¢(z),z € A, are all distinct
values. Then we may use the above to construct

XGi = (9i(X1)s .-, 9i(Xn))*

The empirical measure of this vector is & ;. ;.. One can show that (X};) for
i # j can be attained simply by taking the equal mixture of Xj; and X7,. This
completes the construction of {5;;’ e ¥,¢ € H}. As in each step, at most two
of the underlying random elements are changed, Theorem 11 yields a bound of
6n'/2 on the distance to the corresponding Gaussian random measure.

5 Joint Occurrences of Multiple Words in DNA
Sequences: An Example for Poisson Approx-
imation

A Poisson point process approximation can be seen as a multivariate Poisson
process approximation for the process of indicators. There are a multitude of
examples for this approach, see for example Arratia et al. [3]. Here we give
only a recent one, for which the analysis has been carried out by Reinert and
Schbath [65].

Consider a stationary Markov chain M = {X;};cz on a finite alphabet A,
with transition matrix II such that II(z,y) > O for all z,y € A. This implies
that the Markov chain has a unique stationary distribution p defined by

u(z) = Z w(y)d(y,z) for all z € A.
yEA

Let 4 = ujus---ug be a word of length £ on A. Say that an occurrence of u
starts at position ¢ in the infinite sequence M if X; X; 41 -+ Xipo—1 = uruz - - - uy,
and denote the indicator random variable of this event by I;(u). Thus the
expectation of I;(u) is given by u(u) = w(ur)I(uy,us)---M(ue_1,us) . Note
that in reality we only observe a finite segment S = X7 X5 - - - X, of the infinite
sequence M. In what follows we will be concerned with counting the joint
number of occurrences of words u and v in S; for simplicity we assume that
they have the same length. A more general case is treated in Reinert and
Schbath [65]. Through this section the example S = TAAGAAGAAGAAGAAGT and
u = AAGAAGAA is used. In this case, the word u occurs in S at positions 2, 5 and
8.
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In order to study the occurrences of a word w the concept of clumps of a
word u is introduced. A clump of u in a sequence is a maximal set of overlapping
occurrences of u in this sequence; no two clumps of u overlap in the sequence.
Say that a clump of u starts at position ¢ in the infinite sequence M if an
occurrence of u starts at position ¢ in M and if this occurrence is not overlapped
by a preceding occurrence of u. Denote the corresponding indicator random
variable by I;(u); i.e.

i—1

L(v) = L [[ (1-Lw).

j=i—t+1

Denote by pi(u) the probability that a clump of u starts at a given position in
M.

Now let 4 = ujus - --ug and v = v1vs - - - v¢ be two different words of length
£ on A. To describe the possible overlaps between u and v, we define

Pu,v) == {pe€{l,...,0—1}:v; =ujyp, foralli=1,... ¢ —p}.

Thus P(u,v) # () means that an occurrence of v can overlap an occurrence of u
from the right, and P(v,u) # ) means that v can overlap u from the left. Note
the lack of symmetry; for example, if 4 = AAGAAGAA and v = AAGAATCA, we have
P(u,v) = {3,6,7} and P(v,u) = {7}

Firstly, we define the Bernoulli and the Poisson processes that will be used
to apply Theorem 6. We form the random vector Y = (Y;);cr, with index set
I={1,2,...,2(n—£+1)}, as

P =

- | L ifl1<i<n—f+1,
L) ifn—-f+1<i<2n—£+1),

with the notation

i:{l ifl1<i<n—0+1, (28)

i—n+fl-1 ifn—fl+1<i<2(n—L+1).

Thus Y is the concatenated vector of the occurrence indicators for clumps of u
and clumps of v. Note that we do not consider “mixed” clumps of u and v; each
clump consists only in occurrences of u, or only in occurrences of v. However,
a clump of y may overlap a clump of v in the sequence.

Let Z = (Z;)ser be a random vector of independent Poisson variables such
that

7. { Po(p(u)) if1<i<n—f£+1,
¢ Po(p(v)) ifn—f4+1<i<2(n—£0+1).

To apply Theorem 6, we choose the following neighborhood of ¢ € I:

B, :={jel:|j—1i <3(-3},
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where the notation j is defined in (28). Define the quantities

20—2
Q= > I,
s=1
1
M(Qaﬂ) = pepz(u’v) Wl(ﬂ 75 Q),
Ti(u,v) = 2(n—L+1)p(w)i(v) (% + M (v, u)) .

The quantities M (u,v) and M (v, u) can be seen as measures of the overlapping
structure between u and v. If w and v cannot overlap, these quantities are
equal to zero; otherwise, the more they can overlap, the larger are M (u,v) and
M (v, w).

Moreover, we need some quantities related to the transition matrix. Let
(@)i=1,...,).4| be the eigenvalues of IT such that |a;| > |az| > --+ > |a|4/|- Then
a1 = 1 and |as| < 1; abbreviate as by a. Define matrices Q¢,t = 1,...,|A|
satisfying the decomposition

|A|

II = Z OétQt.
t=1

Define v, (¢,a) for any a € A by

Vl(éaa)
1 afad,
= > ul) max 1) > talt Qe(z,0)Qv (a,y)
a:’ye'A M (twt’);é(lvl)
Al 402
«
_Z tae Qt(xay) .

Note that 71 (¢,a) depends on £ and is bounded by a constant. Then Reinert
and Schbath [65] showed the following theorem.

Theorem 20 With the previous notation, we have

drv (L), £(2))

< (n—L+1)(60 - 5) (Ri(u) + Fi(v))®
+T (u, u) + T (u,v) + T (v, u) + T (v, v)

= e+ Dlaf (6 uit) + (6007 ).
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If the X;’s are independent, then the bound simplifies to

drv (£(9),£(2))

< (n—L+1)(60—5) (fi(w) + fiw)®
A — £+ 1)(E = 1) (u(w) + p) (iw) + fiw)

12(n— 04 1) (u(u)ﬁ(y)M(y, w) + p(w)7i(u) M (a g)) .

6 Open Problems

Stein’s method for empirical measures can be a powerful tool in many examples
where there is a dependence structure between the underlying random elements.
In particular this applies to bootstrap procedures and to interacting particle
systems (unpublished works with Larry Goldstein). Many more examples would
be desirable, to illustrate the use of the method and of different couplings. Note
that the couplings described above serve as examples, not as a complete list -
in specific problems, other couplings might be more appropriate.

Moreover it would we very interesting to apply the method to processes
requiring a time structure. The above results do not include tightness, so
there might be additional work needed. In particular it might be interesting
to investigate the quality of discrete approximations to measure-valued diffu-
sion processes, as in Donnelly and Kurtz [35], for example. Finally it would
be interesting but challenging to investigate the empirical measure process of
superprocesses as described in Gorostiza [45].

Acknowledgements. I would like to thank the organizers for the opportu-
nity to present these lectures. In particular I would like to thank Luis Gorostiza
for many fruitful discussions. Moreover, the referee has made many helpful re-
marks. Lastly, the zero bias example for a simple random sample of random
measures is based on unpublished work with Larry Goldstein.
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