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Abstract. A General Stochastic Epidemic with non-Markovian transi-
tion behaviour is considered. At time ¢ = 0, the population of total size
K consists of aK individuals that are infected by a certain disease (and
infectious); the remaining bK individuals are susceptible with respect to
that disease. An initially susceptible individual i, when infected (call AKX
its time of infection), stays infectious for a period of length r;, until it is re-
moved. An initially infected individual i stays infected for a period of length
7;, until it is removed. Removed individuals can no longer be affected by
the disease. A bound to the distance of the empirical measure

1 aK 1 bK
€ =32 D000 + 7 D Oar Ak )
i=1 =1

describing the average path behaviour, to its mean-field limit is established,
using Stein’s method. The bound, being in fact the first bound available
for this mean-field approximation for epidemics, gives explicit constants
depending on the time length that the epidemic is observed, and on the
total population size.



Introduction

In 1949, Bartlett [13] introduced the General Stochastic Epidemic (GSE).
This is a birth-death-process in a closed population where the temporal
evolution of one individual depends “uniformly” on those of the others. In
a closed population with K individuals, at time ¢ = 0 a proportion a of
the individuals is infected by a certain disease (and infective); the remain-
ing bK = (1 — a)K individuals are susceptible to that disease. Infectious
individuals will get removed after some time, e.g., by lifelong immunity or
death, and are then no longer affected by that disease. Thus we have an
SIR model.

In Bartlett [13], the general stochastic epidemic is defined as a Markov
process (Xk (t))¢>0, where X (t) = (Yr (t), Zk (t)), taking values in the set
S={(r,s):r<(1—-a)K,r+s < K,r,s € N}, with Xg(0) = (K — a,a)
and transition probabilities (o, 8 > 0)

P Xg(t+At)=(r—1,s 4+ 1)|Xg(t) = (r,5)] = arsAt + o(At)
P[Xk(t+ At) = (r,s — 1)| Xk (t) = (r,8)] = BsAt + o(At) (0.1)
P[Xk(t+ At) = (r,s)| Xk (t) = (r,5)] = 1 — (ar + 8)sAt + o(At)

for (r,s),(r,s —1),(r —1,s + 1) € S. Here, Yk(t) is interpreted as the
number of susceptibles, and Zg (¢) is the number of infectives, respectively,
at time ¢. An infective individual is assumed to be infectious during its
infected period, and no multiple infections are allowed.

Often it is convenient to use the time-scale given by 7 = §t; the quantity
p = %, the ratio of removal-rate to infection-rate, is called the relative
removal-rate and is a critical parameter for the epidemic; see Bailey [4].

In the following, similar to the construction of Bartlett’s GSE by Sellke
[42], we will consider a generalization that was first studied in Reinert [37];
we also apply the term “GSE” to this more general model.

From the viewpoint of an individual, the epidemic process can be de-
scribed as follows. Let (l;,7;)ienw be a family of positive i.i.d. random
vectors, and let (7;);cv be a family of positive, i.i.d. random variables.
Assume that the families (I;,7;);env and (7;);cwn are mutually independen-
t. An initially infected individual i stays infectious for a period of length
7;; then it is removed. (That the 7; need not have the same distribution as
the r; reflects the possibility that an infected individual has already been
infectious for a certain period before, at time ¢t = 0, it is observed.) An
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initially susceptible individual 4, once infected, stays infectious for a peri-
od of length r;, until it is removed. Furthermore, an initially susceptible
individual ¢ accumulates exposure to infection with a rate that depends
on the evolution of the epidemic; if the total exposure reaches [;, the indi-
vidual 7 becomes infected. The possible dependence between [; and r; for
each fixed 7 reflects the fact that both the resistance to infection and the
duration of the infection may, for a fixed individual, depend on its physical
constitution.

More precisely, an initially susceptible individual ¢ gets infected as soon
as a certain functional, depending on the course of the epidemic, exceeds the
individual’s level [; of resistance; denote its infection time by AX. If Ik (t)
denotes the proportion of infected individuals present in the population at
time ¢t € IR, then AX is given by

AK = inf{t € Ry :/ A(s, I )ds = l}
(0,1

for a certain function A, acting on time as one variable and on a function
path as the second variable; this function will be specified later.

Since, for epidemics, the length of the infectious period of an individual
is usually very small compared to its life length, we neglect births and
removals that are not caused by the disease, as well as any age-dependence
of the infectivity or the susceptibility. Thus the model studied is a closed
epidemic. Furthermore, the population is idealized to be homogeneously
mixing.

From this construction, Bartlett’s GSE can be recovered by choosing
A(t,z) = z(t), (I;) being i.i.d. exp(a), and (7;), (r;) being i.i.d. exp(S3) for
some a > 0,8 > 0; for each i, [; and r; are independent. The same model is
obtained by choosing A(t, z) = axz(t), (I;) being i.i.d. exp(1), and (#;), (r;)
being i.i.d. exp(f) (in this sense, Sellke’s construction is ambiguous.) From
now on, for Bartlett’s GSE we shall use the parametrization \(¢, z) = ax(t),
(1;) being i.i.d. exp(1), and (#;), (r;) being i.i.d. exp(B).

For applications see, e.g., Berard et al. [14], Swinton et al. [46], to name
but a few; often latency periods are included. This model is rather rigid
in assuming a Markovian structure. In particular, in fungi infections for
instance, the accumulation function should not be modeled as directly pro-
portional to the number of infectives present at any given time, but should
rather involve the entire history of the process. Moreover it is often not
reasonable to assume the duration of the infectious period to be exponen-
tially distributed (the memoryless assumption is obviously frequently not
appropriate); see, e.g., Keeling and Grenfell [26]. This motivated the above
generalization.

In the literature, a generalization in the same direction has been inves-
tigated by Wang [47], [48], still assuming Markovian transition behaviour,
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i. e. the law of Iy being L£(l1) = exp(a) for some a > 0. Moreover, he
assumed that /; and r; are independent for each individual, and he chose
the special type of accumulation function A(¢,z) = A(z(t)). For general ),
Solomon [43] has discussed a related, age-dependent population model that
deals only with one class of individuals, with an easier dependence struc-
ture. The case of variability among susceptibles, for a Markovian model,
has been studied by Picard and Lefevre [35], for example.

Typically, for epidemics the vector of the proportion of susceptibles, in-
fected and removed individuals is studied. The information in this vector is
limited; though. For instance, one might also be interested in the proportion
of individuals that were infected before time s and are not removed before
time ¢, that is the infectivity at time ¢ in the population resulting from
individuals that were infected before time s. This quantity is of interest if,
for example, an immunization campaign was started in the population at
time s.

For large populations, stochastic epidemic models are often approximat-
ed by their mean-field limits, yielding deterministic epidemic models for the
dynamic variables. This approximation being warranted only for large pop-
ulations, bounds on the rate of convergence of the stochastic model towards
the deterministic model are needed to make the mean-field approximation
useful in practice. Yet, so far there are no bounds given in the literature.
Here we will derive explicit bounds for any finite time interval. We will
show that there is an explicit constant C, depending on the length of the
time interval for which we observe the epidemic, such that the distance
(in a metric based on smooth test functions) will never be larger than this
constant times K ~'/2. This bound is valid for any finite population.

The quantity we will approximate is not only the vector of the proportion
of susceptibles, infected and removed, but rather the whole average path
behaviour of the epidemic process, given by the empirical measure

1 aK 1 bK
€k = 3¢ Z d(0,7;) + T Z O(AK AK 4ry)-
=1 =1

As not necessarily (and hopefully) not every individual in the population
gets infected by the disease, the total mass of £x can be less than 1. Thus
&k is a substochastic measure on [0,00)%, where the half-open interval
[u,v) C [0,00) is represented by the point (u,v) € [0,00)2. (In general, J,
shall denote the Dirac measure at the point ). We could think of a point
process with values in the positive quadrant [0,00) % [0,00), each point
marking infection time and removal time for one individual. For a Borel
set B, the empirical measure £x then returns for B the number of points
of this process that are in B.

From the empirical measure the proportion of infected and the proportion
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of susceptibles can easily be derived. For instance, if ¢ > 0,
bK

1
€k ([0,¢] x Z Lo, (1) + = Z Liax ax iy (t) =t Ik (t)
1—1
describes the proportion of infected present at time ¢. Moreover, we can
also investigate quantities like

fK([Oﬂg] X (t7 OO]), t>s,

giving the proportion of individuals that were infected before time s and
are not removed before time ¢. Thus we gain new insights concerning the
behavior of the epidemic.

As a tool for deriving this result, we will employ Stein’s method. In the
context of empirical measures it has been derived in Reinert [36]. In Reinert
[37] it has been used to prove convergence of the average path behaviour
to its mean field limit, but no bound on the rate of convergence has been
given. This void will be filled in the present paper.

The novelties of the approach described here are thus the generality of the
considered model (not assuming any Markovian structure), the generality
of the quantities that can be approximated, and, perhaps most important-
ly, the first known bound on the quality of mean-field approximations in
epidemics.

For didactical purposes, the paper is organized as follows. In Section
1 we give a brief review of Stein’s method. For measure-valued random
elements, some technical background is described, and the main results of
Stein’s method for mean-field limits are recalled. In Section 2 we apply
Stein’s method to the GSE, yielding an explicit bound on the distance of
the GSE to its mean-field limit. In Section 3 we discuss the above results
and we point out directions of future research.



CHAPTER 1

A brief introduction to Stein’s method

Stein’s method has first been introduced by Stein [44] for proving normal
approximations. This method avoids characteristic functions, but instead
relies on a characterizing equation for the normal distribution. The distri-
bution of any random variable would then be approximately normal if it
satisfies the characterizing equation approximately. Indeed, the deviation
from satisfying the characterizing equation exactly turns out to provide
a measure on the distance to the normal distribution. (Lately, Langevin
equations have been used in a similar spirit.)

1.1 Stein’s method for normal approximations

As this chapter is designed to give a brief introduction to Stein’s method,
we will first illustrate this method by its original example - normal approx-
imations. First described in Stein [44], in more detail it can be found in
Stein [45]; improved bounds are in Baldi et al. [5]. It can be sketched as
follows.

1. A random variable Z has standard normal distribution, that is, £(Z) =
N(0,1), if and only if for all smooth f,

E{f'(2) - Z{(2)} =0.
2. Let £(Z) = N(0,1). For any smooth h there is a function f = fj solving
h(z) — Eh(Z) = f'(z) —zf(z) (Stein equation)

such that
T
[Fal \/ g llh = Eh(Z)]

<
Il < (suph—infh)
AN < 20w

Here, || f ||=sup,cr |f(x)| denotes the supremum norm.

3. So for any random variable W, any smooth A, substituting W for z in
the Stein equation and taking expectations on both sides gives

Eh(W) — EWZ) = Ef (W) — EW f(W). (1.1)
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Now if #H is a convergence-determining class for weak convergence such
that, for all h € H we have that f;, € H, then taking absolute values in
Equation (1.1) gives

sup [IEM(W) — IER(Z)| = sup |Ef' (W) — EW f(W)],
heH feEH

and if the r.h.s., for some quantity W = W,,, tends to zero as n — o0,
then we obtain a central limit theorem. In particular, we can choose H as
the space of all continuous, bounded functions with piecewise continuous,
bounded first derivatives. Similar results for nonsmooth test functions have
been obtained by Bolthausen [15], by Gotze [23], and by Rinott and Rotar
[40].

To see why this approach might be useful at all, consider a very classical
example. Let X, Xy,...,X,, ii.d. random variables with EX = 0 and
VarX = % Then

n
i=1
has mean zero and variance 1. Put

Wi:W—XiZZXj.
J#i
To evaluate the right-hand side of Equation (1.1) we first calculate

EWfW) = Y EX;f(W)
=1
= Y EX;f(W)+> EX}f'(W)+R
=1 =1
1 & ,

where we used Taylor expansion, and for the Taylor remainder term R we
have

IRl < 11D BIX.

i=1

So

Ef(W) - BWW) = S B{f) - f(W)} +R
=1

Applying Taylor expansion again we obtain the following result (see, e.g.
Stein [45]).
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Theorem 1.1.1 Let £(Z) = N(0,1). For any smooth h

2 n
! 3
[ERW) —ENZ)] < ||B]] <ﬁ + ZEIX,- |> :
i=1
Note that the bound on the r.h.s. does not involve any asymptotic state-
ment; rather, it is valid for any number n. Thus, even if convergence might
not hold, a bound on the distance is still be obtainable.

Stein’s method has been proven particularly useful for proving results
for sums of dependent observations. Consider, for example, the case that
X, Xy,...,X,, are random variables with IEX = 0 and VarX = %, such
that for each X; there is a set S; such that X; is independent of o(Xj,j ¢
Si)- (A special case would be m-dependent random variables.) For simplic-
ity assume that |S;| = « for some +, and that X; < % for some constant
C that does not depend on i. Again put

W:ZHIXi.

If v is small, then the summands are approximately independent, so that
a normal approximation should hold. Indeed, we will prove the following
result.

Theorem 1.1.2 Let X, X1,...,X, be random variables with EX = 0
and VarX = %, such that for each X; there is a set S; such that X;
is independent of o(X;,j & S;). Assume that |S;| = v for some v. As-
sume that X; < % for some constant C that does not depend on i. Let
L(Z) = N(0,1). For all continuous, bounded functions h with piecewise

continuous, bounded first derivatives,
[ IEn(W) — IEh(Z)|

10~2(C3 n
07 +(suph—infh) > Y XX

< Xl
v i=1 j€Si,j#i

Note that Theorem 1.1.2 gives an explicit bound in terms of neighbor-
hood size and number of observations, as well as correlations. If the covari-
ance term is large, one would rather approximate the sum with a normal
distribution having as variance Var(}_; ; X;); then the second error term
in Theorem 1.1.2 vanishes.

Proof of Theorem 1.1.2.
Put

WZZZXJ

JESi
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Wij= > X

kgS;US;
Then W; is independent of X;, and W;; is independent of X; and Xj.
Similarly as above, we expand the right-hand side of Equation (1.1). We
have

and

EWf(W)

i EX;f(W

= Z]EXf +ZZEXXf Wi) + Ry

i=1 jES;
= Z > EXiX;f'(Wi) +R
i=1 jES;
where

11D BIX X X

i=1 jES; kES;
,72c3
vn

| Ry |

IN

AN

< I

Moreover,

ZZEXXf ZZEXXf Wi;) + Ra,

i=1 jES; i=1 jES;
where
112" > EIXX;|E|X|
i=1 j€S; keS;US;
27203
T

Using Taylor expansion again, we obtain

SN EXiX;f'(Wiy) =

i=1 jES;

|Rz|

INA

IN

1Nl =—=

M:

EX;X;Ef (W; ;)

.
I

1 jE€S;

o

[
M:

EX;X;IEf (W) + Rs,

-
I

1 j€S;
with
27203

[Rs| < If"Il=7 N
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thus,

EWfW)=Ef'(W)+>_ Y EXX;Ef(W)+R;+Rs+Rs.
i=1 j€ Sy, ji

This yields the result. |

A more detailed survey on Stein’s method for normal approximations is in
Reinert [38].

1.2 Stein’s method in general

Stein’s method in general can briefly be described as follows. Find a good
characterization (that is, an operator A) of the target distribution p that
is of the type

LX)=p <= EAf(X) =0, for all smooth functions f,

where X is a random element, £(X) denotes the law of X. and A is an
operator associated with the distribution u. Then assume X to have dis-
tribution u, and consider the Stein equation

h(z) — Eh(X) = Af(z), z € R. (1.2)

For every smooth h, find a corresponding solution f of this equation. Then,
for any random element W, we obtain

Eh(W) — Bh(X) = BEAf(W).

Hence, to estimate the proximity of W and X, it is sufficient to estimate
EAf(W) for all possible solutions f of (1.2). Moreover, bounding IEAf(W)
for all smooth f automatically yields a bound on the distance of L(W) to
1 in a smooth metric, regardless of asymptotics.

For p being the standard normal distribution, the corresponding operator
is Af(z) = f'(z) — zf(x). Of course the operator could also be defined as
a second-order operator, namely Af(z) = f"(z) — zf'(z), the Ornstein-
Uhlenbeck generator.

Barbour [8] suggests employing as operator A in equation (1.2) the gen-
erator of a Markov process, as this provides a way to look for solutions of
(1.2). This is what in the following will be called the generator method.
Suppose we can find a Markov process (X (¢))¢>0 with generator A and u-
nique stationary distribution y, such that £(X (t)) = u (t = oc); here, =
denotes weak convergence. Then, if a random variable X has distribution
1,

FEAf(X)=0
for all f € D(A). Now a method for solving equation (1.2) is provided
by Proposition 1.5 of Ethier and Kurtz ([20], p. 9; for the argument, see
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Barbour [8]). Let (T%)¢>0 be the transition semigroup of the Markov process

(X(t))e>0- Then
¢
Tih—h = A(/ Tuhdu).
0

As (Ti)¢>0 is a strongly continuous contraction semigroup, A is closed
(Ethier and Kurtz [20], Corollary 1.6), and we could formally take lim-

its:
h(z) — Eh(X) = —A(/OOO Tuhdu).

Thus f = — f0°° T h du would be a solution of (1.2), if this expression exists
and if f € D(A). This will in general be the case only for a certain class of
functions h. However, the latter conditions can usually be checked.

Stein’s method has been generalized to many other distributions, fore-
most the Poisson distribution (see Chen [16], Arratia et al. [3], Barbour
et al. [10], Aldous [1], to cite but a few). Other distributions include the
uniform distribution (Diaconis [18]), the binomial distribution (Ehm [22]),
the compound Poisson distribution (Barbour et al. [9], Barbour and Utev
[12], Roos [41]), the multinomial distribution (Loh [27]), the gamma distri-
bution (Luk [29]; for the x? distribution see also Mann [30]), the geometric
distribution (Pekoz [34]) and, more generally, Pearson curves (Diaconis and
Zabell [19], Loh [28]).

The most obvious advantage of Stein’s method is that it yields immediate
bounds. Moreover in many situations where dependence comes into play the
application is straightforward; many examples are of combinatorial nature.
An early success of Stein’s method is the work by Bolthausen [15] for a
combinatorial central limit theorem; he was the first to obtain the correct
order for this approximation. In examples from random graph theory, where
the method of moments used to be the most popular technique, Stein’s
method allowed not only to provide rates of convergence for the first time,
but also to weaken conditions; see, for instance, Barbour et al. [11]. Another
advantage of Stein’s method is that it can also be used to derive lower
bounds for the approximations; Hall and Barbour [24] applied it to give
lower bounds for the rate of convergence in the central limit theorem for
independent random variables.

Unfortunately such a straightforward application of Stein’s method may
not yield the correct order for the rate of convergence; for an example, see,
e.g. Reinert [38].

1.3 Stein’s method for the weak law of large numbers

Here we will be interested in applying Stein’s method to point mass in
measure space, as developed in Reinert [36], resulting in weak laws of large
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numbers. Point mass can be seen as an extreme case of the normal distri-
bution with zero variance. Hence we put

Af(z) = —zf'(z), = € R.
Note that A is the generator of the deterministic Markov process (Y (t))¢>0
given by
PY(t)=ze ' | Y(0)=2]=1, 2€ R.
The corresponding transition semigroup is
T;h(x) = h(ze ™),

and the unique stationary distribution is do.
According to the general equation (1.2), the Stein equation in this context
is
h(z) — h(0) = —zf'(z), =€ R. (1.3)

Let CZ(IR) be the space of all bounded, twice continuously differentiable
real-valued functions on IR with bounded first and second derivatives, and
let D7 (IR) be the space of all twice continuously differentiable functions
f : IR —» IR with bounded first and second derivatives. Using the semigroup
approach the following proposition is easy to derive.

Proposition 1.3.1 For any h € CZ(IR), there is a function f = ¢(h) €
D}(R) that solves the Stein equation (1.3) for h. Furthermore, for the
derivatives, || f']| < [|B|l, and |lf|| < [["]]-

Now we have all the ingredients to derive weak laws of large numbers.

Theorem 1.3.2 Let (X;)iew be a family of random variables on IR, de-
fined on the same probability space, with finite variances. Put
1 n
Y, = - ;(X,- - EX;).
1=

Then, for all h € C%(IR)
[BR(Y,) — h(0)| < [I3"]] Var( > 3 X;).
- =t
The proof of Theorem 1.3.2 follows easily using Taylor expansion (indeed,
it is not even necessary to employ Stein’s method).
As C?(IR) is convergence-determining for weak convergence of the laws

of real-valued random variables, a weak law of large numbers follows from
Theorem 1.3.2 provided that

Var(% iX,) =0 (n— c0).

Moreover we obtain an explicit bound on the distance to point mass.
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1.4 Stein’s method for the weak law in measure space

As the quantity £ we want to approximate is a random element taking
values in the space of substochastic measures, some technical details on
convergence on this space are needed (see, e.g., Reinert [36], [39]). Let E
be a locally compact Hausdorff space with a countable basis (for instance,
E = R?), let £ = B(E) be the Borel-o-field of E, and let M(FE) the space
of all bounded Radon measures on E, equipped with the vague topology.
Let C.(E) be the space of real-valued continuous functions on E with
support contained in a compact set. Abbreviate the integral

(11,6) = /E b,

Convergence in the vague topology is defined as
Vp = v < forall f € C.(E): (vn, f) = (v, f) (n— ).

For probability measures this differs from weak convergence in that the class
of test function is not Cy(E), the class of bounded continuous functions on
E. Thus, for example, if E = IR and v, = d,, then v, = 0, but (v,), does
not converge weakly. Here, 0 denotes the measure that assigns measure 0
to any set. In what follows, weak convergence is denoted by =.

For j1 € MP(E), set ||ul| = sup sc¢ |n(4)]. Let

My (E) = {p € M"(E) : p positive, [|ul| < 1}

be the space of all positive Radon measures with total mass smaller or
equal to 1 (the space of substochastic measures). As E has a countable
basis, M, (E) is Polish with respect to the vague topology. Moreover M, (E)
is vaguely compact with a countable basis. Thus the considerations about
vague convergence are valid for both E = IR? and E = M;(IR?).

The next ingredient needed is a convergence-determining class of func-
tions. Put

F := {F € Cy(M;(IR?)) : F has the form
F(N) =f(</1/7¢1)77</1’7¢m>) (14)
foran m € IV, f € C;°(IR™)
with ||/l < LI < L[l <1, and for
¢; € Cp°(R?) with [|¢i]] <1, (Il < 1,i=1,...,m}.
Here the superscript ’ indicates the total derivative, and the norm || - ||
indicates the sum of the supremum norms of the components, so that,
for f € Cy°(IR™), the space of infinitely often differentiable continuous
functions from IR™ to IR with bounded derivatives, || f' [[= 1", || f;) II,

where f(;) is the partial derivative of f in direction z;.
This construction is similar to the algebra of polynomials used by Dawson
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[17]. In Reinert [36] it is shown that this class of functions is convergence-
determining for vague convergence. Thus it is a suitable class for Stein’s
method. One could even introduce a Zolotarev-type metric using F; see
Reinert [39] for details.

Now we have all the ingredients needed to set up Stein’s method on the
space of substochastic measures. Following Reinert [36], the corresponding
generator for the weak law of large numbers for random measures with
target measure 8, for some p € M;(IR?), is, for F € F of the form (1.4)

AF(V) = Zf(z)((ya ¢.7')7j = 1;---,m)<V_H;¢z’>- (15)

i=1
(This can be seen as a Gateaux differential operator.) Moreover, the Stein
equation has smooth solutions; we have

Proposition 1.4.1 For any function H € F, there is a function(H) € F
that solves the Stein equation with the operator (1.5) for H. If

H() = h({v,¢1), ..., (v, dm)),
then
Y(H) () = f({v,41), .., (v, dm))
for a function f € C°(IR™) with ||f®|) < [|h®)]| for all k € IN.
Stein’s method then immediately yields the following theorem.

Theorem 1.4.2 Let &, be a random element with values in M, (IR?), let
p € Mi(IR?), and let A be as in (1.5). Then

sup{|EH ({n) —H(p)| : He F} < sup{|EAF()|: F € F}.

Many examples on how to apply this theorem are given in Reinert [36].
Here we will apply it to the GSE as constructed above.






CHAPTER 2

A bound on the distance of the GSE
to 1ts mean-field limit

2.1 Assumptions

As described in the introduction, let (I;,7;);cv be a family of positive
i.i.d. random vectors, let ¥ be the common distribution function of the
(11)ien, let @ be the common distribution function of the (r;);cmv, and let
(7s)ien be a family of positive, i.i.d. random variables with distribution
function ® and law . Assume the (I;,7:)icrv, (7i)ienw to be mutually
independent (whereas, for each fixed 4, I; and r; may be dependent). (In
Reinert [37], the #; were allowed to have different distributions; however,
although it would not be difficult to incorporate this inhomogeneity, for
the sake of presentation it has been omitted.) Let Dy = {z : [0,00) —
[-1,1] right continuous with left-hand limits}, and let A : Ry x D, — R
be the “accumulation” function. We use the notation 1¢(t) to denote the
indicator function on the set C; the notation I[t € C] refers to the indicator
of a set, not considered as a function. Then, for an initially susceptible
individual i, its infection time AX is given by

AK —inf {t €Ry: [ A Ix)ds= l} (2.1)

(0,1]
with

1 aK 1 bK
Ik(t) = T z Lio,p;) () + Ve Z 1% ax (1)
j=1 j=1

being the proportion of infected individuals present in the population at
time ¢ € IR,. This gives a recursive definition of the AX’s: If l(jy is the jth
order statistics of l1,...,lyx, corresponding to the individual i;, say, then

1 aK 1 Jj—1
AK —inf : =S Tps t 31
i; in {t >0 /(O,t] A (s, I74 mZ:l [0,7m) T K kgl [Af;,Af;-i—nk))ds

=l(j)}-

This completes the description of the model. Furthermore, we make some
technical assumptions.
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e The function A : Ry x D — IR, satisfies for all t € R, x,y € Dy
1. it is non-anticipating: A(t, ) = A(¢, x¢), where, fort,u € Ry, x € D,
zt(u) = z(t Auw);
2. it is Lipschitz: there is a constant a > 0 such that, for all ¢,

[A(t, z) = At y)| < o sup |z(s) —y(s)|; (2.2)
0<s<t

3. it is bounded: there is a constant v > 0 such that, for all ¢,

sup A(s,z) <3
0<s<t

4. we have that, for all ¢,
At,z) =0 <= z(t) =0.

e There is a constant § > 0 such that, for each z € IR, the conditional
distribution function ¥,(t) := IP[l; < t|r; = z] has a density ¢, (¢) that
is uniformly bounded from above by g;

Ye(t) < B forallz € Ry,t € R,. (2.3)

We assume that ¥ has a density ¢. (In Reinert [37] it was only assumed
that the conditional distribution function is Lipschitz continuous; how-
ever, imposing the existence of a density is more convenient.)

o We assume that $(0) = 0 and ®(0) = 0, so that infected individuals do
not immediately get removed.

For Bartlett’s GSE defined in Equations (0.1), the above assumptions are
satisfied. Choosing A(t,z) = ax(t), (I;) being i.i.d. exp(1), and (#;), (r;)
being i.i.d. exp(p), where for each 4, I; and r; are independent, we obtain

[A(t, z) = At y)| < @ sup |z(s) —y(s)|.
0<s<t

Moreover A is bounded by v = 1, and P[l; < t|r; = ] =1 — e~ has
density that is uniformly bounded by 1.

Note that we think of x as resembling the proportion of infected indi-
viduals. Thus the Condition 4. on A guarantees that, once there are no
infectives left, the epidemic stops. In Reinert [37] this assumption was not
made, which resulted in lengthy calculations.

2.2 Heuristics

To understand the argument for the limiting distribution, here is a heuristic
explanation. Put

t
Fre(t) = /0 (s, I )ds, (2.4)
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then

A = F ().
Moreover, the proportion Ik (t) of infectives present at time ¢ depends itself
on Fg; we have

aK
1

= EZ (i > t) +—Z ) <t < Fgl(ly) +15).
i=1

For f € D(IR,), the space of right-continuous functions from Ry to R
with left-hand limits, and for ¢ € IR, we define operators

Zrft) = KZ (i > t) +—Z1 ) <l; < f(1) (2.5)

Lgf(t) = A(s, Zk f)ds. (2.6)
(0,t]
Then Fx = Lk Fi; thus Fx can be described as a fixed point of an opera-
tor. Moreover, for the operator Zx the weak law of large numbers suggests
as limiting operator, for f € C(IR4),t € R4,

Zf() = a(l-8(1) +bP(f(t—m) <k < f(t). (2.7)
Accordingly we define

Lf(t) = /(0 ) A(s, 2f)ds. (2.8)

Using the Contraction Theorem it can be shown (see Reinert [37]) that on
each finite time interval the equation Lf = f has a unique solution G. It
thus heuristically follows that

FK%G.

As @ is deterministic, the desired limiting distribution of the process can
now easily be derived, and is given in the next section.

2.3 Previous results

Under the above assumptions, in Reinert [37] the following results were
obtained. For the required measure u, observe that during the course of
the epidemic not necessarily (hopefully) every susceptible will get infected;
AzK = oo for some ¢ is possible. Therefore, if such a p exists, it will in
general not be a probability measure but a positive measure with total
mass < 1. Furthermore, as the existence of IEr; or IE¥;, ¢ € IN, is not
assumed, we restrict the observations to finite intervals [0, ] x [0, T] for a
T € IR, arbitrary, fixed. This leads to some notation. For T € IR, put
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[0,T)? = [0,T] x [0,T], and Br = B([0,T]?). Let v € M(IR%), then

vl = V|BT

is the restriction of v on Br (hence, vT € M;([0,T)?)). For A € B(IR?),
put

vT(A) =v(AN[0,T]*);
this defines v also on B(IR?). If in addition X is a random element with

L(X) = v, then, for all T € R, , f € Li(v), A € B(IR?), the corresponding
restrictions are

ETf(X) / F()? (dz)

/ 14 ()7 (da)
LTFX) = L(F(X))ss

Moreover, for any T' > 0 we use the notation

I fllr = sup [F(B)].

tel0,T]

PT[X € A

Theorem 2.3.1 For T € IR, the equation
f(t) = A(s,Z2f)ds, 0<t<T, (2.9)
(0,t]

has o unique solution Gr. This solution can be obtained by an iteration
procedure: Choose an arbitrary fo € C([0,T)]), put fi = Lfo, fn = Lfn_1
for n € IN. Then,

| fn(t) = Gr(t) Iz
(5" (1+4aBT(n+1))7+2 -
- 1-¢% 4aBT(n +1)

1
Il fo—Lfo llr,
where

1
nzsup{tST:/ (1+<I>(s))ds§—}.
(0,7]
Theorem 2.3.2 For T € IR,, let Gy be the solution of (2.9) and i’ €
M;(IR%) be given for r,s € (0,T] by
FOrx0s) = [ G
(0,(s—r)VvO]

+/ U, (Gr(s — z))d®(z).
((s—7)V0,s]
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Put

ph = a(do x @) +ba".
Then

aK VK
1 T N l K K N
fgc ((O,Tz))+K;£ (AK, AKX 1)) 2 4T (K = o).

Note that it might be more intuitive to think of %' ([0,r] x [0, s]) as
ﬂT([O,T] X [0, 8]) = PT[ll < GT(T),ll < GT(S - Tl)].

In practice, Theorem 2.3.1 thus provides a numerical iteration procedure
for finding the limiting function Gr; from Theorem 2.3.2 it follows that
this function suffices to find the deterministic approximation.

Theorem 2.3.3 Let u” be as in Theorem 2.3.2. Then, for all T € IR,
L(EE)  6,r (K — ).

However, in Reinert [37], no bound on the rate of convergence was given.
As the proof employed the Glivenko-Cantelli theorem and thus almost-sure
convergence results, below we will give a different proof of Theorem 2.3.3.
First note, though, that Theorem 2.3.3 gives an approximation of the GSE
by its mean-field limit. To make this more obvious, in the next subsection
we consider the proportion of infected individuals and the proportion of
susceptible individuals.

2.83.1 The proportion of infected individuals and the proportion of
susceptible individuals

As mentioned in the introduction, the proportion of infected individuals
and the proportion of susceptible individuals can be reconstructed via k.
For t > 0,

€k ([0,t] x (t,00)) =: Ik (t)

gives the proportion of infected present at ¢,
LS
€xc((t,00] x [0,00]) = 2= S T[AK > 1] =: Sk (1)
=1

gives the proportion of susceptibles present at time ¢, and

&k ([0,t] x [0,%]) =: Rk (t)
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is the proportion of removed at time t. We obtain as weak limits for all
t € Ry with 4({t}) =0and for all T > t with P[r; =T —t]=0

R(t) = IP-lim R(t)
= a<i>(t)+b/ T, (Gr(t — z))dd(z)

(0.1]

S(t) = IP-lim Sk(t)

= b(1-¥(Gr(t)

I(t) = IP-Jim Ix(t)

a(1 — &(1)) + b(L(Gr (1) - /

(0,7]

T, (Gr(t — m))d@(m)).

Moreover, additional information about the epidemic is provided. Suppose,
for example, as mentioned in the introduction, that an epidemic is known
to be taking place in a region, and that after some time ¢y every remain-
ing susceptible in that region is immunized. Thus there are no new cases,
though infectives may still be present. To decide at what time the region,
which was probably put under quarantine, can be opened to the public
again, we are interested in estimating the remaining infectivity in the pop-
ulation at times s > to. This is given by &k ([0, to] % (s,00)), which is the
proportion of individuals that were infected before the time ¢y and are still
present in the population at time s. For large K and T,

£ ([0, to] x (s, 00))

~ a(l—®(s))+ b(‘I’(GT(to)) - /

(0,s]

W, (Gr(s - 2))d()).

Thus, as soon as this expression is smaller than a certain critical level, we
can abandon the isolation.

The above expressions for the limiting quantities can be translated into
a system of deterministic differential equations. In the next subsection we
will see that this system coincides with results previously obtained by Wang
[47], [48] in the special case that he considers. Yet, without an explicit
bound on the distance to the limit these approximations remain naive.

2.3.2 Example: A Markovian epidemic

The above asymptotic results can be compared with those obtained by
Wang [47], which seem to be the most general ones for the GSE known so
far. As is made more explicit in Wang [48], Wang [47] considers a population
of total size N = K and assumed, in our notation,

1. IP [a particular susceptible individual becomes infected during the time
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interval [t,t+ 0t]] =A(In(t))At+ o(At); for a function A that is positive,
bounded and Lipschitz on [0, 1], and A(0) = 0.

2. IP[a particular infected individual stays infected for at least a period
of length t] = F(¢); for a function F' with F(0) = 1 and F(t) \( 0 as
t — o0.

3. At time O there are NIn(0) = x(N) infected individuals si,-- -, s5(n)
present, where s; represents also the total time that the ith individual
has been infected up to time 0. There is assumed to exist a positive
density ¢ € L1(IRy) such that for all s € IR

1 z(N) s
Jim, 2 Yoo = | atwu

With
sot) = T Enre) >0

) = / ~ g(s, Da(s)ds,

Wang proves that (In(t),In(t) + Rn(t)) converges to the unique positive
solution (P(t), B(t)) of the system

Pit) = ~@)+ A(P(u))(1 — B(u))F(t —u)du
(0,¢]

B(t) = P(0)+ (Ot]/\(P(u))(l—B(u))du, (2.10)

in the sense that for every € > 0,

Aim IP[USBPT] [In(u) = P(u)| + [In(u) + By (u) — B(u)| > €] = 0.

Now consider in our model the special case that the (I;) have an exp(1)-
distribution, that I; and r; are independent for each i, that there are s; €
R, ,i € IN such that, with ®(¢t) =1 — F(t),
1-— @(t + Sz)
1—®(s;)

that A(t,z) = A(z(t)), and that there is a positive density g € Ly (IR4) with

P[i; > t] = , 1 €N,
1 aK s
Jim, e D) = | atw

Under these assumptions, we recover Wang’s model, as well as his charac-
terization of the deterministic limit; a derivation can be found in Reinert
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[37]. However, our formulation covers a much wider class of models, and
gives much more detailed information about the process.

In Bartlett’s GSE, we moreover have A(t,z) = az(t), and that s; = 0 for
all i, so that v(t) = 0 for all ¢. The above deterministic system then leads
to the classical deterministic approximation; see, for example, Bailey [4] or
Isham [25].

2.4 A bound on the distance to the mean-field limit

In this subsection we will prove the following refinement of Theorem 2.3.3.

Theorem 2.4.1 Let pu” be as in Theorem 2.3.2. Then, for all T € R, ,
and for oll H € F,

|E" H(¢x) — H()|

va+ Vb 12
< Nice + abBT(T + 2)exp(b[2a8T) § (1 + b) e
where a and 8 are as in (2.2) and (2.3), and [z] is the smallest integer
larger than x.

Remarks. Note that, in Theorem 2.4.1, the constants « and S always occur
as a combination. This relates to the ambiguity in Sellke’s construction,
referred to before: we could choose I; ~ exp(8) and A(t,z) = ax(t), or,
equally, choose I; ~ exp(1) and A(¢, ) = afBxz(t), for example. Furthermore,
the bound does not depend on the distribution of the infectious period.
This is due to Lemma 2.4.2; a uniform convergence result. Of course the
distribution of the infectious period is reflected in u.

Theorem 2.4.1 gives the result in terms of expectations. Using Markov’s
inequality, we also obtain information for the distribution function. Namely,

log K
poﬂn%m—ﬂmn>§%)
2
< logK{\/E—F\/E—I—abﬂT(T—}—Q)exp(beaﬂT]){(1+b)_|_ K}}

As the proof of Theorem 2.4.1 employs uniform convergence for the empir-
ical distribution function, we first prove the following bound.

Lemma 2.4.2 Let X1,...X, be i.i. d. real-valued random variables from
o distribution with distribution function F', and let F,, denote the empirical
distribution function
1 n
Fo(t) = ~ > 1(X; <1).

i=1
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Then

E sup |F,(z) — F(z)| <
z€R

Bl

Proof of Lemma 2.4.2

To prove this lemma, we employ the following bound from Massart [31].
For all € > 0,

IP(sup |Fy(z) - F(z)| > €) < 2¢72"
z€IlR

1n2

The above bound is trivial for € < . Thus we have

FE sup |F,(z) — F(x)] P (sup |Fn(z) — F(x)| > €)de
z€R z€R

< 1/1“_+ J
m g

Using a change of variable we obtain

In2 2r
I sup [ Fn(x) = F(2)| - < Voot o (= @ae (V2In2))
faS]

1
v’

where ®r(o,1) denotes the standard normal distribution function. O

Now we have all the ingredients to prove Theorem 2.4.1.
Proof of Theorem 2.4.1

From Theorem 1.4.2, it suffices to bound, for all m € IN, f € C°(RR™),
and for all ¢1,..., ¢, € C:°([0,T]?) satisfying (1.4)

S Ef) &k o)k =1,...,m)u" — &k, ¢5).
j=1
We abbreviate

(K = bK Z 6(AK AK+ry)

so that
bK

1
r= K
CK N b? ;6(‘4?,14?4—“)1(141' +r; < T)
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Then we have

S Ef) &k o)k =1,...,m){u" — &k, ¢5)

j=1
m 1 aK
= aZEf(])“gIT(':Qék);k =1,... am)<(50 X ﬂ)T Y e Zég,ﬁi)a¢j>
7j=1 i=1
j=1
m 1 aK
< ad [ ) 1B | > (950, 7)1(F: < T) = B;(0,7:)1(Fs < T))
j=1 i=1

m bK
1
03 1 i) 1B |52 D (@A AR +ri)1(AF +7i < T)
j=1 i=1

—E¢;(G7' (1), G 1) + r) W (GT (1) +71: < T)| -
For the first summand, using the Cauchy-Schwarz inequality we obtain
m 1 aK
ay | o) I E ‘a_K > (8(0,7:)1(F; < T) — E;(0,7))1(7; < T))‘
j=1 i=1

1
2

IA

m aK
GZ I iy Il (Var (%Z%(O,ﬂ)l(ﬂ < T)))
Vva
< JE

where we used the boundedness assumptions from (1.4) in the last step.
Thus it remains to bound

m bK
1
b3 I i I I |5 D065 (AF, A +r) 1A 4 <T)
j=1 i=1

—E¢;(G7' (1), G7' (l:) + ) L(G7 () + 1 < T))| -

From (1.4) it suffices to bound, for any ¢ as in (1.4),

bIE

bK
1
e 2 (AT AT +r) (AT 47 <T)
i=1

—E¢(G7'(1:),Gr () + i) LG (1) + i < T))|.
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Similarly as above, we obtain

bIE

bK
o S 1), G (1) +r)1(G (1) + i < T)

—E¢(G7 (1), GT (L) + r) LG (1) + i < T)))|
Vb

< —.
- VK
Bounding

bK
1 K K K
bE‘b H(qﬁ(Az JAS +r)1(Af +r; <T)

—¢(G7 (1), G (1) + r) L(GT (i) + 73 < T)|

is more complicated, partly because the derivative of G}l is not necessarily
bounded. Instead, similarly as in Reinert [37] we mimic differentiation,
making use of the additional stochasticity introduced by the random point
l1. First observe that, as A is non-anticipating, if we omit individual 1
from the population, the course of the epidemic up to time Fy'(l1) is not
affected. To make this precise, put

Hy = D([0,T1),

the space of right-continuous functions with left-hand limits from [0, 7] to
IR. Similarly to (2.4), (2.5), and (2.6), define for h € Hr the operators

aK bK
1 . 1
Ziah(t) = 2 ; 17 > 1) + & ;2 1(h(t = 15) <1 < h(t))
Lg1h(t) = (s, Zx1h) ds.
(0,¢]

and let Fk,; be the unique fixed point of Lx1h = h. Then we have
Ft(h) = FI;’II (11) by construction. Thus

E

bK
1
17 2Ol AL 1A 4 < T)
i=1

—¢(G7' (1), G (L) + i) L(GT (L) + 7 < T)|
< E|p(AF AT +r)1Af +11 <T)
—¢(Gr' (1), G (1) +r) LG () + 1 < T)|.
Expanding the indicators, we have
S(AL, AT +r)L(Af +11 <T)
~$(Gr' (1), G () +r)LGr (W) + 71 < T)



28 G. REINERT
= ¢(Fgh(h), K1(11)+T1)1(FE,11(11)+7‘1 <T)
—¢(Grt (1), Gyt () + r) (G () + 7 < Tt
= ¢( Kl(ll) Fh() +r)1(Fry () +m1 < T,GpH (1) +m1 < T)
+o(F (), Fiey () + r)1(Fy () + 11 < T,G3 (L) + 1 > T)
—¢(G7' (1), G (1) + r)U(Fy (h) + 71 <TG () +11 < T)
—¢(G7 (1), Gz () + )1 (Fiy (W) + 71 > TG () + 11 < T).

(For simplicity of notation we omit the superscript T for Fx; and for the
expectation.) Using Taylor expansion and (1.4) we thus may bound

1 K 2K K
— ! : . : - <
El\vx .E, (B(A7, A7 +ri)1(A7 +ri <T)

—p(G7H (1 i),G‘l(l-) +r) UG (1) + 71 < T))|
< EB|((Fxa) ') -G (L))
UFh () +71 S T,G7M ) + 10 <)
PF () +m1 > T,G5 () + 71 < T)
(F,;}l(ll) +7r1 <T,G7'(l) + 7 > T).
Firstly,
P(F () +r1 > T,Gp' () +711 < T)
< BE| Fx1—Grllr.-
Thus, by symmetry,
B|(Fx)™ () = G ())1(Fich (i) + 11 TG (b) +m < T)|
+ P(Fgi(h)+r >T,Gpl(h) +r1 <T)
+P(Fl(h) + 71 <T,Gp' () + 71 > T)
< B|(Fx)™ W) = G )UFE () + 11 ST,65M0) +71 < T)|
V28 || Fx1 — Gr |z -

We will bound I || Fx1 — Gr ||r later. Using the existence of the density
1), for the first term we have

E |((Fia) (1) = GF (W) 1U(Fh () + 11 < T,G7M ) + 11 < T)

3

< E|(Fxn) ') = GpH ()| 1(Fgh () < T,G3' () < T)

Fx 1 (T)/\GT (T)
e[ (Fr)™ 2) = Gy @)

1(Fh () <T,G7 M) < T)i(e)de
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Fx 1(T)/\GT (T) " )
- F / G (Gr(Fra) () — G5 (@)]
1(Fgl (z) < T.G7'(x) < T)(x)da.

From Condition 4. on A we have that Fx,; and G are strictly increasing
until they stay constant forever after. Thus the derivatives (G7')' and
(F,;}l)' exist for all ¢ for which Gt and Fk 1 are not constant; in particular

they exist for ¢ < FI},II (z) when FI}’II (z) < T, and for t < G7'(z) when
G7'(z) < T. Thus we may integrate as follows.

Fx,1(T)AGr(T)
E / |G (Gr((Fra) ™ (@) — G ()]
1(F ) (z) <T,G7' (2) < T)y(a)de

Fi 1(T)AGr(T) | pGr(Fk,1)" ' (2)) iy
- / / (G7Y) (v)dy| 9 (x)dz

Fr 1 (T)AGT(T) pGr((Fx,1)"'(z)) L
- B / (67 Wiy
0 x

1(z < Gr((Fx,1) " (2)))(2)dz

Fyx 1(T)/\GT(T)
= | (7 Wiy
Gr((Fk,1)~'(2))

1(z > Gr((Fx,1) ™" (2))¢(z)da.

As all integrals are finite, we may interchange the order of integration and
obtain for the above expression

Gr( Kl(FKl T)AGT(T))) rGr(Gr'(y)) L
E / / 1(z < Gr((Fx1) " (2)))
FK,1(G;1(1/))
$(2)dz (G (y)dy

GT( w1 (Fx 1 (T)AGT(T)))  pFr1(G1'(y)
| /

) 1(z > Gr((Fr1) ' (z)))
Gr(Gg (y))

P(z)de (G (y)dy
< BTE| Fxy—Gr T -

Thus we have derived that

bK
bK i (¢(A’l 7Az + rl)l(Az + i S T)

—p(Gt (1), Gt (1) + 1) 1(Gp (1) + 13 < T)|
< WBT+2)FE || Fk1—Gr |l -
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Bound on || Fig, — Gr |7

To bound this quantity, we proceed by an inductive argument, similarly to
the proof of Theorem 2.3.1 in Reinert [37]. For any ¢ we have

Fg.(t) —Gr(t) = Li1Fk:(t)— LGr(t)
= (LraFk,1(t) — LFka(t) + (LFka(t) — LG7(t)),
so that, for all t < T,

IE || FK71 - GT ”t S FE sup || LKJh— Lh ||T +E || LFK,l - LGT ||t .
heH:

First we bound IEsupycy, || Lx,1h — Lh ||7. For h € Ht we have, due
to the Lipschitz property of A, that

T
| Liah—Ihz < a/ sup |Zx1h(s) — Zh(s)|dz
0

s<z

2
< aT <aR2 + 2bR3 + E) )

where
1 & .
Ry = Slslp uK ,:Z1 1(7; < s) — @(s)
and
TS
= S ;< 8) — .
R; sgp WK 1 gl(lz <s)—¥(s)

From Lemma 2.4.2 we have that for both u = 1 and u = 2, ER, < \/ %.
As a + b =1, this yields

1 2
)/ Lx1h— Lh < T (1+b)4/—=+ —
Sup Il L lr < « {( )\/K K}
= S(K). (2.11)

Now we bound F || LFk1 — LGr ||¢. We have

|LFg 1 (t) — LG (t)]

< ab | SI<1p|‘I’(FK,1(3))—‘I'(GT(3))

+ / (W (Frr (5 — 1)) — Bo(Gr (5 — w)HP(ry € du)| da
0

IA

t
abB / | Fica — G llo (1+ ®(2))de.
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Thus we obtain

E ” FK,l - Gr ”t
t
< S(K) +abﬂ/ E| Fx1—Grlls (1+®@))de. (2.12)
0

Fix ¢ > b arbitrary, and define
1

= —. 2.13
"= Sead (2.13)
Then we have that
b
2napb < -.
c
Hence, as ®(s) < 1 always,
b
E|l Fra=Grlly < SE)+_E| Fa = Gr |l
yielding
1
E| Fii-Grll, < +—55(K)
c
c
= S(K).
oK)
We now prove by induction that, for any k € IN,
k
c
Bl Fii-Grlh < (255) S0, (2.14)

The case k = 1 has already been proven above. Suppose (2.14) is true for
k. Then, from (2.12),

E || Fk1 = G [|(k41)n

(k+1)n
< S(K)+abp / E || Fxy — Gr |l (1+ ®(2))de
0
k In
< S(K)+abfy / E || Fxy = Gr lla (1+ ®(2))da
=1 J(-1)n
(k+1)n
+abp E| Fk1—Gr . 1+ ®(z))dx
kn
k c l
<
< S(K)+abiny- (-55) sw)
(k+1)n
+abB E| Fki1—Gr . 1+ ®(z))dz,
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where we used the induction assumption. From the definition (2.13) of g
we now obtain

E || Fki1 =G [|(k41)n

b ¢\ b
< S(K)+—Z< — ) S(K)+EE|| Fr1 — G ||k 1)ns
thus

k l
1 b ¢
EH FK,1—GT ”(k+1)ﬂ I_QS(K) <1+EZ(C_I)> )

IN

|
/
o
(s
>
N——
>
+
-
3=y
=

This proves (2.14). Denoting by [%] the smallest integer at least as large
as %, we have hence shown that, with (2.13),

M5
C n
Bl -Gl < (;5) " s®)
= exp([2caBT(In(c) — In(c — b))S(K).
As ¢ > b was arbitrarily chosen, we may take the limit ¢ — 0o and obtain

E || Fk1—Grllr < exp(b[2a8T1)S(K)
aT exp(b[2a8T7) {(1 + b)\/%—k %} ;

using (2.11). Combining these steps we obtain

bK
i K K 3 K .
bIE T Z;(qs(Ai JAK 7)) 1(AK 47, < T)
-G (1), GFH (L) + )L (G (L) +mi < T

< abBT(T + 2) exp(b[2a8T]) {(1 + b)\/% +

)
2

=

This completes the proof. O

In practice, the above bound may become rather large. If K is very large,
and b & 1, then the bound is less than 1 only if
K > 4(aB)?TetPT,

which often would be valid only for the initial stages of an epidemic, or if a8

is tiny. In the latter case, most of the susceptibles become infected almost
instantly, so that the epidemic process behaves nearly as a simple death
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process. In this case, the deterministic approximation should be good, as
uniform approximations could be in place, see Lemma 2.4.2.

The fact that the deterministic approximation is not as good as one would
expect when inspecting epidemic curves has already been noticed by Metz
[33]. He shows heuristically that epidemic curves all have essentially the
same form, differing only by a random transformation. The offset caused
by this random transformation might be the major source of error in the
deterministic approximation. In the following subsection, we will make this
heuristic precise, for a special case.

2.5 A special case: \(t,z) = az(t)

In the case that A\(t,z) = z(¢), much more can be said. Here we consider this
special case, and we furthermore assume that /; and r; are independent, and
that r; possesses a density ¢. (Note that this case includes Bartlett’s GSE
as a special case.) Much of the uncertainty in approximating an epidemic
lies in the initial stages. Initially, only few individuals would typically be
infected, so it might take a long time until the epidemic takes off. If, instead,
we use a deterministic approximation only after the epidemic has acquired
a substantial size, the approximation would be much improved.

With the notation above, choose a “threshold” value d and let ty, be
such that Gr(tg) = d. Assume that, for some p > 0, I(to +t) > p and
Ix(r+1t) > plorall t <T. Define

T =inf{t: Fk(t) = d}.

Put, for all ¢ > 0,
Ga(t) = Gr(to +1)
and
Thus we only approximate after the total infectivity in the population has
reached the level d. Our new empirical measure is

i 1 bK(S
&= b_K; (F7 ), Fy (l)+ri)?

considered on IR, x IRy, and the approximating measure ji? is given by

a%([0,7] x [0, s]) = P[l; < G4(r),ls < Gg(s—11)]. (2.15)
Furthermore assume that
abp(d)ET (ry) < 1. (2.16)

We obtain the following proposition.
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Proposition 2.5.1 Suppose that A\(t,x) = ax(t). Assume that ¢ decreases
monotonically on [to, T]. Let i be given in (2.15), and let d and T be such
that (2.16) holds. Then, for all T € R, and for all H € F,

BTHED - Hi)
1 abT 1 2
ViE © p = pabb (@ ET () {(1 royg E} |

Remark. Note that the bound is now only linear in 7', instead of exponen-
tial in T'. Moreover, in the next subsection some plots will illustrate that
the assumptions can be fulfilled in reasonable cases.

The proof of Proposition 2.5.1 is rather similar to the proof of Theorem
2.4.1. Due to the additional assumptions, though, the contraction argument
is much simplified.

Proof of Proposition 2.5.1

From Theorem 1.4.2, it suffices to bound, for all m € IN, f € C°(IR™),
and for all ¢1,..., ¢, € C°([0,T]?) satisfying (1.4)

D OET (€% dr) k= 1,...,m)(at — £, 65).
j=1
We have
ZETf(])(<€d7¢k)a k= 17 s 7m)<ﬂd - £d7 ¢J)
Jj=1

m bK

< 3 gy N | S (0 (F ), B 1) + 70
j=1 i=1

~E6;(G7 (1), G (1) + 1)

ET

IA

S
K Z(¢(G;1(1i)> G,;l(li) + ;)
i=1

~ET¢(G7 1), G (L) + 1))
bK

1
<
T WbK
where we used the Cauchy-Schwarz inequality for the first summand, as in
the proof of Theorem 2.4.1.
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The difficulty lies again in bounding
E" |F; (1) - G ()]
In contrast to the proof of Theorem 2.4.1, we now differentiate, giving that
7 ) - G| = 167 (CalFy (1) - G (Fa(Fr 1))
= [(GgY)'(li +0)(Ga(F; (1)) = Fa(Fy (1)),

for some 0. As we assumed that G, = I(to +t) > p on the interval consid-
ered, we may bound

BT 1) =G 0] < BTG 1)~ Ul

Observe that, if we omit individual 1 from the population, the course of
the epidemic up to time F; *(I1) is not affected. As in the proof of Theorem
2.4.1, define Hy = D([0,T]), and, for h € Hr

aK bK
1 . 1
Zrah(t) = 2 ; 17 > 1)+ & ;2 1(h(t —15) <l < h(t))
LK’lh(t) = /\(S, ZK,lh) ds.
(0,¢]

Let Fk,1 denote the unique fixed point of Lx 1h = h. Then Fk (t) = Fk,1(t)
for all ¢ <l by construction. Moreover, put

Fy1(t) = Fra(m +1).
Then
Fyi(h) = inf{t:Fa1=10h}
inf{t: Fr1(d+1t) =1}
inf{t: Fr(d+1t) =1}
= F;'(hL).

Similarly, F;- 1(s) = F;'(s) for all s < ;. Furthermore, for any ¢ we have

Fd’l(t) — Ga(t)

= Lg1Fr (r+t)— LGr(to +t)
Lx1Fr1(t+1t) — LFga1(T+t)+ LFg (T +t) — LGr(to + t)

= Lg1Fk1(t+1t)— LFk (T +1t) + LFg1(t) — LG4(t).

Hence, for all s < F; *(I1),
Ga(s) — Fa(s)

= Lg1Fgi(T+8) — LFg (T +8) + LFy,1(s) — LG4(s)
= Lg1Fki1(t+s)— LFk1(T +s) + LFy4(s) — LGq4(s).
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Thus
sup  |Ga(Fy ' (1) — L

s<F (L)
< sup || Lah—Lhllr+ sup  |LEs(t) — LGa(t)].
hEH, s<F7 (1)

As before, using Inequality (2.11),

1 2
E L L < aT{(1+b)/—=+ =
hsélpi | Lg,1th — Lh |7 aT < (1+b) K+K}

= S(K).

Now we bound |LF;(F;(l1))— LG 4(F;*(11))|- Recall that, for any func-
tion f, as A(t,z) = aa:(t)

Lf(t)

- a/otu —i)(s))ds+ab/0t (m(f(s)) —/OSIIJ(f(s—u))qS(u)du) ds.

For the last integral, interchanging the order of integration gives

/ / (5 — u))$(u)duds

/ / y)dyds
I /w—
[

(f(y)) ¢( )dsdy

0 0

/ B0 - y)dy.
Thus
L)

= / ))ds + ab/ ®(t — s))ds.
Hence,

|LF4(F; (1) — LGa(FyH(l))]

Fil(l)
/0 (B(Fa(s)) = T(Ga(5)))(1 — (F; ' (L) — s))ds

IN

ab

IN

F; (l1)
V@ N Fa=Gallpprgy [ (1= —0(F (1) =~ )ds
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= w(d)ET(Tl) | Fa — Ga ”Fd_l(ll)’

noting that 1(¢) < ¢ (d) on the interval considered, as F; > d and G4 > d.

This yields

ET  sup |LF;(s) — LG4(s)|
s<Fy (1)

< abp(d)ET (1) || Ga— Fy ety -
By Assumption (2.16), we may apply the contraction argument without
having to dissect the target interval. Thus
E" || Fy - Gq lFrr )
< S(K) +abyp(d)ET (r)) BT || Ga = Fa ll g1,
yielding that
E" |Gy — Fy ety
< amaE®

1 1 2

This completes the proof. |

Typically, I(t) would be unimodal on a large interval, as would be Ik (t),
so that the restriction on being at least as large as p would be natural. To
see this, in the next section we show some plots.

2.6 Some plots of the limiting expression

For simplicity, here we consider Bartlett’s GSE. Here we have the case that
®(z) = 1 — e P2 and that ¢(z) = e~ %;if @ = 1 and b ~ 1, say, then, for
B > 1 any d > 0 would satisfy Assumption (2.16).

Here, 8 can be interpreted as the relative removal rate. It is well-known
(see Bailey [4] that, if 8 < 1, then the chance of ultimate extinction of
the epidemic is less than unity, whereas for § > 1, the chance of ultimate
extinction of the epidemic is unity. In the latter case, only a minor out-
break of the epidemic would be expected, whereas in the first case, a major
build-up may occur. For the case of a minor outbreak, Proposition 2.5.1 is
suitable.

Firstly we choose as parameters a = 0.01, @ = 1, as usual infection rate 1,
and removal rate § = 2. The first plot, Figure 2.1, is the asymptotic expres-
sion for the proportion of removed individuals. It shows the characteristic
S-shape that one would expect, see, e.g. Bailey [4]. Figure 2.2 shows the



38 G. REINERT

proportion of infectives. The proportion of infectives first decreases, corre-
sponding to the initially infected individuals in the population, until enough
infectivity in the population has accumulated; then it increases to a peak,
and then decreases until it reaches 0; then the epidemic dies out. Thus the
unimodality is valid for a large time interval. Figure 2.3 shows the cumula-
tive infectivity function GG. As mentioned above, any value d > 0 would be
admissible. The bound in Proposition 2.5.1 improves with larger p, which
corresponds to a shorter time interval. For p = .0001, for example, depen-
dent on the observations, the time interval could be chosen as [17,134].

As G(17) = 0.00459, choosing d = 0.00459, Proposition 2.5.1 provides as
1 2

bound, for any ¢ € [17,134], (1.006 +19,517(t— 17) + 2 + ﬁ) For

p = .001, in comparison, the time interval could be chosen as [50, 100];

as G(50) = 0.009451, Proposition 2.5.1 provides as bound, for any ¢ €
[50,100], &= (1.006 +1,942(t — 50) + 2 + %) So, in practice, K has to
be very large to make this bound useful.
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Figure 2.1 Proportion removals in Bartlett’s GSE; a = 0.01, a =1, and =2

The next series of plots illustrate the “critical” case § = 1 all the oth-
er parameters are as above. For p = .01, for example, dependent on the
observations, the time interval could be chosen as [31,40]. As G(16) =
0.040931, Proposition 2.5.1 provides as bound, for any ¢ € [31,40], the val-

ue # (1.006+ 200(t — 40) + 2 + \/%) Still, K has to be very large to

make this bound useful in practice.
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Figure 2.2 Proportion infectives in Bartlett’s GSE; a = 0.01, a =1, and 8 =2

Lastly, Figure 2.7, Figure 2.8 and Figure 2.9 show the corresponding
plots with 3 = 0.3. In this case, Assumption (2.16) translates to e~ < 0.3,
or d > In(10/2.97) = 1.21, a case that is clearly not of interest, as the
function G never reaches that level. Thus the scope of Proposition 2.5.1 is
limited. However, it would be possible to refine the contraction approach,
by separating the time interval into only a few intervals, for which the
contraction property then would hold again. This would estend the scope of
Proposition 2.5.1, but would yield bounds that are higher order polynomials
in T.
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Figure 2.3 Cumulative infectivity function G in Bartlett’s GSE; a = 0.01, a =1,
and =2
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Figure 2.4 Proportion removals in Bartlett’s GSE; a =0.01, a =1, and § =1
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Figure 2.5 Proportion infectives in Bartlett’s GSE; a =0.01, a =1, and =1
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Figure 2.6 Cumulative infectivity function G in Bartlett’s GSE; a = 0.01, a =1,
and =1
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Figure 2.7 Proportion removals in Bartlett’s GSE; a = 0.01, a =1, and 3 =0.3
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Figure 2.8 Proportion infectives in Bartlett’s GSE; a = 0.01, a =1, and § = 0.3
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Figure 2.9 Cumulative infectivity function G in Bartlett’s GSE; a = 0.01, a =1,
and 8 =0.3






CHAPTER 3

Discussion

In the above we have derived an explicit bound on the distance of the time
course of the GSE over a finite time interval [0,T] to its mean-field limit.
This is the first explicit bound known for this problem. Of course normal
approximations, as given by Barbour [6] provide the order of the distance,
but only in the Markovian case, and do not give an explicit expression.
The results above not only give an explicit bound, but also a numerically
fast procedure (using a contraction construction) to derive the approxi-
mating deterministic system. Moreover, we confirmed a heuristic by Metz
by showint that the deterministic approximation is linear in time if the
approximation is started at a random time 7 where the epidemic has tak-
en off, and if the approximation is only derived on an interval where the
epidemic grows strictly.

Note that considering only a finite time interval is not a strong restriction,
as all our observations from an epidemic process will necessarily be over a
finite time interval. For Bartlett’s GSE, from Barbour [7] it is known that
the duration of the epidemic is a nontrivial random quantity with center
of order log K, so that our bounds will be expected to be satisfactory for a
relatively long time period. This fact also illustrates why the approximation
breaks down when used for a very large time period; as the duration of
the epidemic is truly random, no good deterministic approximation for it
exists. Moreover, in Bartlett’s GSE the parameter af corresponds to the
transmission rate. As a rule of thumb, the faster the transmission rate, the
shorter the duration of the epidemic; in this sense af scales with T'.

The deterministic approximation agrees, for Bartlett’s GSE, with the
ones obtained in the literature. Isham [25] shows how to derive the approx-
imation using moment closure methods (although her focus is on stochastic
approximations). Moment closure methods have been proven a powerful ap-
proach for Markovian models, in particular for spatial models. However, I
am not aware of any extension to non-Markovian settings. Furthermore, the
moment closure approach has heuristic character, to determine the covari-
ance, for example, when a Gaussian approximation is known to be valid.
It does not give a bound on the distance to the approximation.

The model discussed here is a closed epidemic, without reinfection, and
not admitting birth of individuals, nor removals not due to the infection.
These assumptions exclude many biologically relevant cases. However, in-
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dependent birth events and independent death events would only result in
a slightly modified empirical measure, for which the above arguments, in
particular the contraction argument, should still be valid. In this extension
we would expect a recurrent epidemic, due to the possibility of births after
the epidemic has taken off; some complex dynamics could then occur, see,
e.g., Earn et al. [21] and Andersson and Britton [2]. Moreover it would be
possible to treat a stratified population, with different types of individuals
(the (I;,7;)’s may come from different distributions); for a motivation, see,
e.g., May [32].

Also it would be desirable to generalize the above for accumulation func-
tions A that might not involve just the proportion of infectives over the
time course, but also some neighborhood structure. This would allow to
treat spatial epidemic models in a similar way.

The above bounds have only been derived for smooth test functions.
Deriving bounds for nonsmooth test functions is not a fundamental problem
but a rather tedious enterprise; see, for example, Rinott and Rotar [40],
Gotze [23], or Bolthausen [15]. Lastly, a Gaussian approximation together
with error bounds would be a natural next step to investigate.
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