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STEIN’S METHOD FOR DISCRETE GIBBS MEASURES1

BY PETER EICHELSBACHER AND GESINE REINERT

Ruhr-Universität Bochum and University of Oxford

Stein’s method provides a way of bounding the distance of a probability
distribution to a target distribution μ. Here we develop Stein’s method for
the class of discrete Gibbs measures with a density eV , where V is the en-
ergy function. Using size bias couplings, we treat an example of Gibbs con-
vergence for strongly correlated random variables due to Chayes and Klein
[Helv. Phys. Acta 67 (1994) 30–42]. We obtain estimates of the approxi-
mation to a grand-canonical Gibbs ensemble. As side results, we slightly
improve on the Barbour, Holst and Janson [Poisson Approximation (1992)]
bounds for Poisson approximation to the sum of independent indicators, and
in the case of the geometric distribution we derive better nonuniform Stein
bounds than Brown and Xia [Ann. Probab. 29 (2001) 1373–1403].

0. Introduction. Stein [17] introduced an elegant method for proving conver-
gence of random variables toward a standard normal variable. Barbour [2, 3] and
Götze [10] developed a dynamical point of view of Stein’s method using time-
reversible Markov processes. If μ is the stationary distribution of a homogeneous
Markov process with generator A, then X ∼ μ if and only if EAg(X) = 0 for all
functions g in the domain D(A) of the operator A. For any random variable W

and for any suitable function f , to assess the distance |Ef (W) − ∫
f dμ| we first

find a solution g of the equation

Ag(x) = f (x) −
∫

f dμ.

If g is in the domain D(A) of A, then we obtain∣∣∣∣Ef (W) −
∫

f dμ

∣∣∣∣ = |EAg(W)|.(0.1)

Bounding the right-hand side of (0.1) for a sufficiently large class of functions f

leads to bounds on distances between the distributions. Here we will mainly focus
on the total variation distance, where indicator functions are the test functions to
consider.
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Such distributional bounds are not only useful for limits, but they are also of par-
ticular interest, for example, when the distance to the target distribution is not neg-
ligible. Such relatively large distances occur, for example, when only few observa-
tions are available, or when there is considerable dependence in the data slowing
down the convergence. The bound on the distance can then be taken into account
explicitly, for example when deriving confidence intervals.

In Section 1 we introduce Stein’s method using the generator approach for
discrete Gibbs measures, which are probability measures on N0 with probabil-
ity weights μ(k) proportional to exp(V (k)) for some function V : N0 → R. The
discrete Gibbs measures include the classical distributions Poisson, binomial, geo-
metric, negative binomial, hypergeometric and the discrete uniform, to name but
a few. One can construct simple birth–death processes, which are time-reversible,
and which have a discrete Gibbs measure as its equilibrium measure. In the context
of spatial Gibbs measures this connection was introduced by Preston [15].

In Section 2 we not only recall bounds for the increments of the solution of
the Stein equation from [5], but we also derive bounds on the solution itself, in
terms of potential function of the Gibbs measure; see Lemmas 2.1, 2.4 and 2.5.
The bounds, which to our knowledge are new, are illustrated for the Poisson, the
binomial and the geometric distribution.

For nonnegative random variables, the size bias coupling is a very useful ap-
proach to disentangle dependence. Its formulation and its application to assess the
distance to Gibbs measures are described in Section 3. We compare the distrib-
utions by comparing their respective generators, an idea also used in [11], while
paying special attention to the case that the domains of the two generators are not
identical. The size bias coupling then naturally leads to Theorem 3.5 and Corol-
lary 3.8.

Section 4 applies these theoretical results to assess the distance to a Gibbs distri-
bution for the law of a sum of possibly strongly correlated random variables. The
main results are Theorem 4.2 and Proposition 4.4, where we give general bounds
for the total variation distance between the distribution of certain sums of strongly
correlated random variables and discrete Gibbs distributions of a grand-canonical
form; see [16], Section 1.2.3. In particular, Theorem 4.2 gives a bound on the rate
of convergence for the qualitative results in [6] by bounding the rate of conver-
gence.

Considering two examples with nontrivial interaction, we obtain bounds to lim-
iting nonclassical Gibbs distributions. Our bound on the approximation error is
phrased in terms of the particle number and the average density of the particles.

Summarizing, the main advantage of our considerations is the application of
Stein’s method to models with interaction described by Gibbs measures. When
applying our bounds on the solution of the Stein equation to the Poisson distrib-
ution and the geometric distribution, surprisingly we obtain improved bounds for
these well-studied distributions. Thus our investigation of discrete Gibbs measures
serves also as a vehicle for obtaining results for classical discrete distributions.
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The results presented here will also provide a foundation for introducing Stein’s
method for spatial Gibbs measures and Gibbs point processes, in forthcoming
work.

1. Gibbs measures and birth–death processes.

1.1. Birth–death processes. A birth–death process {X(t), t ∈ R} is a Markov
process on the state space {0,1, . . . ,N}, where N ∈ N0 ∪ {∞}, characterized
by (nonnegative) birth rates {bj , j ∈ {0,1, . . . ,N}} and (nonnegative) death rates
{dj , j ∈ {1, . . . ,N}} and has a generator

(Ah)(j) = bj

(
h(j + 1) − h(j)

) − dj

(
h(j) − h(j − 1)

)
(1.1)

with j ∈ {0,1, . . . ,N}.
It is well known that for any given probability distribution μ on N0 one can con-
struct a birth–death process which has this distribution as its stationary distrib-
ution. For N = ∞, recurrence of the birth–death process X(·) is equivalent to∑

n≥1
d1···dn

b1···bn
= ∞. The process X(·) is ergodic if and only if the process is re-

current and c := 1 + ∑
n≥1

b0···bn−1
d1···dn

< ∞. For N < ∞, irreducibility and hence
ergodicity holds if bj > 0, j = 0,1, . . . ,N − 1, bN = 0 and dj > 0, j = 1, . . . ,N .

In either case the stationary distribution of the ergodic process is given by
μ(0) = 1/c and

μ(n) = μ(0)
b0 · · ·bn−1

d1 · · ·dn

.(1.2)

For any given probability distribution μ on N0 these recursive formulas give the
corresponding class of birth–death processes which have μ as the stationary dis-
tribution. For the choice of a unit per capita death rate dj = j one simply obtains
that

bj = μ(j + 1)

μ(j)
(j + 1),(1.3)

for j ≤ N − 1. Here and throughout, if N = ∞, then by j ≤ N − 1 we mean
j = 0,1, . . . . The choice of these rates corresponds to the case where the detailed
balance condition

μ(j)bj = μ(j + 1)dj+1, j = 0,1, . . . ,N − 1,(1.4)

holds; see, for example, [1] and [12]. We will apply these well-known facts to the
discrete Gibbs measure introduced in the next subsection.

Now might be a good time to note that not all probability distributions on N0
are given in closed form expressions; notable exceptions occur, for example, in
compound Poisson distributions.
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1.2. Gibbs measures as stationary distributions of birth–death processes.
Gibbs measures can be viewed as stationary measures of birth–death processes,
as follows.

We start with a discrete Gibbs measure μ; for convenience we assume that μ

has support supp(μ) = {0, . . . ,N}, where N ∈ N0 ∪ {∞}, so that μ is given by

μ(k) = 1

Z
eV (k) ω

k

k! , k = 0,1, . . . ,N,(1.5)

for some function V : N0 → R. Here Z = ∑N
k=0 exp(V (k))ωk

k! , and ω > 0 is fixed.
We assume that Z exists; Z is known as the partition function in models of statis-
tical mechanics. We set V (k) = −∞ for k > N . In terms of statistical mechanics,
μ is a grand-canonical ensemble, ω is the activity and V is the potential energy;
see [16], Chapter 1.2.

The class of discrete Gibbs measures in (1.5) is equivalent to the class of all
discrete probability distributions on N0 by the following simple identification: For
a given probability distribution (μ(k))k∈N0 we have

V (k) = logμ(k) + log k! + logZ − k logω, k = 0,1, . . . ,N,(1.6)

with V (0) = logμ(0) + logZ. Hence Z = eV (0)

μ(0)
. The latter formula gives the pos-

sibility of proving convergence for a sequence of partition functions Zn by using
the convergence of the corresponding sequence μn(0).

However, the representation of a probability measure as a Gibbs measure is
not unique. For example, the Poisson distribution with parameter λ, Po(λ), can be
written in the form (1.5) with ω = λ, V (k) = −λ, k ≥ 0, Z = 1. Alternatively, we
could have chosen V (k) = 0, ω = λ, Z = eλ.

From (1.3), if we choose a unit per capita death rate dk = k, and if we choose
the birth rate

bk = ωeV (k+1)−V (k) = (k + 1)
μ(k + 1)

μ(k)
,(1.7)

for k, k + 1 ∈ supp(μ), then

(Ah)(k) = (
h(k + 1) − h(k)

)
ωeV (k+1)−V (k) + k

(
h(k − 1) − h(k)

)
,(1.8)

for k, k + 1, k − 1 ∈ supp(μ), k ∈ N [set h(−1) = 0], is the generator of the time-
reversible birth–death process with invariant measure μ.

Note that this choice of dk and bk ensures that the detailed balance condition
(1.4) is satisfied. Hence we have chosen a birth–death process with generator of
the type (1.1) which is easily seen to be an ergodic process. Namely, if N = ∞,
then the recurrence of the corresponding process is given since

∑
n≥1

d1 · · ·dn

b1 · · ·bn

= ∑
n≥1

μ(1)

(n + 1)μ(n + 1)
≥ ∑

n≥1

μ(1)

n + 1
= ∞.
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For N < ∞ we have that V (k) > −∞ for k ∈ supp(μ), so that bk > 0 for k =
0, . . . ,N −1, and as V (N +1) = −∞, we obtain bN = 0. Due to the unit per capita
death rate the ergodicity follows. From 0 ∈ supp(μ) we obtain c = 1/μ(0) < ∞.
Hence μ is indeed the unique stationary distribution of the birth–death process.

In the development of Stein’s method unit per capita is a common and useful
choice for the death rate; see [2]. It is worth noting that there are modifications of
this choice in [5] and [11].

To compare with the approach in Barbour [2] we reformulate the generator: let
h(k + 1) − h(k) =: g(k + 1); then (1.8) yields

(Ag)(k) = g(k + 1)ωeV (k+1)−V (k) − kg(k), k = 0,1, . . . ,N.(1.9)

The generalization to case of arbitrary death rates dk is straightforward; we omit
it here to streamline the paper.

2. Stein identity for Gibbs measures and bounds. In view of the generator
approach to Stein’s method, for a test function f : supp(μ) → R the appropriate
Stein equation for μ given in (1.5) is

(Ag)(j) = f (j) − μ(f )(2.1)

for j ∈ {0, . . . ,N} and A the generator given by (1.8). Here,

μ(f ) :=
N∑

k=0

f (k)μ(k)

is the expectation of f under μ. We are interested in indicator functions f (j) =
I[j∈A] for some A ⊂ supp(μ). Thus if W is a random variable on supp(μ), we
obtain

EAg(W) = P(W ∈ A) − μ(A).(2.2)

The right-hand side of (2.2) links in nicely with the total variation distance. Re-
call that for P and Q being probability distributions on N0, we define the total
variation distance (metric) by

dTV(P,Q) := sup
A⊂N0

|P(A) − Q(A)|

= sup
f ∈B1

|P(f ) − Q(f )|

= 1
2

∑
k∈N0

|P({k}) − Q({k})|,

where B1 denotes the set of measurable functions f with 0 ≤ f ≤ 1. Hence bound-
ing the left-hand side of (2.2) uniformly in A ⊂ N0 gives a bound on the total
variation distance.
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In the following we give a Stein characterization for μ given in (1.5) and a
solution of the corresponding Stein equation.

Let Z be a random variable distributed according to the Gibbs measure μ de-
fined in (1.5) and for a function g : N0 → R assume E|Zg(Z)| < ∞. From (1.9)
we obtain the Stein characterization for μ that if Z is distributed according to μ,
given by (1.5), then for every function g : N0 → R with E|Zg(Z)| < ∞

E
{
ωeV (Z+1)−V (Z)g(Z + 1) − Zg(Z)

} = 0.(2.3)

If f : supp(μ) → R is an arbitrary function, and μ is given by (1.5), then there
exists a solution gf,V : N0 → R for (2.1) with operator as in (1.9),

gf,V (k + 1)ωeV (k+1)−V (k) − kgf,V (k) = f (k) − μ(f ), k ≤ N;(2.4)

see [5]. This solution gf,V is such that gf,V (0) = 0, and for j = 0, . . . ,N − 1 the
solution gf,V can be represented by recursion as

gf,V (j + 1) = j !
ωj+1 e−V (j+1)

j∑
k=0

eV (k) ω
k

k!
(
f (k) − μ(f )

)
(2.5)

= − j !
ωj+1 e−V (j+1)

N∑
k=j+1

eV (k) ω
k

k!
(
f (k) − μ(f )

)
.(2.6)

We may set gf,V (N + 1) = 0.
Having a suitable Stein equation for Gibbs measures and its solution at our dis-

posal, the next step in Stein’s method is to bound the increments of the solutions;
it will turn out advantageous to bound the solutions themselves as well. For any
function g : N0 → R we define

�g(j) := g(j + 1) − g(j).

In applications often only bounds on the increments are needed, hence we start
with these. Uniform bounds on the increments are also called Stein factors or
magic factors. Nonuniform Stein factor bounds may yield better overall bounds on
distributional distances and are therefore of particular interest. Lemma 2.1 gives
such a nonuniform bound. The proof is given in [5], Lemma 2.4 and Theorem 2.1.
We introduce the class of functions

B := {f : supp(μ) → [0,1]}(2.7)

and we define

F(k) :=
k∑

i=0

μ(i), F̄ (k) :=
N∑

i=k

μ(i).(2.8)
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LEMMA 2.1 (Nonuniform bounds for increments). Assume that the death
rates are unit per capita and assume that the birth rates in (1.7) fulfill, for each
k = 1,2, . . . ,N − 1,

k
F (k)

F (k − 1)
≥ ωeV (k+1)−V (k) ≥ k

F̄ (k + 1)

F̄ (k)
.(2.9)

Let f ∈ B and let gf,V be its solution to the Stein equation (2.4). Then, for every
j ∈ {0, . . . ,N},

sup
f ∈B

|�gf,V (j)| = 1

ω
eV (j)−V (j+1)F̄ (j + 1) + 1

j
F (j − 1).(2.10)

Moreover, for every j ∈ {0, . . . ,N},

sup
f ∈B

|�gf,V (j)| ≤ 1

j
∧ eV (j)

ωeV (j+1)
.

REMARK 2.2. Condition (2.9) is Condition (C2) in [5], Lemma 2.4. In this
paper, three more conditions are formulated, which are all equivalent to (C2). For
example, if the death rates are unit per capita and the birth rates are nonincreasing:

eV (k+1)−V (k) ≤ eV (k)−V (k−1), k = 0,1, . . . ,N,(2.11)

Condition (C4) in [5] is satisfied and (2.10) holds.

REMARK 2.3. Reference [11] gives an elegant recursive proof of (2.10) for a
choice of birth rates and death rates which make the method of exchangeable pairs
work. In particular, unit per capita death rates are not used in her results.

Under a slightly weaker condition than (2.9) it is possible to derive nonuniform
bounds on the solution gf,V of the Stein equation itself, as follows.

LEMMA 2.4. Consider the solution gf,V of the Stein equation (2.4), where
f ∈ B, given in (2.7). Assume that, for each k = 1,2, . . . ,N − 1,

ωeV (k+1)−V (k) ≥ k
F̄ (k + 1)

F̄ (k)
(2.12)

is satisfied. Then we obtain for every j ∈ {1, . . . ,N} that

|gf,V (j)| ≤
(

min

{
ln(j),

∑
k

kμ(k)

}
+ 1

ω
eV (0)−V (1)

)
1

F̄ (j)
.

The proof is related to ideas of [4], pages 7–8, used in Poisson approximation.
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PROOF OF LEMMA 2.4. For j ∈ {0, . . . ,N} let Uj = {0,1, . . . , j}. We use the
notation f 1A(x) = f (x)1(x ∈ A). It is easy to see from (2.5) that for f ∈ B and
A ⊂ {0, . . . ,N}, and for j ∈ {0, . . . ,N − 1},

gf,V (j + 1) = j !
ωj+1 e−V (j+1){μ(f 1Uj

)μ(Uc
j ) − μ(f 1Uc

j
)μ(Uj )}

and hence

|gf,V (j + 1)| ≤ j !
ωj+1 e−V (j+1)μ(Uj )μ(Uc

j ).(2.13)

From (2.12) we have that

j !
ωj+1 e−V (j+1)μ(Uj ) = 1

ω

j∑
k=0

eV (k)−V (j+1) ω
k−j j !
k!

≤
j∑

k=1

F̄ (0)

F̄ (j + 1)

1

k
+ 1

ω
eV (0)−V (1) F̄ (0)

F̄ (j + 1)

≤
(

ln(j) + 1

ω
eV (0)−V (1)

)
1

F̄ (j + 1)
.

Alternatively,

j !
ωj+1 e−V (j+1)μ(Uj ) ≤

j∑
k=1

F̄ (k)

F̄ (j + 1)

1

k
+ 1

ω
eV (0)−V (1) F̄ (0)

F̄ (j + 1)

≤
(

N∑
k=1

F̄ (k) + 1

ω
eV (0)−V (1)

)
1

F̄ (j + 1)

=
(

N∑
k=1

kμ(k) + 1

ω
eV (0)−V (1)

)
1

F̄ (j + 1)
,

proving the assertion. �

We now prove a crude but usable bound for the supremum norm ‖gf,V ‖ which
does not require (2.9) or (2.12) to be satisfied. To this purpose we introduce the
quantities

λ1 := ω inf
0≤k≤N−1

eV (k+1)−V (k) = inf
0≤k≤N−1

bk,

(2.14)
λ2 := ω sup

0≤k≤N−1
eV (k+1)−V (k) = sup

0≤k≤N−1
bk.

Note that λ2
λ1

≥ 1 by construction.
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LEMMA 2.5. Consider the solution gf,V of the Stein equation (2.4), where
f ∈ B, given in (2.7). Assume that λ1 > 0 and λ2 < ∞. Then

‖gf,V ‖ ≤ 2 + 1

2

(
λ2

λ1 + 1

)λ2−λ1−2

1(λ2 − 2 ≥ λ1).

PROOF. As the proof follows the ideas of [4], pages 7–8, used in Poisson
approximation, we only sketch it here. With the notation as for (2.13) we obtain
the bounds

|gf,V (j + 1)| ≤ j !
ωj+1 e−V (j+1)μ(Uj )

= 1

ω

j∑
k=0

eV (k)−V (j+1) ω
k−j j !
k!

≤ λ−1
1

j∑
�=0

λ−�
1

j !
(j − �)! .

Similarly we have

|gf,V (j + 1)| ≤ j !
ωj+1 e−V (j+1)μ(Uc

j )

= 1

ω

N∑
k=j+1

eV (k)−V (j+1) ω
k−j j !
k!

≤
N∑

k=j+1

λ
k−j−1
2

j !
k!

= j !eλ2λ
−j−1
2 Po(λ2)(U

c
j ).

This puts us in the situation of (1.20) and (1.21) in Chapter 1 of [4]. We obtain that
for j < λ1

|gf,V (j + 1)| ≤ 2 min(1, λ
−1/2
1 ) ≤ 2,

and for j > λ2 − 2

|gf,V (j + 1)| ≤ j + 2

(j + 1)(j + 2 − λ2)
≤ 5

4
< 2.

Thus we have proved the assertion for j < λ1 and for j > λ2 − 2. If λ1 > λ2 − 2,
then our bound covers the whole domain.

Now assume that S = {�λ1 + 1, . . . , �λ2 − 2} is nonempty. For j ∈ S we have

|gf,V (j + 1)| ≤ j !
ωj+1 e−V (j+1)(μ(Uc

j ∩ S) + μ(Uc
j \ S)

)
μ(Uj )
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≤ 2 + j !
ωj+1 e−V (j+1)μ(Uc

j ∩ S)

≤ 2 + j !
�λ2−2∑
k=j+1

λ
k−j−1
2

1

k!

≤ 2 + j !λ−j−1
2 eλ2Po(λ2){0, . . . , �λ2 − 2}.

From [4], Proposition A.2.3(iii), page 259, the Poisson probabilities can be
bounded as

Po(λ2){0, . . . , �λ2 − 2} ≤ λ2

λ2 + 2 − �λ2Po(λ2)(�λ2 − 2)

and so, as �λ2 − 1 − j ≥ 1 for j ≤ �λ2 − 2,

|gf,V (j + 1)| ≤ 2 + 1

2

j !
(�λ2 − 2)!λ

�λ2−2−j
2

≤ 2 + 1

2
(j + 1)−(�λ2−2−j)λ

�λ2−2−j
2

≤ 2 + 1

2

(
λ2

λ1 + 1

)�λ2−2−j

≤ 2 + 1

2

(
λ2

λ1 + 1

)λ2−λ1−2

.

This finishes the proof. �

REMARK 2.6. As λ1 and λ2 stay invariant under the reparametrization ω →
ω̃ = αω, we argue that these are reasonable quantities to employ.

REMARK 2.7. While the examples below will show that the bound in Lemma
2.5 may not be informative, in particular examples better bounds may be obtain-
able in a straightforward manner. Lemma 2.5 is nevertheless useful as it gives
conditions on the birth rates so that ‖gf,V ‖ is bounded, and these conditions do
not involve monotonicity of the birth rates.

REMARK 2.8. Note that neither the last bound in Lemma 2.1 nor the bound
in Lemma 2.5 use the normalizing constant Z explicitly.

Again, the generalization of the bounds to the case of arbitrary death rates dk

would be straightforward.
A complication arises when we compare two distributions with nonidentical

supports. Therefore it will turn out to be useful to consider the following extension
from finite to infinite support for a generator A. For convenience assume that the
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corresponding measure μ has supp(μ) = {0,1, . . . , n}, for some finite n, so that A
is only defined for functions with support {0,1, . . . , n} [recall that we set g(n +
1) = 0]. We extend A to be defined for functions on {0,1,2, . . .} as follows:

(Ãg)(k) := g(k + 1)ωeV (k+1)−V (k) − kg(k), k = 0,1, . . . , n,
(2.15)

(Ãg)(k) := −kg(k), k ≥ n + 1.

Thus when there are more than n individuals the process is pure death. Now if
X ∼ μ, then still EÃf (X) = 0 for all functions f ∈ D(Ã), the domain of Ã, since
the operator Ã represents a birth–death process with the same invariant distribution
as A; see (1.2). Next we extend the solution of the Stein equation, so that for
f : {0,1, . . . , n} → R, the solution gf,V is defined by (2.5) for k ∈ {0,1, . . . , n},
and by

gf,V (k) := μ(f )

k
, k ≥ n + 1.(2.16)

[Note that our formula (2.5) would have yielded gf,V (n + 1) = 0.] For a related
suggestion see [4], Chapter 9.2. The above definition ensures that the Stein equa-
tion (2.4) is still satisfied. However, the bounds on the solution of (2.4) change
slightly. In contrast to (2.7), let

B0 := {f : N0 → [0,1], f (x) = 0 for x /∈ supp(μ)}.(2.17)

LEMMA 2.9. Let Ã, associated with μ,V, and ω be given as in (2.15), where
μ has supp(μ) = {0,1, . . . , n}. Let f ∈ B0 and let gf,V be the solution of the Stein
equation (2.4) given in (2.5) for k ≤ n, and as in (2.16) for k ≥ n + 1. Defining the
sum

∑n
l=j+1 as 0 for j ≥ n, with λ1 and λ2 being given in (2.14) for μ,

|gf,V (j)| ≤ 2 + 1

2

(
λ2

λ1 + 1

)λ2−λ1−2

1(λ2 − 2 ≥ λ1), j = 0,1, . . . , n;

|gf,V (j)| ≤ 1

j
, j ≥ n + 1.

In the case that (2.12) is satisfied we also have

|gf,V (j)| ≤
(

min

{
ln(j),

∑
k

kμ(k)

}
+ 1

ω
eV (0)−V (1)

)
1

F̄ (j)
, j = 0,1, . . . , n,

and if (2.9) is satisfied, then

sup
f ∈B�

|�gf,V (j)| ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

j
∧ eV (j)

ωeV (j+1)
, j ≤ n,

1

j
, j > n.
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PROOF. The first assertion follows directly from Lemma 2.5 and (2.16). The
second assertion follows from Lemma 2.1 for j ≤ n − 1, and for j ≥ n + 1 it
follows from (2.16) that

gf,V (j + 1) − gf,V (j) = μ(f )

{
1

j + 1
− 1

j

}
,

so that

|gf,V (j + 1) − gf,V (j)| <
1

j
.

For j = n we obtain

gf,V (n + 1) − gf,V (n) = μ(f )
1

n + 1
−

{
−1

n

(
f (n) − μ(f )

)}

= 1

n

(
f (n) − μ(f )

1

n + 1

)
,

so that

|gf,V (n + 1) − gf,V (n)| <
1

n
. �

We conclude this section with some examples.

EXAMPLE 2.10 (Poisson distribution Po(λ) with parameter λ > 0). We use
ω = λ, V (k) = −λ, Z = 1. The Stein operator is

(Ag)(k) = g(k + 1)λ − kg(k).

Applying Lemma 2.1 (bk = λ is nonincreasing in k) gives the nonuniform bound

sup
f ∈B

|�gf,pos(k)| ≤ 1

k
∧ 1

λ
,(2.18)

which leads to the well-known uniform bound 1 ∧ 1/λ; see [4], Lemma 1.1.1.
Yet [4], Lemma 1.1.1 gives the better bound λ−1(1 − e−λ) ≤ min(1,1/λ). In the
Poisson case the right-hand side of (2.10) gives

1/k

k−1∑
l=0

e−λ λl

l! + 1/λ

∞∑
l=k+1

e−λ λl

l! .

This sum can be bounded by

e−λ

(
1

λ

∞∑
l=1

λl

l!
)

= e−λ

λ
(eλ − 1) = 1

λ
(1 − e−λ),
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and therefore we obtain for any k ≥ 1

sup
f ∈B

|�gf,pos(k)| ≤ 1

λ

(
1 − e−λ)

(2.19)

as in [4], Lemma 1.1.1. The bounds (2.18) and (2.19) lead to

sup
f ∈B

|�gf,pos(k)| ≤ 1

k
∧ 1

λ
(1 − e−λ),(2.20)

which is a slight improvement of (2.18) and of [5].
For the Poisson distribution, λ1 = λ2 = λ in Lemma 2.5, and the bound 2 from

Lemma 2.5 is poor compared to the bound ‖g‖ ≤ min(1, λ−1/2) from Lemma 1.1.1
on page 7 in [4]. The bound in Lemma 2.4 is cumbersome to compute; but for
λ ≥ √

2 and for j = 1, say, the nonuniform bound |g(1)| ≤ (λ(1 − e−λ))−1 is
slightly more informative than the uniform bound ‖g‖ ≤ λ−1/2. The nonuniform
bound improves with increasing λ, and deteriorates with increasing j .

EXAMPLE 2.11 (Binomial distribution with parameters n and 0 < p < 1). We
use ω = p

1−p
,V (k) = − log((n−k)!), and Z = (n!(1−p)n)−1. The Stein operator

is

(Ag)(k) = g(k + 1)
p(n − k)

(1 − p)
− kg(k).

In [4] and [7] we find (Ag)(k) = g(k + 1)p(n− k)− (1 −p)kg(k) as the operator
which is equivalent to our formulation. The birth rates (bk)k are nonincreasing and
we obtain from Lemma 2.1 that

sup
f ∈B

|�gf,bin(k)| ≤ 1

(1 − p)k
∧ 1

p(n − k)
.

The proof of [4], Lemma 9.2.1, implicitly contains the same nonuniform bound.
Formula (18) in [7] gives a bound of the form

sup
f ∈B

|�gf,bin(k)| ≤ (
1 − pn+1 − (1 − p)n+1)

/
(
(n + 1)(1 − p)p

)
for every 0 < k < n. Simple calculations show that the bound (18) in [7] is for
some cases better and for some cases worse in comparison to our nonuniform
result. From Lemma 2.5 with λ1 = 1, λ2 = n we obtain a bound on ‖gf,bin‖ which
is of order O(en lnn) and therefore in most applications not useful. The nonuniform
bound Lemma 2.4

|g(j)| ≤
(

1 −
j−1∑
k=0

(
n

k

)
pk(1 − p)n−k

)−1(
min{ln(j), np} + 1 − p

np

)

will still be informative for j small and np large.
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EXAMPLE 2.12 (Geometric distribution). Consider μ(k) = p(1−p)k for k =
0,1, . . . . The Stein operator is

(Ag)(k) = g(k + 1)(1 − p)(k + 1) − kg(k).

The birth rates bk = (1 − p)(k + 1) fulfill bk − bk−1 ≤ k − (k − 1) = dk − dk−1.
This is condition (C4) in [5], which is sufficient for (2.9). Hence applying [5],
Theorem 2.10, one obtains

sup
f ∈B

|�gf,geo(k)| ≤ 1

k
∧ 1

(1 − p)(k + 1)
,

which leads to the uniform bound 1 ∧ 1
(1−p)

.
We can improve their bounds calculating the right-hand side of (2.10) explicitly:

|�gf,V (j)| = p

(1 − p)(j + 1)

(
(1 − p)j+1

p

)
+ 1

j

(
1 − (1 − p)j

)

= (1 − p)j

j + 1
+ 1

j

(
1 − (1 − p)j

) = j + 1 − (1 − p)j

j (j + 1)
.

Obviously |�gf,V (j)| ≤ 1
j

. Using Bernoulli’s inequality (1 − x)n ≥ 1 − nx for
x < 1 and n ∈ N it follows that

|�gf,V (j)| ≤ j + pj

j (j + 1)
= 1 + p

j + 1
.

We obtain

sup
f ∈B

|�gf,geo(k)| ≤ 1

k
∧ 1 + p

(k + 1)
,

which leads to the uniform bound 1 ∧ (1 + p).
In Lemma 2.5 we obtain λ1 = 1 − p, λ2 = ∞, and hence the lemma does not

give informative bounds. Lemma 2.4 gives, with F̄ (j) = (1 − p)j , the bound
|gf,geo(j)| ≤ 1

(1−p)j
(min{ln(j), 1

p
} + 1

1−p
). However, with (2.6) and f ∈ B we

may bound directly

|gf,geo(j + 1)| ≤ j !
(1 − p)j+1(j + 1)!

∞∑
k=j+1

(1 − p)k

= 1

j + 1

∞∑
k=0

(1 − p)k = 1

p(j + 1)
,

and using that gf,geo(0) = 0 we obtain the improved bound ‖gf,geo‖ ≤ 1
p

. To our
knowledge this bound is new.

In [13] the author considered another Stein operator. Hence the results cannot
be compared. In [14] the authors considered the same Stein operator. They obtain
supf ∈B |�gf,geo(k)| ≤ 1

k
. Hence [5] already improved this result.
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3. Size-bias couplings and Gibbs measures.

3.1. Size-bias couplings and Stein characterizations. Stein’s method is most
powerful in presence of dependence. To treat global dependence, couplings have
proved a useful tool. For discrete, nonnegative random variables, so-called size-
bias couplings fit nicely into our framework as they link in with unit per capita
death rate generators.

For any random variable X ≥ 0 with EX > 0 we say that a random variable X∗,
defined on the same probability space as X, has the X-size-biased distribution if

EXf (X) = EXEf (X∗)(3.1)

for all functions f such that both sides of (3.1) exist. Size-bias couplings (X,X∗)
have been studied in connection with Stein’s method for Poisson approximation
(see [4], e.g.) and for normal approximations (see [9], e.g.); a general framework
is given in [8].

If X is discrete, then for all x we have P(X∗ = x) = x
EX

P (X = x). This illus-
trates that size biasing corresponds to sampling proportional to size; the larger a
subpopulation, the more likely it is to be contained in the sample.

EXAMPLE 3.1 (Poisson distribution). If X ∼ Po(λ), then from the Stein op-
erator in Example 2.10 we read off that X∗ = X + 1 has the Po(λ)-size-biased
distribution. In [4] a related coupling is used, namely the reduced size-biased cou-
pling (X,X∗), with X∗ = X∗ − 1.

EXAMPLE 3.2 (Bernoulli distribution). If X ∼ Be(p), it is easy to see that
X∗ = 1 has the Be(p)-size-biased distribution, for all p ∈ (0,1]. As an aside, this
shows that X∗ does not uniquely define X.

EXAMPLE 3.3 (Sum of nonnegative random variables). Let X1, . . . ,Xn be
nonnegative, EXi = μi > 0, W = ∑n

i=1 Xi , EW = μ, Var(W) = 1. Goldstein and
Rinott [9] give the following construction, valid also in the presence of depen-
dence. Choose an index I from {1, . . . , n} according to P(I = i) = μi

μ
. If I = i,

replace Xi by a variate X∗
i having the Xi-size-biased distribution. If X∗

i = x, con-
struct X̂j , j �= i, such that

L(X̂j , j �= i|X∗
i = x) = L(Xj , j �= i|Xi = x).

Then

W ∗ = ∑
j �=I

X̂j + X∗
I(3.2)

has the W -size-biased distribution; see [9], construction after Lemma 2.1.
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As in the Poisson case, the size-bias coupling can be used to derive a character-
ization of a Gibbs measure, as follows.

LEMMA 3.4. Let X ≥ 0 be such that 0 < E(X) < ∞, and let μ be a dis-
crete Gibbs measure given in (1.5). If X ∼ μ and X∗ having the X-size-biased
distribution is defined on the same probability space as X, then for every function
g : N0 → R such that E|Xg(X)| exists,

ωEeV (X+1)−V (X)g(X + 1) = ωEeV (X+1)−V (X)Eg(X∗).(3.3)

PROOF. In view of (2.3), for any X ≥ 0 with EX > 0 and (X,X∗) a size-
biased coupling we have, for any bounded function g : N0 → R

E
{
ωeV (X+1)−V (X)g(X + 1) − Xg(X)

}
= E

{
ωeV (X+1)−V (X)g(X + 1) − EXEg(X∗)

}
.

For X having distribution (1.5), the expectation is given by

EX = ωEeV (X+1)−V (X).

From EX > 0 it follows that ω �= 0. The result now follows from the Stein char-
acterization (2.3) of (1.5) for ω �= 0. �

Indeed in (3.3) the factor ω cancels. However, in a moment we shall relate (3.3)
to the Stein equation. In order not to get confused about the solutions for the Stein
equation with and without the ω involved, we have decided to keep the ω.

Lemma 3.4 provides a new formulation of the Stein approach (2.2): Let W ≥ 0
with 0 < EW < ∞. If W has distribution μ, then for all f ∈ B

Ef (W) − μ(f )
(3.4)

= ω
{
EeV (W+1)−V (W)gf,V (W + 1) − EeV (W+1)−V (W)Egf,V (W ∗)

}
,

where gf,V , given in (2.5), is the solution of the Stein equation (2.4).

3.2. Comparison of distributions via their generators. From (2.2), for any ran-
dom variable W and any measurable set A we can find a function f = fμ such that
P(W ∈ A) − μ(A) = EAf (W), where A is the generator associated with the tar-
get distribution μ. Applications of Stein’s method usually continue by bounding
the right-hand side EAf (W). Nevertheless, Stein’s method can also be employed
to compare two distributions by comparing their generators. While generators may
in general not be available, for any discrete distribution we have implicitly con-
structed a generator in (1.9). It is from this angle that we shall bound distances
between Gibbs distributions. Assume that μ1 and μ2 are two distributions with
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generators A1 and A2, respectively. Then, for W ∼ μ2, EA2fμ1(W) = 0, and
therefore

μ1(A) − P(W ∈ A) = EA1fμ1(W) − EA2fμ1(W) = E(A1 − A2)fμ1(W).

Hence we can compare two discrete Gibbs distributions by comparing their birth
rates and their death rates, as follows.

THEOREM 3.5. Let μ1 have generator A1 as in (1.9) and corresponding
(ω1,V1), and let μ2 have generator A2, and corresponding (ω2,V2), both de-
scribed in terms of unit per capita death rates. Suppose that D(A1) = D(A2).
Then, for X2 ∼ μ2, f ∈ B, if gf,V1 is the solution of the Stein equation for μ1,∣∣∣∣Ef (X2) −

∫
f dμ1

∣∣∣∣
≤ min

{
‖gf,V1‖E(X2)

×
( |ω1 − ω2|

ω2
+ ω1

ω2
E

∣∣e(V1(X
∗
2)−V1(X

∗
2−1))−(V2(X

∗
2)−V2(X

∗
2−1)) − 1

∣∣),(3.5)

‖gf,V2‖E(X1)

×
( |ω2 − ω1|

ω1
+ ω2

ω1
E

∣∣e(V2(X
∗
1)−V2(X

∗
1−1))−(V1(X

∗
1)−V1(X

∗
1−1)) − 1

∣∣)}
.

PROOF. For X2 ∼ μ2, f ∈ B, if gf,V1 is the solution of the Stein equation for
μ1, we have Ef (X2) − μ1(f ) = EA1gf,V1(X2) = E(A1 − A2)gf,V1(X2). Using
the size biasing and (3.3) we obtain

Ef (X2) − μ1(f )

= Egf,V1(X2 + 1)
(
ω1e

V1(X2+1)−V1(X2) − ω2e
V2(X2+1)−V2(X2)

)
= ω1Egf,V1(X2 + 1)eV2(X2+1)−V2(X2)eV1(X2+1)−V1(X2)−(V2(X2+1)−V2(X2))

− E(X2)Egf,V1(X
∗
2)

= ω1

ω2
E(X2)Egf,V1(X

∗
2)e(V1(X

∗
2)−V1(X

∗
2−1))−(V2(X

∗
2)−V2(X

∗
2−1))

− E(X2)Egf,V1(X
∗
2)

= ω1 − ω2

ω2
E(X2)Egf,V1(X

∗
2)

+ ω1

ω2
E(X2)Egf,V1(X

∗
2)

{
e(V1(X

∗
2)−V1(X

∗
2−1))−(V2(X

∗
2)−V2(X

∗
2−1)) − 1

}
.

Taking absolute values together with the triangle inequality, and observing that the
argument is symmetric in the indices 1 and 2, we obtain (3.5). �
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REMARK 3.6. Theorem 3.5 has the advantage that the partition function Z
may not be needed to assess the distance.

REMARK 3.7. Note that it is not surprising that ‖gf,V1‖ appears in the bound;
even if we compare two Poisson distributions, with different means λ1 and λ2, the
bound would be of the type |λ1 − λ2|‖gf,V1‖.

When D(A1) �= D(A2), we first extend A1 to Ã1, defined for functions on
{0,1,2, . . .} as in (2.15), and apply then Lemma 2.9. For convenience assume that
supp(μ1) = {0,1, . . . , n} and supp(μ2) = {0,1,2, . . .}. Using similar calculations
as for Theorem 3.5, we derive the following result.

COROLLARY 3.8. Let μ1 have generator A1 and corresponding (ω1,V1),
and let μ2 have generator A2, and corresponding (ω2,V2), both described in
terms of unit per capita death rates. Suppose that supp(μ1) = {0,1, . . . , n} and
that supp(μ2) = {0,1,2, . . .}. Then, for X2 ∼ μ2 and f ∈ B0 as in (2.17), if gf,V1

is the solution of the Stein equation for μ1 as in (2.15),∣∣∣∣Ef (X2) −
∫

f dμ1

∣∣∣∣
≤ min

{
‖gf,V1‖E(X2)

×
( |ω1 − ω2|

ω2
+ ω1

ω2
E

∣∣e(V1(X
∗
2)−V1(X

∗
2−1))−(V2(X

∗
2)−V2(X

∗
2−1)) − 1

∣∣),

(3.6)
‖gf,V2‖E(X1)

×
( |ω2 − ω1|

ω1
+ ω2

ω1
E

∣∣e(V2(X
∗
1)−V2(X

∗
1−1))−(V1(X

∗
1)−V1(X

∗
1−1)) − 1

∣∣)}

+ μ1(f )

∞∑
k=n+1

μ2(k).

The extra term μ1(f )
∑∞

k=n+1 μ2(k) in the bound (3.6) as compared to (3.5)
accounts for the extension Ã1 of the generator A1.

PROOF OF COROLLARY 3.8. We proceed as in the proof of Theorem 3.5. Let
Ã1 be the extension of A1 as in (2.15). For X2 ∼ μ2, f ∈ B�, if gf,V1 as in (2.16)
is the solution of the Stein equation for μ1, we have

Ef (X2) − μ1(f )

= EÃ1gf,V1(X2)

= E(Ã1 − A2)gf,V1(X2)
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= Egf,V1(X2 + 1)
(
ω1e

V1(X2+1)−V1(X2) − ω2e
V2(X2+1)−V2(X2)

)

=
n−1∑
k=0

P(X2 = k)gf,V1(k + 1)
(
ω1e

V1(k+1)−V1(k) − ω2e
V2(k+1)−V2(k))

−
∞∑

k=n

P (X2 = k)
μ1(f )

k + 1
ω2e

V2(k+1)−V2(k),

where we used (2.16). Now the summand

n−1∑
k=0

P(X2 = k)gf,V1(k + 1)
(
ω1e

V1(k+1)−V1(k) − ω2e
V2(k+1)−V2(k))

can be treated exactly as in Theorem 3.5; from Lemma 2.9 we have the same
bounds on the solution of the Stein equation when k ≤ n. For the second summand
we have

∞∑
k=n

P (X2 = k)
μ1(f )

k + 1
ω2e

V2(k+1)−V2(k)

= ω2μ1(f )

∞∑
k=n

1

Z
eV2(k) ωk

2

k!(k + 1)
eV2(k+1)−V2(k)

= μ1(f )

∞∑
k=n+1

μ2(k).

Thus we obtain (3.6). �

Note that the bound in Corollary 3.8 contains the measure μ2 explicitly; hence
examples will require the calculation of the normalizing constant Z2. We now treat
the instructive example that the two generators A1 and A2 have the same birth and
death rates, but live on different domains.

EXAMPLE 3.9. Suppose that the distributions μ1 and μ2 have supports
supp(μ1) = {0,1, . . . , n} and supp(μ2) = {0,1,2, . . .}, respectively. Let μ1 have
generator A1 and corresponding (ω,V ), and let μ2 have generator A2, and cor-
responding same (ω,V ), both described in terms of unit per capita death rates, so
that the two generators have the same birth rates and death rates for k = 0, . . . , n.
Then, for X2 ∼ μ2 and f ∈ B0, if gf,V1 is the solution of the Stein equation for
μ1, it follows from (3.6) that

∣∣∣∣Ef (X2) −
∫

f dμ1

∣∣∣∣ ≤ μ1(f )

∞∑
k=n+1

μ2(k).
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In particular it follows that

dTV(μ1,μ2) ≤
∞∑

k=n+1

μ2(k),

stating that the difference between the two distributions can be bounded by the
total mass of the domain, under the respective distribution, which is in the support
of the one distribution, but not of the other distribution.

Indeed the bound is sharp, as from (1.2) we have that μ1(k) = αμ2(k) for k =
0,1, . . . , n, with α = (

∑n
k=0 μ2(k))−1 > 1. Hence

dTV(μ1,μ2) = 1
2

n∑
k=0

(α − 1)μ2(k) + 1
2

∞∑
k=n+1

μ2(k) =
∞∑

k=n+1

μ2(k).

Theorem 3.5 and Corollary 3.8 invite the study of the total variation distance
of discrete probability distributions with different supports of the corresponding
operators, for example considering the distance between a binomial and a hyper-
geometric distribution. As this leads away from the flow of the paper, we do not
pursue it here. Instead we turn to the application of our approach to Gibbs mea-
sures arising in interacting particle systems.

4. Application to lattice approximation in statistical physics. Now we ap-
ply our results to the model studied by Chayes and Klein [6]. Their setup is as
follows. Assume A ⊂ R

d is a rectangle; denote its volume by |A|. Consider the
intersection of A with the d-dimensional lattice n−1

Z
d . For each site m in this

intersection we associate a Bernoulli random variable Xn
m which takes value 1,

with probability pn
m, if a particle is present at m and 0 otherwise. If the collection

(Xn
m)m is independent, the joint distribution can be interpreted as the Gibbs distri-

bution for an ideal gas on the lattice. The Poisson convergence theorem states that,
for n going to infinity, when preserving the average density of particles the lat-
tice ideal gas distribution converges weakly to a Poisson distribution, which is the
standard Gibbs distribution for an ideal gas in the continuum. On physical grounds
one expects that a similar result might hold for interacting particles. The model is
as follows. Pick n ∈ N and suppose that A can be partitioned into a regular array
of d(n) sub-rectangles {Sn

1 , . . . , Sn
d(n)} with volumes v(Sn

m) = zn
m

zn
. Here, zn

m > 0 for
each m,n. Thus

|A| = 1

zn

d(n)∑
m=1

zn
m.

As a guideline motivated by [6] we choose zn
m > 0 and zn such that zn

m → 0 and
zn → z > 0 for n → ∞. For each m,n choose a point qn

m ∈ Sn
m. Now the following

class of functions is considered.
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ASSUMPTION 4.1. Let (fk)k be a sequence of functions satisfying f0 ≡ 1
and for each k ≥ 1, fk(x1, . . . , xk) is a nonnegative function, Riemann integrable
on Ak , such that fk is a symmetric function for each k; that is, for any permutation
σ , fk(xσ(1), . . . , xσ(k)) = fk(x1, . . . , xk).

Let Xn
m,1 ≤ m ≤ d(n), be 0–1 random variables with joint density function

given as follows. If a1, . . . , ad(n) are such that ai ∈ {0,1}, and if

k =
d(n)∑
m=1

am =
k∑

m=1

aim

is the sum of the nonzero ai ’s, then

P
(
Xn

1 = a1, . . . ,X
n
d(n) = ad(n)

)

= K(d(n))−1fk(q
n
i1
, . . . , qn

ik
)

d(n)∏
m=1

(zn
m)am,

where the normalizing constant is

K(d(n)) = ∑
a∈{0,1}d(n)

∑
k

1{∑ai=k}fk(q
n
i1
, . . . , qn

ik
)

d(n)∏
m=1

(zn
m)am.

Define

Sn =
d(n)∑
m=1

Xn
m.

Then, due to the symmetry of fk ,

P(Sn = k) =
(zn)k

k!
∑d(n)

i1=1 · · ·∑d(n)
ik=1 fk(q

n
i1
, . . . , qn

ik
)
∏k

m=1 v(Sn
im

)∑d(n)
k=0

(zn)k

k!
∑d(n)

i1=1 · · ·∑d(n)
ik=1 fk(q

n
i1
, . . . , qn

ik
)
∏k

m=1 v(Sn
im

)
.(4.1)

Note that we can write (4.1) as a Gibbs measure μn of the form (1.5) with

ωn = zn, Vn(k) = log(Wn(k)), k ∈ {0,1, . . . d(n)},(4.2)

where

Wn(k) =
d(n)∑
i1=1

· · ·
d(n)∑
ik=1

fk(q
n
i1
, . . . , qn

ik
)

k∏
m=1

v(Sn
im

), k ∈ {0, . . . , d(n)}.

Let S be a nonnegative integer-valued random variable defined by

P(S = k) =
zk

k!
∫
Ak fk(x1, . . . , xk) dx1 · · ·dxk∑∞

k=0
zk

k!
∫
Ak fk(x1, . . . , xk) dx1 · · ·dxk

.(4.3)
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We write (4.3) as a Gibbs measure μ of the form (1.5) with

ω = z, V (k) = log(W(k)), k ∈ {0,1, . . .},
where

W(k) =
∫
Ak

fk(x1, . . . , xk) dx1 · · ·dxk, k ∈ {0,1, . . .}.

In [6] the following class of functions is considered. Let (fk)k be a sequence of
functions satisfying Assumption 4.1 and, in addition:

(a) There exists a constant C such that fk(x1, . . . , xk) ≤ Ck for all k ≥ 0.
(b) fk(x1, . . . , xk) = 0 if xi = xj for some i �= j . This is not a necessary condi-

tion; see [6].

In [6] it is shown that under these additional conditions, Sn ⇒ S, that is, Sn con-
verges weakly to S, under the conditions that limn→∞ zn = z and that

lim
n→∞

(
max

1≤m≤d(n)
zn
m

)
= 0.

For the proof of this convergence, condition (a) on (fk)k enters to ensure that
the Riemann sum converges, so that the normalizing constants Zn and Z for μn

and for μ, respectively, are finite. Condition (b) avoids some measure-theoretic
considerations. In [6] a bound on the rate of convergence is given for the special
case that fk = 1, all k ≥ 0, resulting in a Poisson approximation.

Here we give a general bound on the distance, not only in the case fk = 1, k ≥ 0.
Note that in [6] the generalization of Poisson convergence allows the authors to

develop a lattice-to-continuum theory of classical statistical mechanics; similarly
our results could be applied to obtain bounds on such lattice-to-continuum theory.

Using Corollary 3.8 with μ1 = μn and μ2 = μ, we obtain∣∣∣∣Ef (Sn) −
∫

f dμ

∣∣∣∣
≤ min

{
E(Sn)‖gf,V ‖

( |zn − z|
zn

+ z

zn

E

∣∣∣∣W(S∗
n)Wn(S

∗
n − 1)

W(S∗
n − 1)Wn(S∗

n)
− 1

∣∣∣∣
)
,

E(S)‖gf,Vn‖
( |z − zn|

z
+ zn

z
E

∣∣∣∣Wn(S
∗)W(S∗ − 1)

Wn(S∗ − 1)W(S∗)
− 1

∣∣∣∣
)}

+ μn(f )

∞∑
k=d(n)+1

μ(k).

Writing out the size-biased distribution gives the following result.
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THEOREM 4.2. Let Sn,μ, zn be as above. Let us assume that (fk)k satisfies
Assumption 4.1 and condition (a). Then

dTV(L(Sn),μ)

≤ max(‖gf,V ‖,‖gf,Vn‖)

× min

{(
E(Sn)

|zn − z|
zn

+ z

zn

∑
k

kμn(k)

∣∣∣∣W(k)Wn(k − 1)

W(k − 1)Wn(k)
− 1

∣∣∣∣
)
,

(
E(S)

|z − zn|
z

+ zn

z

∑
k

kμ(k)

∣∣∣∣Wn(k)W(k − 1)

Wn(k − 1)W(k)
− 1

∣∣∣∣
)}

+ μn(f )

∞∑
k=d(n)+1

μ(k).

REMARK 4.3. Note that for Theorem 4.2, no monotonicity assumptions on
the birth and death rates in the corresponding birth–death process are needed. For
the bound to be informative, though, we need that max(‖gf,V ‖,‖gf,Vn‖) < ∞;
conditions to ensure this behavior are given in Lemma 2.5.

For the case of nonincreasing birth rates and unit per capita death rates, we also
obtain bounds based on the increments �g. Recall the notation of Example 3.3.

PROPOSITION 4.4. Let Sn be the sum of X1, . . . ,Xn, where Xi ∼ Be(pi), and
construct S∗

n via (3.2), and let μ be given by (1.5). Assume that the birth rates in
(1.7) are nonincreasing, and assume that the death rates are unit per capita. Then

dTV(L(Sn),μ)

≤ ωE
{
eV (Sn+1)−V (Sn)

× min
{
S(Sn, S

∗
n − 1),(4.4)

(|Sn − S∗
n + 1|/ω)eV (min(Sn,S∗

n−1))−V (min(Sn,S∗
n−1)+1)}}

+ ‖gf,V ‖ωE
∣∣eV (Sn+1)−V (Sn) − EeV (Sn+1)−V (Sn)

∣∣,
where we put S(x, y) = ∑max(x,y)

�=min(x,y)+1
1
�
.

PROOF. With the notation as in Example 3.3, denote the conditional expec-
tation given I = i by Ei . Let f ∈ B. If Xi ∼ Be(pi), i = 1, . . . , n, then X∗

i = 1.
Put

Ŝn,i = ∑
j �=i

X̂j .
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By (3.4) and (3.2), we have

|Ef (Sn) − μ(f )|

= ω

∣∣∣∣∣
n∑

i=1

pi∑n
j=1 pj

{
Ei

[
eV (Sn+1)−V (Sn)gf,V (Sn + 1)

]

− EeV (Sn+1)−V (Sn)Egf,V

(∑
j �=i

X̂j + 1

)}∣∣∣∣∣
= ω

∣∣∣∣∣
n∑

i=1

pi∑n
j=1 pj

Ei

[
eV (Sn+1)−V (Sn))(gf,V (Sn + 1) − gf,V (Ŝn,i + 1)

)]

+ Eigf,V (Ŝn,i + 1)
(
eV (Sn+1)−V (Sn) − EeV (Sn+1)−V (Sn))∣∣∣∣∣

≤ ω∑n
j=1 pj

n∑
i=1

piEi

{
eV (Sn+1)−V (Sn)

× min
{
S(Sn, Ŝn,i),

(|Sn − Ŝn,i |/ω)

× eV (min(Sn,Ŝn,i ))−V (min(Sn,Ŝn,i )+1)}|Sn �= Ŝn,i

}
× P(Sn �= Ŝn,i)

+ ‖gf,V ‖ωE
∣∣eV (Sn+1)−V (Sn) − EeV (Sn+1)−V (Sn)

∣∣,
where we used Lemma 2.1 for the last inequality. �

Note that in contrast to Theorem 4.2, we did not employ the difference between
generators in the proof.

4.1. Poisson approximation for a sum of indicators. In the Poisson case we
can use the bound (2.20) on �g instead of Lemma 2.1 to obtain improved overall
bounds, as follows. Let Xi ∼ Be(pi), i = 1, . . . , n; then as in Example 3.3 we
have for Sn = ∑n

j=1 Xj that S∗
n = Ŝn,I + 1, where as above Ŝn,i = ∑

j �=i X̂j . Let
λ = ESn = ∑n

j=1 pj . Recall that if μ = Po(λ), then ω = λ and V (k) = −λ. Hence
using (4.5) we obtain

|Ef (Sn) − Po(λ)(f )| =
∣∣∣∣∣

n∑
i=1

piEi

(
gf,V (Sn + 1) − gf,V (Ŝn,i)

)∣∣∣∣∣.
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Calculating as in the proof of Proposition 4.4 and using (2.20) we get

dTV(L(Sn),Po(λ))

≤
n∑

i=1

piEi

{
min

{
S(Sn, Ŝn,i ),

|Sn − Ŝn,i |
λ

(
1 − e−λ)}∣∣∣Sn �= Ŝn,i

}
(4.5)

× P(Sn �= Ŝn,i).

In particular we recover the bound for couplings in [4], Theorem 1.B,

dTV(L(Sn),Po(λ)) ≤ 1 − e−λ

λ

n∑
i=1

piEi |Sn − Ŝn,i |.(4.6)

EXAMPLE 4.5. Assume that the variables Sn and S∗
n can be coupled such that

|Sn − Ŝn,i | ≤ 1, i = 1, . . . , n.(4.7)

Then we can improve the bound (4.6), using

Ei{S(Sn, Ŝn,i)|Sn �= Ŝn,i}P(Sn �= Ŝn,i)

≤ Ei

{
Sn − Ŝn,i

1 + Ŝn,i

∣∣∣Sn �= Ŝn,i

}
P(Sn �= Ŝn,i)

≤ P(Sn �= Ŝn,i)

[
P {Ŝn,i = 0|Sn �= Ŝn,i} + 1

2
P {Ŝn,i ≥ 1|Sn �= Ŝn,i}

]

= P(Sn �= Ŝn,i)
1

2
(1 + P {Ŝn,i = 0|Sn �= Ŝn,i}).

EXAMPLE 4.6. In case that the Xi ’s are independent and we have Ŝn,i = Sn −
Xi , so that (4.7) is satisfied, and (4.6) yields that

dTV(L(Sn),Po(λ)) ≤
n∑

i=1

p2
i

1 − e−λ

λ
.(4.8)

The bound (4.8) coincides with the bound (1.23) given in [4]. We can improve on
it by using that

P {Ŝn,i = 0|Sn �= Ŝn,i} = P

(∑
j �=i

Xj = 0|Xi = 1

)
= ∏

j �=i

(1 − pj ).

This results in the bound for the independent case

dTV(L(Sn),Po(λ)) ≤
n∑

i=1

p2
i min

{
1

2

(
1 + ∏

j �=i

(1 − pj )

)
,

1 − e−λ

λ

}
.
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To see when the above bound is an improvement on the bound (1.23) given in [4],
consider the inequality

1

2
(1 + x) <

1 − e−λ

λ
.

We rearrange this inequality to give

λx < 2 − λ − 2e−λ.

Numerical calculations yield that the right-hand side is positive when 0 < λ <

1.59362. For such λ and some y such that 0 < y < 2 − λ − 2e−λ we can construct
strongly inhomogeneous cases such that∏

j �=i

(1 − pj ) ≤ λ−1y

for some indices i. Examples are, for λ = 1, the vector p = (p1, . . . , pn) =
(1,0,0, . . . ,0), or the vector p = (p1, . . . , pn) = (1−1/(n−1),1/(n−1)2,1/(n−
1)2, . . . ,1/(n−1)2) for n ≥ 3. In such cases, our bound provides an improvement.

Example 4.6 can only be an improvement on (4.6) when the underlying ran-
dom variables are not identically distributed; in the independent and identically
distributed case, we recover exactly the bound given in [4], (1.23), page 8.

4.2. An example with repelling interaction. Our first example with interaction
partitions A = [0,1] into n intervals, the ith interval given by Sn

i = [ i−1
n

, i
n
], and

we choose qn
i = 2i−1

2n
, the midpoint of the interval Sn

i . Then each Sn
i has volume

1
n

= λ
λn

; we choose zn
i = λ

n
and zn = λ. Note the freedom of choice in λ > 0. We

consider the set of functions fk given by f0 = 1, f1(x) = 1 for all x, and for k ≥ 2,
fk(x1, . . . , xk) = 0 if xi = xj for some i �= j , and otherwise

fk(x1, . . . , xk) = ∑
1≤i �=j≤k

(xi − xj )
2,

so that values x1, . . . , xn which are far away from each other are preferred. Then
clearly fk satisfies Assumption 4.1 as well as conditions (a) and (b). To avoid
trivialities we assume that n ≥ 2.

In our setup we choose 0–1 random variables Xn
m, 1 ≤ m ≤ n, with density

function

P(Xn
1 = a1, . . . ,X

n
n = an) ∝ n−kλk

∑
1≤i �=j≤k

(qn
i − qn

j )2 if k =
n∑

m=1

am ≥ 2;

P(Xn
1 = a1, . . . ,X

n
n = an) ∝ λ

n
if k = 1;

P(Xn
1 = 0, . . . ,Xn

n = 0) ∝ 1.
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With Sn = ∑n
m=1 Xn

m we have with (4.1) that

P(Sn = k) ∝ λk

k! Wn(k),

where

Wn(k) = n−k
n∑

i1=1

· · ·
n∑

ik=1

fk(q
n
i1
, . . . , qn

ik
), k = 0, . . . , n.

Let S be a nonnegative integer-valued random variable defined as in (4.3) by

P(S = k) =
λk

k!
∫
[0,1]k fk(x1, . . . , xk) dx1 · · ·dxk∑∞

k=0
λk

k!
∫
[0,1]k fk(x1, . . . , xk) dx1 · · ·dxk

∝ λk

k! W(k),

with

W(k) =
∫
[0,1]k

fk(x1, . . . , xk) dx1 · · ·dxk, k ≥ 0.

It is immediate that W(0) = W(1) = 1, and for k ≥ 2,

W(k) =
k∑

i=1

∑
j �=i

∫ 1

0

∫ 1

0
(xi − xj )

2 dxi dxj = k(k − 1)

6
.

Thus our limiting Gibbs measure μ has normalizing constant

Z = 1 + λ + 1

6

∑
k≥2

λk

(k − 2)! = 1 + λ + λ2

6
eλ

and is therefore given by

μ(0) =
(

1 + λ + λ2

6
eλ

)−1

,

μ(1) = λ

1 + λ + λ2

6 eλ
,

μ(k) =
(

1 + λ + λ2

6
eλ

)−1 λk

(k − 2)! , k ≥ 2.

To assess the distance between the distributions of Sn and of S we note that
Wn(0) = Wn(1) = 1 = W(0) = W(1), and some algebra yields, for k ≥ 2, that

Wn(k) = n−k
n∑

i1=1

· · ·
n∑

ik=1

∑
l �=s

(
2is − 1

2n
− 2ij − 1

2n

)2

= n−k−2
∑

1≤l �=s≤k

n∑
i=1

n∑
j=1

(i − j)2nk−2
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= 2n−4k(k − 1)

{
n∑

i=1

i2 −
(

n∑
i=1

i

)2}

= k(k − 1)(n + 1)(n − 1)

6n2 .

Thus
Wn(k)

Wn(k − 1)
= W(k)

W(k − 1)

for k = 0, . . . , n, and we are in the situation of Example 3.9. Therefore it follows
that

dTV(μn,μ) =
∞∑

k=n+1

μ(k)

=
(

1 + λ + λ2

6
eλ

)−1 ∞∑
k=n+1

λk

k!

≤ λn+1eλ

(n + 1)!(1 + λ + λ2

6 eλ)
.

Summarizing, we have:

COROLLARY 4.7. Let Sn and S be as constructed above. Then

dTV (L(Sn),μ) ≤ λn+1eλ

(n + 1)!(1 + λ + λ2

6 eλ)
.

4.3. A second example with interaction. Using the same partition of A = [0,1]
and the same notation as in the previous example, and choosing for simplicity
ω = λ = 1, we now consider the set of functions (fk)k given by f0(x) = f1(x) = 1
for all x, and for k ≥ 2,

fk(x1, . . . , xk) = ∏
1≤i �=j≤k

xixj .

Clearly (fk)k satisfy Assumption 4.1 as well as conditions (a) and (b). We take
qn
i = i−1

n
, the left endpoint of the interval Sn

i . Assume that n ≥ 3. Along the lines
of the calculations in the previous example we obtain now W(0) = W(1) = 1 and
for k ≥ 2

W(k) = k−k,

so that the distribution of S given in (4.3) is

μ(k) = 1

Z

1

k!k
−k, k ≥ 0.
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We note that

1 ≤ Z = 1 +
∞∑

k=1

1

k!e
−k lnk ≤ e1/e.

For the distribution of Sn given in (4.1) we obtain Wn(0) = Wn(1) = 1, and for
k ≥ 2,

Wn(k) = n−k2

(
n−1∑
i=0

ik−1

)k

.

We employ an integral approximation, obtaining

(
n − 1

n

)k2

k−k < Wn(k) < k−k, k ≥ 2.

Observe that for k = 0, . . . , n,
(

n − 1

n

)k2

<
Wn(k)

W(k)
< 1.

For Theorem 4.2, we may thus bound for k = 2, . . . , n,∣∣∣∣W(k)Wn(k − 1)

W(k − 1)Wn(k)
− 1

∣∣∣∣
≤ max

{
1 −

(
n − 1

n

)k2

;
(

n

n − 1

)k2

− 1
}

=
(

n

n − 1

)k2

− 1.

Now we calculate

∑
k

kμn(k)

∣∣∣∣W(k)Wn(k − 1)

W(k − 1)Wn(k)
− 1

∣∣∣∣ ≤ ∑
k

kμn(k)

{(
n

n − 1

)k2

− 1
}
.

Taylor’s expansion gives the inequality

0 ≤
(

n

n − 1

)k2

− 1 ≤ k2

n − 1

(
1 + 1

n − 1

)k2

<
k2

n − 1
ek2/(n−1) <

k2

n − 1
ek,

for k ≤ n and n ≥ 3. Applying this inequality, we obtain that

∑
k

kμn(k)

∣∣∣∣W(k)Wn(k − 1)

W(k − 1)Wn(k)
− 1

∣∣∣∣ ≤ 1

(n − 1)Zn

n−1∑
k=1

1

k!e
−k log(k)+k

<
ee

(n − 1)Zn

<
2ee

n
,
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where we used Zn = 1 + ∑∞
k=1

1
k!Wn(k) ≥ 1 in the last inequality. Next we esti-

mate
∞∑

k=n+1

μ(k) = 1

Z

∞∑
k=n+1

1

k!k
−k ≤

∞∑
k=n+1

1

k!n
−k ≤ e1/n n−(n+1)

(n + 1)! ,

where we used that Z > 1.
Note that λ2 = supk

(k+1)k+1

kk = ∞, so that we cannot apply Lemma 2.5; instead
we find an alternative bound on ‖gf,V ‖ as follows. From (2.6) we have

|gf,V (j + 1)| ≤ j !
ωj+1 e−V (j+1)

N∑
k=j+1

eV (k) ω
k

k! ≤
∞∑

k=0

1

k!k
−k = Z ≤ e1/e.

COROLLARY 4.8. Let Sn and S be as constructed above, and let n ≥ 3. Then

dTV(L(Sn),μ) ≤ 2
ee+1/e

n
+ e1/n n−(n+1)

(n + 1)! .
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