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MULTIVARIATE NORMAL APPROXIMATION WITH

STEIN’S METHOD OF EXCHANGEABLE PAIRS UNDER

A GENERAL LINEARITY CONDITION

By Gesine Reinert∗ and Adrian Röllin†

University of Oxford

In this paper we establish a multivariate exchangeable pairs ap-
proach within the framework of Stein’s method to assess distribu-
tional distances to potentially singular multivariate normal distribu-
tions. By extending the statistics into a higher-dimensional space,
we also propose an embedding method which allows for a normal
approximation even when the corresponding statistics of interest do
not lend themselves easily to Stein’s exchangeable pairs approach. To
illustrate the method, we provide the examples of runs on the line,
the joint count of edges, two-stars and triangles in Bernoulli ran-
dom graphs, complete U -statistics, and double-indexed permutation
statistics.

1. Introduction. Stein’s method was first published in Stein (1972)
to assess the distance between univariate random variables and the normal
distribution. This method has proved particularly powerful in the presence
of both local dependence and weak global dependence.

A coupling at the heart of Stein’s method for univariate normal approxi-
mation is the method of exchangeable pairs, see Stein (1986). Assume that
W is a univariate random variable with EW = 0 and EW 2 = 1, and assume
that W ′ is a random variable such that (W,W ′) makes an exchangeable
pair. Assume further that there is a number λ > 0 such that the conditional
expectation of W ′ −W with respect to W satisfiesEW (W ′ −W ) = −λW. (1.1)

Heuristically, (1.1) can be understood as as linear regression condition. If
(W,W ′) were bivariate normal with correlation ρ, thenEWW ′ = ρW,
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2 G. REINERT AND A. RÖLLIN

and (1.1) would be satisfied with λ = 1− ρ. If W was close to normal, then
so would be W ′, and it would not be unreasonable to assume that (1.1) is
close to satisfied.

In this spirit, the univariate theorem of Stein (1986) has been extended by
Rinott and Rotar (1997). With the same basic setup as in Stein (1986), they
generalise (1.1) by assuming that there is a number λ > 0 and a random
variable R = R(W ) such thatEW (W ′ −W ) = −λW +R. (1.2)

Note that, unlike Condition (1.1), this is not a condition in the strict sense,
as we can define R := EW (W ′ −W ) + λW for any λ; however, we always
have ER = 0.

One of the results of Rinott and Rotar (1997) is that

sup
x

∣

∣P[W 6 x] −P[Z 6 x]
∣

∣

6
6

λ

√

VarEW (W ′ −W )2 +
6

λ1/2

√E|W ′ −W |3 +
19

λ

√
VarR,

(1.3)

where Z has standard normal distribution. So clearly, Representation (1.2)
is useful only if λ−1

√
VarR = o(1). In this case, if λ1 and λ2 stem from

two different representations (1.2) for which λ−1
i

√
VarRi = o(1) for i = 1, 2,

then it it easy to see that |λ1 − λ2|/(λ1 + λ2) = o(1); in this sense, λ is
asymptotically unique. Rinott and Rotar (1997) then apply bound (1.3) to
the number of ones in the anti-voter model, and to weighted U -statistics.
Röllin (2008) provides a proof of a variant of (1.3) which does not use
exchangeability but only L (W ′) = L (W ); in Section 5 we shall discuss this
for the multivariate setting in more detail.

Stein’s method has been extended to many other distributions, for an
overview see for example Reinert (2005). For multivariate normal approxi-
mations the method was first adapted by Barbour (1990) and Götze (1991),
viewing the normal distribution as the stationary distribution of an Orn-
stein-Uhlenbeck diffusion, and using the generator of this diffusion as a char-
acterising operator for the normal distribution. Subsequent authors have
used this generator approach for multivariate normal approximation with
different variants, such as the local approach and the size-biasing approach
by Goldstein and Rinott (1996) and Rinott and Rotar (1996), and the zero-
biasing approach by Goldstein and Reinert (2005).

The exchangeable pair approach in contrast, while having proved useful
in non-normal contexts, see Chatterjee et al. (2005), Chatterjee and Fulman
(2006) and Röllin (2007), remained restricted to the one-dimensional setting
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until very recently. A main stumbling block was that the extension of Con-
dition (1.2) to the multivariate setting is not obvious from the view point of
Stein’s method.

In Chatterjee and Meckes (2007), this issue was finally addressed. They
propose the condition that for all i = 1, . . . , d,EW (W ′

i −Wi) = −λWi, (1.4)

for a fixed number λ, where now W = (W1, . . . ,Wd) and W ′ = (W ′
1, . . . ,W

′
d)

are identically distributed d-vectors with uncorrelated components an ex-
tension to the additional remainder term R was not considered, but would
be straightforward). They employ such couplings to bound the distance to
the standard multivariate normal distribution. Using the same argument
as Röllin (2008), Chatterjee and Meckes (2007) are able to give proofs of
their theorems without using exchangeability and apply them successfully
to various multivariate applications.

Heuristically, however, if (W,W ′) were jointly normal, with mean vector 0
and covariance matrix

Σ0 =

(

Σ Σ̃

Σ̃ Σ

)

, (1.5)

then EWW ′ = Σ̃Σ−1W (see for example Mardia et al. (1979), p.63, Theo-
rem 3.2.4.), in which caseEW (W ′ −W ) = −(Id−Σ̃Σ−1)W ; (1.6)

here Id denotes the identity matrix. Again, if (W,W ′) is approximately
jointly normal, then we expect (1.6) to be approximately satisfied. This
heuristic leads to the condition thatEW (W ′ −W ) = −ΛW +R (1.7)

for an invertible d × d matrix Λ and a remainder term R = R(W ). Even
if Σ = Id we would obtain Λ = Id−Σ̃, which in general is not diagonal.
Hence we argue that (1.7) is not only more general, but also more natural
than (1.4).

Different exchangeable pairs will lead to different Λ and R in (1.7); our
embedding method suggests suitable decompositions. Indeed, for a specific
exchangeable pair (W,W ′) at hand it is often far from obvious whether this
pair will satisfy the linearity condition (1.7) with R of the required small
order, unless equal to zero. Consider the case of 2-runs. For a sequence of
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i.i.d. Bernoulli distributed random variables ξ1, . . . , ξn such that P[ξ1 = 1] =
p, define the centered number of 2-runs

V2 =
n
∑

i=1

ξiξi+1 − np2

where we let ξn+1 := ξ1. The most natural construction of an exchangeable
pair in the spirit of Stein (1986) is be to pick uniformly a ξi and replace it
by an independent copy ξ′i. Denote by V ′

2 the resulting number of 2-runs in
the new sequence. It is easy to calculate (see Subsection 4.2) thatEV2(V ′

2 − V2) = − 2

n
V2 +

2p

n
EV2

n
∑

i=1

(ξi − p). (1.8)

The conditional expectation on the right hand side of (1.8) is hard to cal-
culate. Furthermore, it has the same order of magnitude as V2. Also, the
weighted U -statistics approach of Rinott and Rotar (1997) (Proposition 1.2)
does not yield convergent bounds to the normal distribution. We propose
the following approach to this problem. Keeping the above coupling, we de-
fine V1 :=

∑n
i=1 ξi − np (and V ′

1 accordingly) and consider the problem as
a 2-dimensional problem W :=

(V1

V2

)

. Eq. (1.8) now yields EW (V ′
2 − V2) =

− 2
nV2 + 2p

n V1, and further calculations reveal that EW (V ′
1 − V1) = − 1

nV1, so
that now (1.7) holds with

Λ =
1

n

[

1 0
−2p 2

]

and R = 0. Using this embedding into a higher-dimensional setting, the
problem now fits into our framework and allows not only for a normal
approximation of the primary statistic but for an approximation of the
joint distribution of the primary and auxiliary statistics. For this embed-
ding method, the generality of Condition (1.7) is essential, see (4.1) later.

The rest of the article is organised as follows. In the next section we
prove an abstract non-singular multivariate normal approximation theorem
for smooth test functions, Theorem 2.1. The explicit bound on the distance
to the normal distribution is given in terms of the conditional variance, the
absolute third moments, and the variance of the remainder term. Proposi-
tion 2.9 gives the extension to singular multivariate normal distributions,
using Stein’s method and the triangle inequality. To illustrate our results,
we calculate the example of sums of i.i.d. variables.
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Section 3 uses the abstract theorem to obtain a similar result for non-
smooth test functions, such as indicators of convex sets. Adapting the ap-
proach by Rinott and Rotar (1996) to general multivariate normal approxi-
mation, Corollary 3.1 and Corollary 3.3 display how the main terms involved
in the error bounds for smooth test functions simply re-appear in the bounds
for non-smooth test functions.

Section 4 discusses the above mentioned embedding method and provides
as detailed examples runs on the line, the joint counts of edges, two-stars and
triangles in a Bernoulli random graph, and complete U -statistics. The latter
two examples involve not only auxiliary random variables but also a covari-
ance matrix which is asymptotically singular. While in the last two exam-
ples multivariate normal approximations are known, see Janson and Nowicki
(1991) for the multivariate graph motif count problem and Lee (1990) for
U-statistics, we are not aware of an explicit bound on the distance to the
non-standard normal distribution. We also sketch the application to double-
indexed permutation statistics, as an example which is not of U-statistic
type.

The generality of (1.7) comes at the extra cost that now exchangeability
seems almost inevitable. Indeed, in view of Röllin (2008), we were surprised
that, in the multivariate setting, the exchangeability condition cannot be
removed as easily as in the one-dimensional case. Therefore, the last section
discusses the exchangeability condition, Condition (1.7) and their implica-
tions. We also propose a possible solution around this problem. Using an
approach with a different Stein operator, for which the drift term is allowed
to be non-trivial, the exchangeability condition could be removed. But the
price to pay would be rather a technical set-up; instead, exchangeability
makes the approach in the present article relatively easy to implement.

Standard proofs of auxiliary results are found in Appendix A, whereas
details for the examples are in Appendix B.

1.1. Notation. Random vectors in Rd are written in the form W =
(W1,W2, . . . ,Wd)

t, whereWi areR-valued random variables for i = 1, . . . , d.
If Σ is a symmetric, non-negative definite matrix, we denote by Σ1/2 the
unique symmetric, non-negative definite square root of Σ. Denote by Id the
identity matrix, usually of dimension d. Throughout this article, Z will de-
note a random variable having standard multivariate normal distribution,
also of dimension d.

For ease of presentation we abbreviate the transpose of the inverse of a
matrix in the form Λ−t := (Λ−1)t.

Stein’s method makes good use of Taylor expansions. For derivatives of
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smooth functions h : Rd → R, we use the notation ∇ for the gradient oper-
ator. For the sake of presentation the partial derivatives are abbreviated as
hi = ∂

∂xi
h, hi,j = ∂2

∂xi∂xj
h unless we would like to emphasise the dependence

on the variables.
To derive uniform bounds we shall employ the supremum norm, denoted

by ‖ · ‖ for both functions and matrices. For a function h : Rd → R, we

abbreviate |h|1 := supi

∥

∥

∂
∂xi
h
∥

∥, |h|2 := supi,j

∥

∥

∂2

∂xi∂xj
h
∥

∥, and so on, if the

corresponding derivatives exist.

2. The distance to multivariate normal distribution in terms

of smooth test functions. Firstly we derive a bound on the distance
between a multivariate target distribution and a multivariate normal dis-
tribution with the same, positive definite covariance matrix. We start by
considering smooth test functions; the case of non-smooth test functions
will be treated in Section 3.

Theorem 2.1. Assume that (W,W ′) is an exchangeable pair of Rd-

valued random variables such thatEW = 0, EWW t = Σ, (2.1)

with Σ ∈ Rd×d symmetric and positive definite. Suppose further that (1.7)
is satisfied for an invertible matrix Λ and a σ(W )-measurable random vari-

able R. Then, if Z has d-dimensional standard normal distribution, we have

for every three times differentiable function h,

∣

∣Eh(W ) −Eh(Σ1/2Z)
∣

∣ 6
|h|2
4
A+

|h|3
12

B +
(

|h|1 + 1
2d‖Σ‖1/2|h|2

)

C, (2.2)

where, with λ(i) :=
∑d

m=1 |(Λ−1)m,i|,

A =
d
∑

i,j=1

λ(i)
√

VarEW (W ′
i −Wi)(W ′

j −Wj),

B =
d
∑

i,j,k=1

λ(i)E∣∣(W ′
i −Wi)(W

′
j −Wj)(W

′
k −Wk)

∣

∣,

C =
d
∑

i=1

λ(i)
√

VarRi.

Before we proceed with the proof, we illustrate Theorem2.1 by means of
the simple example of sums of i.i.d. random variables and make also some
further remarks.
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Corollary 2.2. Suppose that W = (W1, . . . ,Wd) is such that, for

each i, Wi =
∑n

j=1Xi,j , where Xi,j, i = 1, . . . , d, j = 1, . . . , n, are i.i.d. with

mean zero and variance 1
n , so that the covariance matrix Σ = Id. Assume

further that E|Xi,j |3 = βn−3/2 for some β <∞,

Var(X2
i,j) = γn−2 for some γ <∞.

Then, for every three times differentiable function h,

∣

∣Eh(W ) −Eh(Z)
∣

∣ 6
d√
n

(

√
γ

4
|h|2 +

β

6
|h|3

)

.

Proof. We construct an exchangeable pair by choosing a vector I and
a summand J uniformly, such that P(I = i, J = j) = 1/dn. If I = i, J = j,
we replace Xi,j by an independent copy X ′

i,j; all other variables remain
unchanged. Put

W ′
I = WI −XI,J +X ′

I,J ;

and W ′
k = Wk for k 6= I; denote by W ′ the resulting d-vector. Then (W,W ′)

is exchangeable, and, in (1.7),

Λ =
1

dn
Id

with R = 0 and hence C = 0. For our bounds we note that λ(i) = dn. We
calculate thatEW (W ′

i −Wi)
2 =

1

dn

d
∑

ℓ=1

1(ℓ = i)
n
∑

j=1

EW (X ′
i,j −Xi,j)

2

=
1

dn
+

1

dn

∑

j

EWX2
i,j.

Thus

VarEW (W ′
i −Wi)

2 ≤ 1

d2n2

∑

j

VarX2
ij ≤

γ

n3d2
.

Moreover, by construction, for i 6= k, almost surely (W ′
i −Wi)(W

′
k−Wk) = 0,

and (W ′
i −Wi)(W

′
k −Wk)(W

′
l −Wl) = 0, unless i = k = l. By assumption,E|W ′

i −Wi|3 =
1

dn

d
∑

ℓ=1

1(ℓ = i)
n
∑

j=1

E|Xi,j −X ′
i,j |3 ≤ 2β

dn3/2
.

The result now follows directly from Theorem 2.1.
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Remark 2.3. Multivariate normal approximations for vectors of sums
of i.i.d. random variables have been so intensively studied that there is not
enough space to review all the results. The approach most similar to ours
is found in Chatterjee and Meckes (2007), where instead of exchanging only
one summand, a whole vector would be exchanged. Their results yield

∣

∣Eh(W ) − Φh
∣

∣ 6
d3/2

√
γ + 1

2
√
n

|h|1 + 4
d3β√
n
|h|2.

Due to the different Stein equation used, the dependence on the dimen-
sion differs, and the bounds are in terms of different derivatives of the test
function. The overall similarity in this special case is apparent.

Remark 2.4. Assume that (1.7) is satisfied. What can we then say about
the applicability of Theorem 2.1 to V = AW , where A is a k×d-matrix with
k 6 d? As the examples of U -statistics and permutation statistics show, we
often have that, if (1.7) is satisfied, then it will also be satisfied for lower-
dimensional projections (although often with a complicated remainder term
R). This is no conincidence. As mentioned already in the Introduction, if W
converges to a normal distribution and (W,W ′) satisfies (1.7), we expect that
(W,W ′) converges jointly to a multivariate normal distribution. Hence, we
then also have that (AW,AW ′) converges jointly to a multi-variate normal
distribution with covariance matrix

(

AΣAt AΣ̃At

AΣ̃At AΣAt

)

,

so that, from (1.6), we expect that (1.7) holds in the formEAW (AW ′ −AW ) =
(

Id−AΣ̃At(AΣAt)−1)AW +R, (2.3)

with R being of the required lower order. However, the example of d-runs
shows that things can be more subtle; see Remark 4.3.

Remark 2.5. If we were to normalise the random variables in Theo-
rem 2.1, denoting the normalisation of W by Ŵ := Σ−1/2W and Ŵ ′ =
Σ−1/2W ′, then, the conditions of the theorem remain satisfied for (Ŵ , Ŵ ′)
with Σ̂ = Id and Λ̂ = Σ−1/2ΛΣ1/2 as well as R̂ = Σ−1/2R.

Remark 2.6. As a precursor to (1.7), in the context of multivariate zero-
biasing, Goldstein and Reinert (2005) use the condition of the form (1.7) for
Λ such that

Λij =

{

ρ if i 6= j

1 + ρ if i = j.
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After these remarks we proceed to the proof of Theorem 2.1, which is
based on the Stein characterization of the normal distribution that Y ∈ Rd

is a multivariate normal MVN(0,Σ) if and only ifE{∇tΣ∇f(Y ) − Y t∇f(Y )
}

= 0, for all smooth f : Rd → R. (2.4)

We will need the following lemma to prove the theorem; however, see
also Remark 2.5, Barbour (1990), Goldstein and Rinott (1996), and Götze
(1991). The proof of Lemma 2.7 is routine (see Appendix A).

Lemma 2.7. Assume that h : Rd → R has 3 bounded derivatives. Then,

if Σ ∈ Rd×d is symmetric and positive definite, there is a solution f : Rd →R to the equation

∇tΣ∇f(w) − wt∇f(w) = h
(

w
)−Eh(Σ1/2Z), (2.5)

which holds for every w ∈ Rd. The solution f satisfies the bounds

∣

∣

∣

∣

∂kf(w)
∏k

j=1 ∂wij

∣

∣

∣

∣

6
1

k

∣

∣

∣

∣

∂kh(w)
∏k

j=1 ∂wij

∣

∣

∣

∣

(2.6)

for every w ∈ Rd.

Remark 2.8. Compared to the main theorem of Chatterjee and Meckes
(2007), which only needs the existence of two derivatives, our Theorem 2.1 is
more restrictive in the choice of test functions h. This reflects the fact that we
make use of Lemma 2.7, which is motivated by Goldstein and Rinott (1996),
whereas Chatterjee and Meckes (2007) prove new bounds on the solutions of
(2.5), but only for Σ = Id; see also Raič (2004) for similar results. The general
result of Lemma 2.7, however, allows to work with the unstandardised pair
(W,W ′) which not only usually simplifies the calculations, but also yields
more informative bounds if the limiting covariance matrix is singular.

Proof of Theorem 2.1. Our aim is to bound
∣

∣Eh(W ) − Eh(Σ1/2Z)
∣

∣

by bounding
∣

∣E{∇tΣ∇f(W )−W t∇f(W )
}∣

∣, where f is the solution to the
Stein equation (2.5). First we expand EW t∇f(W ). Define the real-valued,
anti-symmetric function

F (w′, w) := 1
2(w′ − w)tΛ−t(∇f(w′) + ∇f(w)) (2.7)
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for w,w′ ∈ Rd, and note that, because of exchangeability, EF (W ′,W ) = 0;
see Stein (1986). Thus

0 = 1
2E{(W ′ −W )tΛ−t(∇f(W ′) + ∇f(W ))

}

= E{(W ′ −W )tΛ−t∇f(W ))
}

+ 1
2E{(W ′ −W )tΛ−t(∇f(W ′) −∇f(W ))

}

= E{RtΛ−t∇f(W )
}−E{W t∇f(W )

}

+ 1
2E{(W ′ −W )tΛ−t(∇f(W ′) −∇f(W ))

}

,

(2.8)

where we used (1.7) for the last step. Taylor expansion gives

(w′ − w)tΛ−t(∇f(w′) −∇f(w))

=
∑

m,i,j

(Λ−1)m,i(w
′
i − wi)(w

′
j − wj)

∂2f(w)

∂wm∂wj

+
∑

m,i,j,k

(Λ−1)m,i(w
′
i − wi)(w

′
j − wj)(w

′
k − wk)R̃mjk,

where

|R̃mjk| 6
1

2

∥

∥

∥

∥

∂3f

∂wm∂wj∂wk

∥

∥

∥

∥

. (2.9)

Thus in (2.8),E{(W ′ −W )tΛ−t(∇f(W ′) −∇f(W ))
}

=
∑

m,i,j

(Λ−1)m,iE(W ′
i −Wi)(W

′
j −Wj)

∂2f(W )

∂Wm∂Wj

+
∑

m,i,j,k

(Λ−1)m,i(W
′
i −Wi)(W

′
j −Wj)(W

′
k −Wk)R̃mjk.

(2.10)

Now we turn our attention to E∇tΣ∇f(W ). Note that, because of (2.1),
(1.7) and exchangeability,E(W ′ −W )(W ′ −W )t = E{W (W −W ′)t

}

+E{W (W −W ′)t
}

= 2E{W (ΛW −R)t
}

= 2ΣΛt − 2E(WRt) =: T.

(2.11)

Hence, with T as in (2.11),

∇tΣ∇f(w) = 1
2∇tTΛ−t∇f(w) + ∇tE(WRt)Λ−t∇f(w)

=
1

2

∑

m,i,j

(Λ−1)m,iTj,i
∂2f(w)

∂wm∂wj
+
∑

m,i,j

(Λ−1)m,iE(WjRi)
∂2f(w)

∂wm∂wj
.

(2.12)
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Combining (2.8), (2.10) and (2.12),

∣

∣E{∇tΣ∇f(W )−W t∇f(W )
}∣

∣

6
1

2

∣

∣

∣

∣

∑

m,i,j

E{(Λ−1)m,i
[

Tj,i −EW (W ′
i −Wi)(W

′
j −Wj)

] ∂2f(W )

∂wm∂wj

}∣

∣

∣

∣

+
1

2

∣

∣

∣

∣

∑

m,i,j,k

E{(Λ−1)m,i(W
′
i −Wi)(W

′
j −Wj)(W

′
k −Wk)R̃mjk

}

∣

∣

∣

∣

+

∣

∣

∣

∣

∑

i,m

(Λ−1)m,iE{Ri
∂f(W )

∂wm

}∣

∣

∣

∣

+

∣

∣

∣

∣

∑

m,i,j

(Λ−1)m,iE(WjRi)E{ ∂2f(W )

∂wm∂wj

}∣

∣

∣

∣

6
|h|2
4

∑

i,j

λ(i)E∣∣Tj,i −EW (W ′
i −Wi)(W

′
j −Wj)

∣

∣ +
|h|3
12

B

+ |h|1
∑

i

λ(i)E|Ri| +
|h|2
2

∑

i,j

λ(i)E|WjRi|, (2.13)

where we used (2.9) to obtain the second inequality, and Lemma 2.7 to obtain

the last inequality. From the Cauchy-Schwarz inequality, E|Rj | 6

√ER2
j

and E|WjRi| 6

√EW 2
j ER2

i 6 ‖Σ‖1/2
√ER2

i .

The C-expression in (2.2) now follows from the last two terms of (2.13).
Recalling that E(W ′−W )(W ′−W )t = T , this proves the first term of (2.2)
from the first term of (2.13).

Sometimes we may wish to assess the distance to a normal distribution
for which the covariance matrix Σ0, while non-negative definite, does not
have full rank. Stein’s method helps to derive a straightforward bound in
this case also. If Σ has full rank, then the Stein characterization (2.4) of
the multivariate normal distribution says that, for all f which are solutions
of the Stein equation (2.5) for functions h : Rd → R having 3 bounded
derivatives, E{∇tΣ∇f(X) −Xt∇f(X)

}

= 0.

We shall show that this characterisation remains valid if the covariance ma-
trix is not of full rank; thus two mean zero multivariate normal distributions
can be compared via their covariance matrices. The proof of the following
proposition is straightforward and routine (see Appendix A).

Proposition 2.9. Let X and Y be Rd-valued normal variables with dis-

tributions X ∼ MVN(0,Σ) and Y ∼ MVN(0,Σ0), where Σ = (σi,j)i,j=1,...,d
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has full rank, and Σ0 = (σ0
i,j)i,j=1,...,d is non-negative definite. Let h : Rd →R have 3 bounded derivatives. Then

∣

∣Eh(X) −Eh(Y )
∣

∣ 6
1

2
|h|2

d
∑

i,j=1

|σi,j − σ0
i,j|.

Using the triangle inequality and Theorem 2.1 we thus obtain a bound
for a normal approximation even for a normal distribution with degenerate
covariance matrix. An important example from random graph statistics will
be treated in Section 4.

Remark 2.10. In general, as soon as one element of our random vector
can be expressed as a linear combination of some other elements of the
vector, we cannot expect the matrix Λ to be unique. If R = 0, this situation
can only occur when the covariance matrix of W does not have full rank
(which is excluded in Theorem 2.1). If the covariance matrix Σ of W has
full rank, then from Λ1W = Λ2W it follows that Λ1WW t = Λ2WW t, and
taking expectations, Λ1Σ = Λ2Σ. If Σ is invertible, then necessarily Λ1 = Λ2.

3. Non-smooth test functions. We first assume that Σ = Id. Follow-
ing Rinott and Rotar (1996), let Φ denote the standard normal distribution
in Rd, and φ the corresponding density function. For h : Rd → R set

h+
δ (x) = sup{h(x+ y) : |y| ≤ δ},
h−δ (x) = inf{h(x + y) : |y| ≤ δ},
h̃(x, δ) = h+

δ (x) − h−δ (x).

Let H be a class of measureable functions Rd → R which are uniformly
bounded by 1. Suppose that for any h ∈ H

1. for any δ > 0, h+
δ (x) and h−δ (x) are in H,

2. for any d× d matrix A and any vector b ∈ Rd, h(Ax+ b) ∈ H,
3.

sup
h∈H

{∫Rd
h̃(x, δ)Φ(dx)

}

≤ aδ (3.1)

for some constant a = a(H, δ). Obviously we may assume a ≥ 1.

The class of indicators of measureable convex sets is such a class; for this
class, a ≤ 2

√
d, see Bolthausen and Götze (1993).

In the same way as in Rinott and Rotar (1996) we can show the following
corollary. The presentation differs from Rinott and Rotar (1996) as we make
the relationship to the bounds in Theorem 2.1 immediate. The now fairly
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standard proof is found in Appendix A. We also note forthcoming work by
Bhattacharya and Holmes (2007) for a rigorous expostion.

Corollary 3.1. Let W satisfy the conditions of Theorem 2.1, with

Σ = Id. Then, for all h ∈ H with |h| ≤ 1, there exist constants γ = γ(d) and

a > 1 such that, with the notation from Theorem 2.1 and (3.2),

sup
h∈H

|Eh(W ) −Eh(Z)| ≤ γ2
(

D log(T−1) +
1

2
BT−1/2 + C + a

√
T
)

,

with

T =
1

a2

(

D +

√

aB

2
+D2

)2

and D =
A

2
+ Cd. (3.2)

The constant γ may be different from the constant γ in Lemma A.1.

If A,B and C are O(n−1/2), then we would obtain a bound of order
O(n−1/4). This is poorer than the n−1/2 log n type of bounds obtained in
Rinott and Rotar (1996), but Rinott and Rotar (1996) obtain the improved
rate by assuming that the random variables are bounded.

Next we generalise the result to arbitrary Σ. Let W have mean vector 0
and variance-covariance matrix Σ. If Λ and R are such that (1.7) is satisfied
for W , then Y = Σ−1/2W satisfies (1.7) with Λ̂ = Σ−1/2ΛΣ1/2 and R′ =
Σ−1/2R. With

λ̂(i) =
d
∑

m=1

|(Σ−1/2Λ−1Σ1/2)m,i|

as well as

A′ =
∑

i,j

λ̂(i)
√

VarEY
∑

k,ℓ

Σ
−1/2
i,k Σ

−1/2
j,ℓ (W ′

k −Wk)(W
′
ℓ −Wℓ),

B′ =
∑

i,j,k

λ̂(i)E∣∣∣
∣

∑

r,s,t

Σ
−1/2
i,r Σ

−1/2
j,s Σ

−1/2
k,t (W ′

r −Wr)(W
′
s −Ws)(W

′
t −Wt)

∣

∣

∣

∣

and

C ′ =
d
∑

i=1

λ̂(i)

√

√

√

√E(∑
k

Σ
−1/2
i,k Rk

)2
, (3.3)

we obtain a similar result as before; again the proof is in Appendix A.
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Corollary 3.2. Let W be as in Theorem 2.1. Then, for all h ∈ H with

|h| ≤ 1, there exist γ = γ(d) and a > 1 such that, with the notation (3.3),
(3.3), and (3.3),

sup
h∈H

|Eh(W ) −Eh(Z)| ≤ γ2
(

−D′ log(T ′) +
B′

2
√
T ′ + C ′ + a

√
T ′
)

,

with

T ′ =
1

a2

(

D′ +

√

aB′

2
+D′2

)2

and D′ =
A′

2
+ C ′d.

Remark 3.3. We could simplify the above bound further, with a coarser
bound. Using Minkowski’s inequality we have that

Var
k
∑

i=1

Xi 6 k2 sup
i

VarXi,

and thus obtain the simple estimate

VarEY
∑

k,ℓ

Σ
−1/2
i,k Σ

−1/2
j,ℓ (W ′

k −Wk)(W
′
ℓ −Wℓ)

6 d4‖Σ−1/2‖4 sup
k,ℓ

VarEW{(W ′
k −Wk)(W

′
ℓ −Wℓ)

}

and hence

A′ ≤ d3‖Σ−1/2‖2
∑

i

λ̂(i) sup
k,ℓ

√

VarEW
{

(W ′
k −Wk)(W

′
ℓ −Wℓ)

}

;

in B′ and C ′ we could similarly bound Σ
−1/2
i,k by ‖Σ−1/2‖ to obtain a simpler

bound. There are however examples, such as the random graph example in
Section 4, where ‖Σ−1/2‖ provides a non-informative bound.

4. The embedding method and applications.

4.1. General framework. Assume that an ℓ-dimensional random variable
W(ℓ) of interest is given. Often, the construction of an exchangeable pair
(W(ℓ),W

′
(ℓ)) is straightforward. If, say, W(ℓ) = W(ℓ)(X) is a function of i.i.d.

random variables X = (X1, . . . ,Xn), one can choose uniformly an index I
from 1 to n, replace XI by an independent copy X ′

I , and define W ′
(ℓ) :=

W(ℓ)(X′), where X′ is now the vector X but with XI replaced by X ′
I .
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In general there is no hope that (W(ℓ),W
′
(ℓ)) will satisfy Condition (1.2)

with R being of the required smaller order or even equal to zero, so that in
this case Theorem 2.1 would not yield useful bounds.

Surprisingly often it is possible, though, to extend W(ℓ) to a vector W ∈Rd such that we can construct and exchangeable pair (W,W ′) which satisfies
Condition (1.2) with R = 0. If we can bound the distance of the distribution
L(W ) to a d-dimensional multivariate normal distribution, a bound on the
distance of the distribution L(W(ℓ)) to an ℓ−dimentional multivariate normal
distribution follows immediately.

To explain the approach, we turn the problem on its head. Suppose that
W ∈ Rd is such that we can construct and exchangeable pair (W,W ′) which
satisfies Condition (1.2) with R = 0. Rename the first ℓ components to
comprise W(ℓ), so that

W =

[

W(ℓ)

W (d−ℓ)

]

,

and W(ℓ) = Iℓ,0W, with

Iℓ,0 = (Idℓ, 0ℓ×(d−ℓ)),

0ℓ×(d−ℓ) denoting the ℓ × (d − ℓ)-matrix consisting entirely of 0’s. Definin-
ing W ′

(ℓ) = Iℓ,0W
′, it follows that (W(ℓ),W

′
(ℓ)) forms an exchangeable pair.

From (1.2), EW (W(ℓ) −W ′
(ℓ)) = Iℓ,0EW (W −W ′)

= −Iℓ,0ΛW.

Now decompose the matrix Λ as

Λ =

[

Λ1,1 Λ1,2

Λ2,1 Λ2,2

]

,

where Λ1,1 denotes an ℓ×ℓ submatrix, Λ1,2 denotes an ℓ×(d−ℓ) submatrix,
and so on. Then

Iℓ,0ΛW = Λ1,1W(ℓ) + Λ1,2W
(d−ℓ),

and hence EW (W(ℓ) −W ′
(ℓ)) = −Λ1,1W(ℓ) − Λ1,2W

(d−ℓ).

Conditioning on W(ℓ) gives thatEW(ℓ)(W(ℓ) −W ′
(ℓ)) = −Λ1,1W(ℓ) − Λ1,2EW(ℓ)W (d−ℓ).
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Thus Condition (1.2) is satisfied with

R = −Λ1,2EW(ℓ)W (d−ℓ). (4.1)

If Λ1,2 = 0, then no embedding is required. But if Λ1,2 6= 0, then the remain-
der R in (1.2) is a nontrivial linear combination of random variables, and
these random variables could serve as embedding vector. In order to obtain
useful bounds in Theorem 2.1, the embedding dimension d should not be
too large. In the examples below it will be obvious how to choose W (d−ℓ) to
make the construction work.

While the embedding method is reminiscent of Hoeffding projections for
U -statistics, Subsection 4.4 clarifies the difference.

4.2. Runs on the line. Let X = (ξ1, . . . , ξn) be a sequence of independent
random variables with distribution Bernoulli(p), 0 < p < 1, that is P[ξ1 =
1] = 1−P[ξ1 = 0] = p. For d > 1, define the (centered) number of d-runs as

Vd :=
n
∑

m=1

(

ξmξm+1 · · · ξm+d−1 − pd),

where, for convenience, we assume the torus convention that ξn+1 ≡ ξ1,
ξn+2 ≡ ξ2 and so on.

As mentioned in the introduction, if we want to use the obvious con-
struction of an exchangeable pair, the univariate version of exchangeable
pairs of Rinott and Rotar (1997) (Proposition 1.2) does not yield conver-
gent bounds of Vd to the standard normal distribution if d > 1. However,
we can tackle the example with our approach by incorporating the auxiliary
variables V1, . . . , Vd−1, such that the problem becomes linear in a higher-
dimensional setting.

We construct an exchangeable pair (X,X′), where instead of just one,
we resample d − 1 of the ξi. To this end, let I be uniformly distributed
over {1, . . . , n} and let ξ̃1, . . . , ξ̃n be independent copies of the ξi. Let X′ be
the same as X but with the subsequence ξI , ξI+1, . . . , ξI+d−2 of length d− 1
replaced by ξ′I , ξ

′
I+1, . . . , ξ

′
I+d−2. Clearly (X,X′) forms an exchangeable pair.

Define V ′
i := Vi(X′); we have

V ′
i − Vi = −

I+d−2
∑

m=I−i+1

ξm · · · ξm+i−1 +
I+d−2
∑

m=I+d−i

ξ′m · · · ξ′I−1ξI · · · ξm+i−1

+
I+d−i−1
∑

m=I

ξ′m · · · ξ′m+i−1 +
I−1
∑

m=I−i+1

ξm · · · ξI−1ξ
′
I · · · ξ′m+i−1,

(4.2)
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where sums
∑b

a are defined to be zero if a > b. Now, (4.2) yieldsEW (V ′
i − Vi)

= −n−1[(d+ i− 2)Vi − 2pVi−1 − 2p2Vi−2 − · · · − 2pi−1V1

]

= −n−1
[

(d+ i− 2)Vi + 2
i−1
∑

k=1

pi−kVk

]

.

(4.3)

From this representation we see that we may take V1, . . . , Vd−1 as the aux-
iliary random variables.

Straightforward calculations yield that, for all i > j,E(ViVj) = n
[

(i− j + 1)pi + 2
j−1
∑

l=1

pi+j−l − (i+ j − 1)pi+j]

= npi(1 − p)
j−1
∑

k=0

(i− j + 1 + 2k)pk.

(4.4)

In particular EV 2
i = npi(1 − p)

i−1
∑

k=0

(1 + 2k)pk, (4.5)

which lies in the interval between npi(1−p) and npi(1−p)i2. Thus we define
the Wi to be the weighted versions

Wi :=
Vi

√

npi(1 − p)
, (4.6)

and from (4.4) we have for general i and jE(WiWj) = p
|i−j|

2

i∧j−1
∑

k=0

(|i− j| + 1 + 2k)pk =: σi,j. (4.7)

From (4.7) it is clear that the corresponding Σ = (σi,j)i,j is constant for all
n and of full rank. For p → 0, Σ converges to uncorrelated coordinates and
for p → 1 to a matrix of rank 1. For applications and further references see
Glaz et al. (2001) and Balakrishnan and Koutras (2002). Now, from (4.3)
we have EW (W ′

i −Wi) = −n−1
[

(d+ i− 2)Wi + 2
i−1
∑

k=1

p
i−k
2 Wk

]

.
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Thus (1.7) is satisfied with R = 0 and

Λ =
1

n

























d− 1

−2p
1
2 d 0

...
. . .

−2p
k−1
2 · · · −2p

1
2 d+ k − 2

...
. . .

−2p
d−1
2 · · · −2p

1
2 2(d − 1)

























.

Theorem 4.1. With W defined as in (4.6), n > 2d − 1 and Σ given

through (4.7), we have for three times differentiable functions h that

|Eh(W ) −Eh(Σ1/2Z)| 6
37d7/2|h|2
pd(1 − p)

√
n

+
10d5|h|3

p3d/2(1 − p)3/2
√
n
.

Proof. Some rough estimates yield that for all 1 6 i, j, k 6 d

λ(i)
6

15n

d
,

VarEW (W ′
i −Wi)(W

′
j −Wj) 6

96d5

n3p2d(1 − p)2
,E∣∣(W ′

i −Wi)(W
′
j −Wj)(W

′
k −Wk)

∣

∣ 6
8d3

n3/2p3d/2(1 − p)3/2
.

Now apply Theorem 2.1. Details can be found in Appendix B.

Remark 4.2. Although the bound is quite crude with respect to the
dimension and hence mainly of theoretical interest, it is explicit. However,
for small values of p or large values of d, Poisson approximation is more
appropriate, and in these cases the bounds for normal approximation cannot
be expected to be good unless n is very large. We also note that Vd exhibits
a local dependence structure and thus also Stein’s method using the local
approach, such as in Rinott and Rotar (1996), could easily be used; and, of
course, there is an abundance of results about m-dependent sequences.

Remark 4.3. In the case of 2-runs, using the notation of (1.8) and the
consequent paragraph, it is not difficult to see that, for any choice of λ and
defining R = R(V2, V1) := σ−1(λV2 − 2

nV2 + 2p
n V1), we have that λ−1

√
VarR

is at least of order 1 as n → ∞, where σ2 := VarV2. However, Remark 2.4
suggest that it should nevertheless be possible to choose λ such that, with

R̃ = R̃(V2) := EV2R = σ−1(λV2 − 2
nV2 + 2p

n EV2V1), we have λ
√

Var R̃ =
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o(1), so that a representation (1.2) could indeed be found with R being of
the required small order (and this is supported by numerical simulations).
But, as EV2V1 is hard to calculate, in this situation the application of the
multivariate version (1.7) and Theorem 2.1 is straightforward.

4.3. An example from random graphs. Let G(n, p) denote a Bernoulli
random graph on n vertices, with edge probabilities p; we assume that n ≥ 4
and that 0 < p < 1. Let Ii,j = Ij,i be the Bernoulli(p)-indicator that edge
(i, j) is present in the graph; these indicators are independent.

To test whether in a given network there is a significant number of tri-
angles (or, relatedly, a high degree of clustering), a so-called conditional

uniform graph test is often employed, see for example Holme (2005). In one
form, the edges of the graph are randomised, the number of triangles is
counted in such randomised graphs, and the observed number of triangles
is compared to the numbers arising from such randomizations. When as-
sessing statistical significance it is hence desirable to know the conditional
distribution of the number of triangles (or other graph statistics of interest)
given the number of edges. As in real networks the number of vertices may
be relatively small, a multivariate normal approximation together with a
bound on the distance to the normal would be desirable.

Our interest is hence in the joint distribution of the total number of edges,
described by

T =
1

2

∑

i,j

Ii,j =
∑

i<j

Ii,j

and the number of triangles,

U =
1

6

∑

i,j,k distinct

Ii,jIj,kIj,k =
∑

i<j<k

Ii,jIj,kIj,k.

Here and in what follows, “i, j, k distinct” is short for “(i, j, k) : i 6= j 6=
k 6= i”; later we shall also use “i, j, k, ℓ distinct”, which is the analogous
abbreviation for four indices. Note thatET =

(

n

2

)

p and EU =

(

n

3

)

p3.

Construction of an exchangeable pair

As both T and U are functions of the vectorX = (Ii,j, 1 ≤ i < j ≤ n) of in-
dependent, identically distributed edge indicators, we build an exchangeable
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pair by choosing a potential edge (i, j) uniformly at random, and replacing
Ii,j by an independent copy I ′i,j. More formally, pick (I, J) according toP[I = i, J = j] =

1
(n
2

) , 1 6 i < j 6 n.

If I = i, J = j we replace Ii,j = Ij,i by an independent copy I ′i,j = I ′j,i and
put

T ′ = T − (II,J − I ′I,J),

and

U ′ = U −
∑

k:k 6=I,J

(II,J − I ′I,J)IJ,kII,k.

Following our approach, conditioning yieldsET,U (T ′ − T ) =
2

n(n− 1)

∑

i<j

ET,U (I ′i,j − Ii,j |I = i, J = j)

= p− 2

n(n− 1)
T =

2

n(n− 1)
(ET − T )

= − 1
(n
2

) (T −ET ) ,

which depends on T only; but

−ET,U (U ′ − U)

=
2

n(n− 1)

∑

i<j

ET,U
∑

k:k 6=i,j

(Ii,jIj,kIi,k − I ′i,jIj,kIi,k)

= 3
2

n(n− 1)
U − p

2

n(n− 1)
ET,U

∑

i<j, k 6=i,j

Ij,kIi,k

depends not only on U but also on the number V of 2-stars,

V :=
1

2

∑

i,j,k distinct

Ii,jIj,k.

We note that EV = 3

(

n

3

)

p2.
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Using our random pair (I, J) we put

V ′ = V −
∑

k:k 6=I,J

(II,J − I ′I,J)(IJ,k + II,k).

Including V as auxiliary statistic, we put W = (T −ET, V −EV,U −EU),
and W ′ = (T ′−ET, V ′−EV,U ′−EU). Then (W,W ′) forms an exchangeable
pair, and

−EW (V ′ − V )

=
1
(n
2

)

∑

i<j

EW
∑

k:k 6=i,j

(Ii,j − I ′i,j)(Ij,k + Ii,k)

=
1
(n
2

)EW
∑

i<j, k 6=i,j

(Ii,jIj,k + Ii,jIi,k) − p
1
(n
2

)EW
∑

i<j, k 6=i,j

(Ij,k + Ii,k)

= 2
1
(n
2

)V − 2p
1
(n
2

)(n− 2)T

= −2
1
(n
2

)(V −EV ) + 2p
(n− 2)
(n
2

) (T −ET ),

where the last equality follows from E(V ′ − V ) = 0. Thus (1.7) is satisfied
with R = 0 and Λ given by

Λ =
1
(n
2

)







1 0 0
−2(n − 2)p 2 0

0 −p 3






.

As the variances, calculated in Appendix B.3, are not all of the same
order, we re-scale our variables, similarly to Janson and Nowicki (1991), as
follows. Put

T1 =
n− 2

n2
T, V1 =

1

n2
V, U1 =

1

n2
U.

For these re-scaled variables we re-scale W ′ as for W to obtain T ′
1, V

′
1 and

U ′
1, so that (W1,W

′
1) is also exchangeable. The covariance matrix Σ1 for

W1 = (T1 −ET1, V1 −EV1, U1 −EU1) equals

Σ1 = 3
(n− 2)

(n
3

)

n4
p(1−p)×









1 2p p2

2p 4p2 + p(1−p)
n−2 2p3 + p2(1−p)

n−2

p2 2p3 + p2(1−p)
n−2 p4 + p2(1+p−2p2)

3(n−2)









, (4.8)

and (1.7) is satisfied with R = 0 and Λ1 given by

Λ1 =
1
(n
2

)







1 0 0
−2p 2 0
0 −p 3






.
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Remark 4.4. The observation that the 2-stars form a useful auxiliary
statistic can also be found in Janson and Nowicki (1991); there it is related
to Hoeffding-type projections.

Remark 4.5. With n→ ∞ we obtain as approximating covariance ma-
trix

Σ0 =
1

2
p(1 − p) ×







1 2p p2

2p 4p2 2p3

p2 2p3 p4






. (4.9)

As also observed in Janson and Nowicki (1991), this matrix has rank 1. It
is not difficult to see that the maximal diagonal entry of the inverse Σ−1

tends to ∞ as n→ ∞, so that a uniform bound on the square root of Σ−1
1 ,

as suggested in Remark 3.3, will not be useful.

Our vector of interest is now W = (T −ET, V −EV,U−EU), re-scaled to
W1 = (T1−ET1, V1−EV1, U1−EU1). In Janson and Nowicki (1991), a nor-
mal approximation for W1 is derived, but no bounds on the approximation
are given. Using Theorem 2.1 we obtain explicit bounds, as follows.

Proposition 4.6. Let W1 = (T1 − ET1, V1 − EV1, U1 − EU1) be the

centralised count vector of the number of edges, two-stars and triangles in

a Bernoulli(p)-random graph. Let Σ1 be given as in (4.8). Then, for every

three times differentiable function h,

∣

∣Eh(W ) −Eh(Σ1/2
1 Z)

∣

∣ 6
|h|2
n

(

35

4
+ 9n−1

)

+
8|h|3
3n

(

1 + n−1 + n−2
)

.

Again we do not claim that the constants in the bound are sharp. However,
as we have

(n
2

)

random edges in the model, the order O(n−1) of the bound
is as expected.

While for simplicity our other bounds are given as expressions which are
uniform in p, bounds dependent on p are derived on the way.

Proof. Here we only give the main bounds; the calculations for the
bounds on A and B are in Appendix B.3. The inverse matrix Λ−1

1 is easy
to calculate; for λ(i) =

∑d
m=1 |(Λ)−1

1 )m,i|, for simplicity we use the uniform
bound

|λ(i)| ≤ 3

2
n2, i = 1, 2, 3.
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For A in Theorem 2.1 we obtain that

A < 35n−1 + 36n−2,

and for B in Theorem 2.1 calculations yield

B <
3

2
n2 × 9 × 64

27

(

n−3 + n−4 + n−5
)

= 32
(

n−1 + n−2 + n−3
)

.

Collecting the bounds gives the result.

Using Proposition 2.9, we also derive a normal approximation for Σ0 given
in (4.9).

Corollary 4.7. Under the assumptions of Proposition 4.6, for every

three times differentiable function h,

∣

∣Eh(W ) −Eh(Σ1/2
0 Z)

∣

∣ 6
|h|2
2n

(

44 + 21n−1 + 32n−2 + 4n−3
)

+
8|h|3
3n

(

1 + n−1 + n−2
)

.

Proof. We employ Proposition 4.6 and Proposition 2.9, with the triangle
inequality. A straightforward calculation shows that

∣

∣

∣

∣

3(n− 2)
(n
3

)

n4
− 1

2

∣

∣

∣

∣

≤ 3

2
n−1 + 2n−3

and so

d
∑

i,j=1

|σi,j − σ0
i,j|

≤
(

3

2
n−1 + 2n−3

)

{

1 + 4p+ 6p2 + 4p3 + p4
}

+

(

p(1 − p)

n− 2
+ 2

p2(1 − p)

n− 2
+
p2(1 − p)(4 − p)

3(n− 2)

)

(

3

2
n−1 + 2n−3 + 1

)

< 26n−1 + 3n−2 + 32n−3 + 4n−4.

Here we used the crude bound that (n−2)−1 ≤ 3
2n

−1. The corollary follows.
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As a consequence of Corollary 4.7, the conditional graph test which fixes
the number of edges and then counts the number of triangles would, in the
normal regime, yield a degenerate limiting distribution for the number of
triangles. As the number of edges is a function of the vertex degrees, the
issue also occurs when fixing the vertex degrees while randomising over the
edges.

4.4. Complete non-degenerate U -statistics. Let X = (X1, . . . ,Xn) be a
sequence of i.i.d. random elements taking values in a space X . Let ψ be a
measurable and symmetric function from X d toR, and, for each k = 1, . . . , d,
let

ψk(x1, . . . , xk) := Eψ(x1, . . . , xk,Xk+1, . . . ,Xd).

Assume without loss of generality that Eψ(X1, . . . ,Xd) = 0. For any subset
α ⊂ {1, . . . , n} of size k write ψk(α) := ψk(Xi1 , . . . ,Xik) where the ij are
the elements of α. Define the statistics

Uk :=
∑

|α|=k

ψk(α),

where
∑

E(α) denotes summation over all subsets α ⊂ {1, . . . , n} which sat-
isfy the property E. Then Ud coincides with the usual U -statistics with
kernel ψ (note that, in our notation, the normalising constant

(n
k

)−1
is not in-

cluded in Uk). Assume that Ud is non-degenerate, that is,P[ψ1(X1) = 0] < 1.
Put

Wk := n1/2

(

n

k

)−1

Uk.

It is well known that VarWk ≍ 1 (see e.g. Lee (1990)). Note also that, as
n → ∞, Σ := E(WW t) will converge to a covariance matrix of rank 1, as
we assume non-degeneracy and hence U1 =

∑n
i=1 ψ1(Xi) will dominate the

behaviour of each Uk.
Using an exchangeable pairs coupling, Rinott and Rotar (1997) proved a

univariate normal approximation theorem for non-degenerate and degener-
ate weighted U -statistics with symmetric weight function under fairly mild
conditions on the weights. They show that (1.7) is satisfied for the one-
dimensional case and a non-trivial remainder term, related to Hoeffding
projections of smaller order. However, we will use Theorem 2.1 to obtain a
result for the whole vector (W1, . . . ,Wd), where W1, . . . ,Wd−1 are not the
Hoeffding, but related projections and therefore not of smaller order.

Using Stein’s method and the approach of decomposable random vari-
ables, Raič (2004) proved rates of convergence for vectors of U -statistics
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where the coordinates are assumed to be uncorrelated (but nevertheless
based upon the same sample X1, . . . ,Xn). The next theorem can be seen as
a complement to Raič’s results because, in our case, a normalisation is not
appropriate.

Let X ′
1, . . . ,X

′
n be independent copies of X1, . . . ,Xn. Define the ran-

dom variables ψ′
j,k(α) analogously to ψk(α) but based on the sequence

X1, . . . ,Xj−1,X
′
j ,Xj+1, . . . ,Xn. Define the coupling as in Rinott and Rotar

(1997), that is, pick uniformly an index J from {1, . . . , n} and replace XJ by
X ′

J , so that U ′
k =

∑

|α|=k ψ
′
J,k(α); it is easy to see that (U ′, U) is exchange-

able. Note now that, if j 6∈ α, ψ′
j,k(α) = ψk(α), and that EXψ′

j,k(α) =
ψk−1(α \ {j}) if j ∈ α. ThusEX(U ′

k − Uk) =
1

n

n
∑

j=1

∑

|α|=k,
α∋j

EX{ψ′
j,k(α) − ψk(α)

}

= −k
n
Uk +

1

n

n
∑

j=1

∑

|α|=k,
α∋j

ψk−1(α \ {j})

= −k
n
Uk +

n− k + 1

n

∑

|β|=k−1

ψk−1(β)

= −k
n
Uk +

n− k + 1

n
Uk−1.

(4.10)

The second-to-last equality follows from the observation that
∑

|α|=k,
α∋j

ψk−1(α \ {j}) =
∑

|β|=k−1,
β 6∋j

ψk−1(β),

so that every set β of size k − 1 appears exactly n − (k − 1) times in the
corresponding double sum of (4.10). ThusEX(W ′

k −Wk) = −k
n

(Wk −Wk−1).

Hence, (1.7) is satisfied for R = 0 and

Λ =
1

n
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Applying Theorem 2.1 yields the following result.
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Theorem 4.8. Assume that ρ := Eψ(X1, . . . ,Xd)
4 <∞. With the above

notation, we have for every three times differentiable function h

|Eh(W ) −Eh(Σ1/2Z)| 6

(

4ρ1/2d6|h|2 + ρ3/4d7|h|3
)

n−
1
2 .

Proof. Some rough estimates yield that for all 1 6 i, j, k 6 d

λ(i)
6 dn,

VarEW (W ′
i −Wi)(W

′
j −Wj) 6 256ρd6n−3,E∣∣(W ′

i −Wi)(W
′
j −Wj)(W

′
k −Wk)

∣

∣ 6 8ρ3/4d3n−3/2.

Apply now Theorem 2.1.

Remark 4.9. Note that Rinott and Rotar (1997) implicitely use the
representationEW (W ′

d −Wd) = − 1

n
Wd +

1

n

(

dWd−1 − (d− 1)Wd

)

=: − 1

n
Wd +R; (4.11)

compare this with their representation (3.3) of the remainder R, for which
they show that it is of the required lower order. We can also see this us-
ing Hoeffding projections. Denote by H(j) the jth Hoeffding projection of
(n
k

)−1
Uk (for a definition we refer to Lee (1990)) and recall that the random

variables of the sequence H(1), . . . ,H(d) are uncorrelated and have strictly
decreasing variances of order n−1, n−2, . . . , n−d (these are the exact orders,
as we assume non-degeneracy). From Theorem 1 of Lee (1990) we have the
representation

Wk = n1/2
k
∑

j=1

(

k

j

)

H(j)

for each k, based on the same projections H(j) as the conditional expec-
tations ψj are the same for all Wk. From this it follows that the random
variable H(1) with the largest variance disappears in the remainder R of
(4.11). Hence, λ−1

√
VarR = O(n−1/2).

4.5. Double-indexed permutation statistics. Let ai,j,k,l, 1 6 i, j, k, l 6 n,
be real numbers such that ai,j,k,l = 0 whenever i = j but k 6= j. Assume
that

∑

i,j,k,l

ai,j,k,l = 0 (4.12)

and define

V0 = V0(π) =
n
∑

s,t=1

as,t,π(s),π(t),
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where π is a uniformly drawn random permutations of size n. The asymptotic
normality of V0 was proved by Zhao et al. (1997), generalising the proof
of Bolthausen (1984), which is related to the exchangeable pair coupling.
Barbour and Chen (2005) used the exchangeable pair coupling to find a
non-trivial representation of V0 of the form (1.2) with a non-zero remainder
term R; see their article also for a historical overview.

We will discuss here only the applicability of this example to Theorem 2.1
to illustrate the embedding method, which contrasts with Barbour and Chen
(2005) in the sense that, with our approach, again one does not need to
find a one-dimensional representation of the form (1.2) but can use directly
the multidimensional version (1.7) in a straightforward manner. We also do
not bound the error terms because the corresponding calculations are too
involved for the purpose of this paper.

Construct now an exchangeable pair as follows. Let I and J be distributed
uniformly over 1, . . . , n conditioned that I 6= J . Define the permutation
π′ =

(

π(I)π(J)
) ◦ π so that π′ is the permutation where π′(k) = π(k) for all

k 6= I, J , and where π′(I) = π(J) and π′(J) = π(I). Let now for the sake of
a simpler notation aπ

i,j,k,l := ai,j,π(k),π(l). Defining W ′ = W (π′) we have

V ′
0 − V0 = −

n
∑

s=1

(

aπ
I,s,I,s + aπ

J,s,J,s + aπ
s,I,s,I + aπ

s,J,s,J

)

+
(

aπ
I,I,I,I + aπ

I,J,I,J + aπ
J,I,J,I + aπ

J,J,J,J

)

+
n
∑

s=1

(

aπ
I,s,J,s + aπ

J,s,I,s + aπ
s,I,s,J + aπ

s,J,s,I

)

− (aπ
I,I,J,J + aπ

I,J,J,I + aπ
J,I,I,J + aπ

J,J,I,I

)

Hence,Eπ(V ′
0 − V0)

= − 1

n(n− 1)

∑

i6=j

n
∑

s=1

(

aπ
i,s,i,s + aπ

j,s,j,s + aπ
s,i,s,i + aπ

s,j,s,j

)

+
1

n(n− 1)

∑

i6=j

(

aπ
i,i,i,i + aπ

i,j,i,j + aπ
j,i,j,i + aπ

j,j,j,j

)

+
1

n(n− 1)

∑

i6=j

n
∑

s=1

(

aπ
i,s,j,s + aπ

j,s,i,s + aπ
s,i,s,j + aπ

s,j,s,i

)

− 1

n(n− 1)

∑

i6=j

(

aπ
i,i,j,j + aπ

i,j,j,i + aπ
j,i,i,j + aπ

j,j,i,i

)
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= − 4

n
V0 +

2

n(n− 1)

n
∑

s=1

∑

i6=j

(

aπ
i,s,j,s + aπ

s,i,s,j

)

+
2

n(n− 1)

∑

i6=j

(

aπ
i,i,i,i + aπ

i,j,i,j

)− 2

n(n− 1)

∑

i6=j

(

aπ
i,i,j,j + aπ

i,j,j,i

)

= λ

(

− 2n − 1

n
V0 + V1 + V2

)

+R1 +R2

with λ := 2/(n − 1) and where

R1 := λ
n
∑

i=1

aπ
i,i,i,i −

λ

n

n
∑

i,j=1

ai,i,j,j, R2 := −λ
n

n
∑

i,j=1

aπ
i,j,j,i,

Vi :=
n
∑

s=1

a
(i)
s,π(s) for i = 1, 2, where

a
(1)
s,t :=

1

n

∑

i,j

as,i,t,j, a
(2)
s,t :=

1

n

∑

i,j

ai,s,j,t.

Now, for i = 1, 2,

V ′
i − Vi = −a(i)

I,π(I) − a
(i)
J,π(J) + a

(i)
I,π(J) + a

(i)
J,π(I)

and thus Eπ(V ′
i − Vi) = − 2

n
Vi +

2

n(n− 1)

∑

i6=j

a
(i)
i,π(j)

= −λVi +
2

n(n− 1)

∑

i,j

a
(i)
i,π(j)

= −λVi,

where the last equality follows from (4.12). Thus, (1.7) holds for W =
(V0, V1, V2)

t with

Λ = λ







2n−1
n −1 −1
0 1 0
0 0 1







and R = (R1 +R2, 0, 0)
t.

In the special case where aijkl = bijckl with bii = cii = 0 for all i, j, k, l
and where (bij) or (ckl) is symmetric up to a (possibly negative) constant,
we have R1 = 0 and R2 = βλn−1V0 for some number β, so that (1.7) holds
with a R = 0 and a slightly different Λ, which would simplifiy the estimates.
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Note that these assumptions hold for example if either (bij) or (cij) is the
adjacency matrix of an undirected graph containing no self-loops.

Mann-Whitney-Wilcoxon statistic. Let x1, . . . , xnx and y1, . . . , yny , nx +
ny = n, be independent random samples from unknown distributions FX

and FY , respectively. The MWW-statistic is then defined to be the number
of pairs (xi, yj) such that xi < yj. Let π(i) be the rank of zi, where z =
(x1, . . . , xnx , y1, . . . , yny) is the combined sample. To test the hypothesis H0 :
FX = FY , we may assume that π has uniform distribution. It is easy to see
that, defining

ai,j,k,l =















+1
2 if 1 6 i 6 nx, nx + 1 6 j 6 n and 1 6 k < l 6 n,

−1
2 if 1 6 i 6 nx, nx + 1 6 j 6 n and 1 6 l < k 6 n,

0 else,

V0 is equivalent to the MWW-statistic (up to a shift). It is well known
that VarV0 = nxny(n + 1)/12 (see Mann and Whitney (1947)), so that if,
for some 0 < α < 1, nx ≍ αn and ny ≍ (1 − α)n, respectively, we have
Var V0 ≍ n3.

Note now that, as ai,i,k,l = 0 for all i, k, l and as
∑

i,j ai,j,π(j),π(i) =

−∑i,j ai,j,π(i),π(j), we have R1 = 0 and R2 = −λ
nV0. Hence, the remain-

der term C in Theorem 2.1 has the required lower order.

Further, we calculate that a
(1)
i,j = ny(n−2j+1)

2n if 1 6 i 6 nx and a
(1)
i,j = 0

otherwise, and therefore, using the variance formula for the usual singly
indexed permutation statistics (see Hoeffding (1951)),

Var V1 =
1

n− 1

n
∑

i,j=1

(

a
(1)
i,j − a

(1)
i,· − a

(1)
·,j + a

(1)
·,·
)2 ≍ n3.

The same asymptotic is true for V2, so that indeed W = n−3/2(V0, V1, V2)
with the above coupling and choice of Λ is a good candidate for Theorem 2.1.

5. Some comments on the exchangeability condition. Exchange-
ability is used twice in the proof of Theorem 2.1, namely in (2.8) and (2.11)
In this section we not only discuss the necessity of this condition if one uses
the Stein operator of the form in Eq. (2.5), but we also suggest a possible
way to avoid exchangeability.

5.1. Exchangeability and anti-symmetric functions. In (2.8), we use ex-
changeability in the spirit of Stein (1986). It has been proved by Röllin
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(2008) that in the one-dimensional setting the exchangeability condition can
be omitted for normal approximation by replacing the usual anti-symmetric
function (2.7) with F (w,w′) = g(w′)−g(w), where now only equality in dis-
tribution is needed to obtain an identity similar to (2.8). Also Chatterjee and Meckes
(2007) proved their results with this new function F but under the stronger
condition (1.4). However, there seems to be no obvious way to apply the
above approach under the more general assumption (1.7) (even with R = 0)
to remove the exchangeability condition. To see this note that, by multivari-
ate Taylor expansion,

g(w′) = g(w) + (w′ −w)t∇g(w) + 1
2∇t(w′ − w)(w′ − w)t∇g(w)

+ r(w′, w),
(5.1)

where r is the corresponding remainder term of the expansion. Thus (5.1)
and (1.7) yield the identity

0 = Eg(W ′) −Eg(W )

= −E{W tΛt∇g(W )
}

+ 1
2E{∇t(W ′ −W )(W ′ −W )t∇g(W )

}

+Er(W ′,W ),

(5.2)

for any suitable function g. To optimally match (5.2) and the left hand side
of (2.5) it is clear that we have to choose g such that the system of partial
differential equations

Λt∇g = ∇f (5.3)

is satisfied. In the one-dimensional setting of Röllin (2008) and the multi-
variate setting Λ = λI of Chatterjee and Meckes (2007), (5.3) can be solved
by setting g = λ−1f . Indeed (5.3) cannot be solved in general, but (5.3) has
a twice continuously partially differentiable solution g for a sufficiently large
class of functions f only if Λ = λI.

5.2. Exchangeability, the covariance matrix and the Λ matrix. In (2.11),
using only equality in distribution instead of exchangeability, we would ob-
tain E(W ′ −W )(W ′ −W )t = ΛΣ + ΣΛt. (5.4)

It is clear from (2.13) that the canonical choice for the variance structure of
the approximating multivariate normal distribution would then be

1
2E(W ′ −W )(W ′ −W )tΛ−t = 1

2(ΛΣΛ−t + Σ) =: Σ̃, (5.5)

which in the exchangeable setting reduces to Σ, see (2.11). Without ex-
changeability, however, there seems to be no hope that Σ̃ would be symmet-
ric and positive-definite as needed unless further assumptions are made.
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Lemma 5.1. Σ̃ = Σ if and only if Λ̂ := Σ−1/2ΛΣ1/2 is symmetric.

Proof. Note that

ΛΣΛ−t = Σ1/2Σ−1/2ΛΣ1/2Σ1/2Λ−tΣ−1/2Σ1/2

= Σ1/2Λ̂Λ̂−tΣ1/2.
(5.6)

So, if Λ̂ is symmetric then clearly Σ̃ = Σ. If, on the other hand, Σ̃ = Σ, then
(5.5) and (5.6) imply that Λ̂Λ̂−t = Id. By the uniqueness of the inverse,
symmetry of Λ̂−1 and hence of Λ̂ follows.

Lemma 5.2. If (W,W ′) is exchangeable then Λ̂ is symmetric.

Proof. If (W ′,W ) is exchangeable, we have from (2.11) that Σ̃ = Σ and
hence, by Lemma 5.1, the claim follows.

5.3. An approach without exchangeability. Assume that we have given
a pair (W ′,W ) such that L (W ′) = L (W ) (not necessarily exchange-
able), EW = 0, EWW t = Σ and such that (1.7) is satisfied for some Λ
and small R. According to the Markov process interpretation of Stein’s
method as introduced by Barbour (1990) and Götze (1991), for assess-
ing the distance between the distribution of W and a multivariate normal
distribution MVNd(0,Σ), we evaluate EAf(W ), where A is the generator
of a stationary Markov (usually Ornstein-Uhlenbeck) process with station-
ary distribution MVNd(0,Σ), and f is the solution of the Stein equation
Af(x) = h(x) −Eh(Z).

It is crucial that the dynamics of the Markov process are similar to
the dynamics of the Markov process (Wt)t>0, defined through the coupling
(W ′,W ), namely the continuous time Markov jump process with generator

Bf(w) = E{f(W ′)|W = w} − f(w);

see Röllin (2008).
This suggests to take a diffusion Xt which is the solution to the SDE

Xt = −ΛXtdt+ σdBt,

with initial point X0, where Bt is a standard d-dimensional Browinan mo-
tion. From general theory (see e.g. Karatzas and Shreve (1988), Section 5.6)
we have that such a process exists and, if L (X0) is Gaussian, then the whole
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process Xt is Gaussian. If furthermore all of the eigenvalues of Λ have posi-
tive real parts then Xt has stationary distribution MVNd(0,Σ), where Σ is
the existing and unique solution to the equation

ΛΣ + ΣΛt = σσt;

compare this with (5.4). Using the infinitesimal generator of this process,
we obtain the Stein operator

Af(x) = 1
2∇tσσt∇f(x) − (Λx)t∇f(x).

= 1
2∇t(ΛΣ + ΣΛt)∇f(x) − xtΛt∇f(x).

(5.7)

To the best of our knowledge, these operators are new as Stein operators
and not comparable to Barbour (1990) because of the non-trivial drift. So, it
is straightforward to see that, using (1.7) and, assuming again for simplicity
that R = 0, Eq. (5.7) would lead to an approximation of the form

∣

∣Eh(W ) −Eh(Σ1/2Z)
∣

∣

6
∑

i,j

√

VarEW (W ′
i −Wi)(W ′

j −Wj)

∥

∥

∥

∥

∂2f

∂wi∂wj

∥

∥

∥

∥

+
∑

i,j,k

E∣∣(W ′
i −Wi)(W

′
j −Wj)(W

′
k −Wk)

∣

∣

∥

∥

∥

∥

∂3f

∂wi∂wj∂wk

∥

∥

∥

∥

,

without using exchangeability. Note that the factors corresponding to λ(i)

in Theorem 2.1 would now appear in the bounds on the derivatives of f ,
which is the solution to the Stein equation

1
2∇t(ΛΣ + ΣΛt)∇f(x) − xtΛt∇f(x) = h(x) −Eh(Σ1/2Z),

if such a solution exists.
Assume now in addition that Λ̂ = Σ−1/2ΛΣ1/2 is symmetric. In this case,

(5.7) simplifies to

Af(x) = 1
2∇tΣΛt∇f(x) − xtΛt∇f(x). (5.8)

The construction of this process is not difficult. Decompose Λ̂ = UDU t,
where U is orthogonal and D diagonal. Let Yt be a d-dimensional Ornstein-
Uhlenbeck diffusion, where the coordinates are independent and such that
coordinate i has drift −diyi and diffusion rate

√
2di. Then, Xt = Σ1/2UYt is

the diffusion to the generator (5.8) with the desired stationary distribution
MVNd(0,Σ). However, note that, if Zt is a standard Ornstein-Uhlenbeck



MULTIVARIATE NORMAL APPROXIMATION WITH STEIN’S METHOD 33

process with local drift − Id and diffusion rate
√

2 in each of the coordinates,
it is not possible to obtain Yt (and hence Xt) as a transformation of the form
AZt, because for any matrix A we haveEAZt(AZt+ε +AZt) = AEAZtEZt(Zt+ε + Zt) = −εAZt + o(ε),

which is again a process with drift − Id.
Note that the processes Xt = Σ1/2UYt are time-reversible, whereas for

non-symmetric Λ̂ they will in general not be, as the process will then “rotate”
around the origin in specific directions, from which the time direction can
be deduced.

If however (W ′,W ) is exchangeable, then Λ̂ is symmetric by Lemma 5.2.
Although (5.8) would be the canonical Stein operator in this case, the ap-
proach through (2.7) and (2.8) allows us to compare the dynamics of Wt

directly with that of the process Σ1/2Zt by exploiting the exchangeability,
instead of using the more complicated Stein operator (5.8) of the process Xt.
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APPENDIX A: PROOFS OF THE LEMMAS AND COROLLARIES

A.1. Proof of Lemma 2.7. Let Zs := we−s+
√

1 − e−2sΣ1/2Z, so that
Z0 = w and Z∞ = Σ1/2Z. Define the function

f(w) = −
∫ ∞

0

[Eh(Zs) −Eh(Σ1/2Z)
]

ds

for every w ∈ Rd. Straightforward Taylor expansion of Eh(Zs)−Eh(Σ1/2Z)
shows that, for each fixed w, f is well-defined. To show that f is a solution
to (2.5), observe that

h(w) −Eh(Σ1/2Z) =

∫ ∞

0

d

ds
Eh(Zs)ds =

∫ ∞

0
E d

ds
h(Zs)ds

= −
∫ ∞

0
e−swtE∇h(Zs)ds+

∫ ∞

0

e−2s

√
1 − e−2s

E{(Σ1/2Z)t∇h(Zs)
}

ds.

The above interchanging of expectation and differentiation is permissible due
to dominated convergence, as |∇h(Zs)| ≤ |h1| and |{(Σ1/2Z)t∇h(Zs)}| ≤
|h1||Σ1/2Z| and E|Σ1/2Z| <∞. Noting that

wt∇f(w) =

∫ ∞

0
e−swtE∇h(Zs)ds

and

∇tΣ∇f(w) = −
∫ ∞

0
e−2sE{∇tΣ∇h(Zs)

}

ds

= −
∫ ∞

0

e−2s

√
1 − e−2s

E{(Σ1/2Z)t∇h(Zs)
}

ds,

from (2.4), Eq. (2.5) follows. Now we note that

∑

i

∂

∂wi
h(Zs) = e−s

∑

i

hi(Zs) = e−sDh(Zs),

and similarly for higher total derivatives. If Dkh is bounded, then, by dom-
inated convergence,

Dkf(w) = −
∫ ∞

0
e−ksEDkh(Zs)ds.

Taking absolute values and evaluating the integral
∫∞
0 e−ksds yields (2.6).
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A.2. Proof of Lemma 2.9. We shall show below that (2.4) remains
valid if the covariance matrix is not of full rank. Then we have, for h : Rd →R with 3 bounded derivatives and f the solution of the Stein equation (2.5)
with Σ,

∣

∣Eh(X) −Eh(Y )
∣

∣

=
∣

∣E∇tΣ∇f(Y ) −EY t∇f(Y )
∣

∣

=
∣

∣E∇tΣ∇f(Y ) −EY t∇f(Y ) − (E∇tΣ0∇f(Y ) −EY t∇f(Y ))
∣

∣

=
∣

∣E∇t(Σ − Σ0)∇f(Y )
∣

∣

≤
d
∑

i,j=1

|σi,j − σ0
i,j|
∣

∣fi,j(Y )
∣

∣ ≤ 1

2
|h|2

d
∑

i,j=1

|σi,j − σ0
i,j |,

where we used the bound (2.6) for the last step.
To prove the assertion, all that remains to show is that (2.4) remains

valid if the covariance matrix Σ is not of full rank. Assume that the rank
of Σ is k. Let λ1, . . . , λk denote the non-zero eigenvalues of Σ. Let Z ∈ Rk

have MVN(0,Λ1)-distribution, where Λ1 is the diagonal matrix with entries
λ1, . . . , λk on the diagonal; in particular, the components Z1, . . . , Zk are
independent. Then there exists a (d×k)-matrix B = (bi,j)i=1,...,d,j=1,...,k such
that B′B = Idk, Σ = BΛ1B

′, and Y = BZ, see for example Theorem 2.5.6
in Mardia et al. (1979). Thus we may employ the one-dimensional Stein
equation to obtain thatEY t∇f(Y ) =

d
∑

i=1

k
∑

j=1

bi,jE{Zjfi(BZ)}

=
d
∑

i=1

k
∑

j=1

bi,j

k
∑

t=1

λjbt,jEfi,t(BZ)

= E{∇tΣ∇f(Y )}.

This finishes the proof.

A.3. Preliminaries for the proofs of Section 3. For h ∈ H define
the following smoothing:

hs(x) =

∫Rd
h
(

s1/2y + (1 − s)1/2x
)

Φ(dy), 0 < s < 1.

We note that Φhs = Φh for any s.
A key result is the bound on the error which arises from this smooth-

ing; it was first obtained by Götze as a version of a smoothing lemma by
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Bhattacharya and Ranga Rao. We follow the exposition of Rinott and Rotar
(1996).

Lemma A.1. Let Q be a probability measure on Rd, and let W ∼ Q,Z ∼
Φ. Then there exists a constant γ > 0 which depends only on the dimension

d such that for 0 < t < 1,

sup
h∈H

|Eh(W ) −Eh(Z)| ≤ γ

[

sup
h∈H

|E(h − Φh)t(W )| + a
√
t

]

.

The constant a is as in (3.1).

A.4. Proof of Corollary 3.1. Let 0 < t < 1. If h is replaced by ht in
the multivariate Stein equation (2.5), then this Stein equation has solution

Ψt(x) =
1

2

∫ 1

t

hs(x) − Φh

1 − s
ds,

and for |h| ≤ 1 it is shown in Götze (1991) and also in Loh (2007), that
there is a constant γ = γ(d) depending only on the dimension d such that

|Ψt|1 ≤ γ, |Ψt|2 ≤ γ log(t−1); (A.1)

the γ is in general not equal to the γ in Lemma A.1. Following our proof we
obtain, as in (2.13),

∣

∣Eht(W ) −Eht(Z)
∣

∣ =
∣

∣E{∇t∇Ψt(W ) −W t∇Ψt(W )
}∣

∣

≤ γ

2
log(t−1)A

+
1

2

∑

m,i,j

∣

∣

∣(Λ−1)m,iE(W ′
i −Wi)(W

′
j −Wj)(W

′
k −Wk)Rmjk

∣

∣

∣

+ γC
(

1 + d log(t−1)
)

, (A.2)

with A,B and C as in Theorem 2.1. For the last step we used the same
estimates as applied for the remainder term in (2.13), and that Σ = Id.

For the remainder term Rmjk, in Loh (2007), Lemma 1 (p.20) it is shown
that, if |h| ≤ 1, then there is a constant c0 (depending only on d) such that,
for any finite signed measures Q on Rd,

sup
1≤p,q,r≤d

∣

∣

∣

∣

∣

∫Rd

∂3

∂zp∂zq∂zr
Ψt(z)Q(dz)

∣

∣

∣

∣

∣

≤ c0√
t

sup
0≤s≤1,y∈Rd

∣

∣

∣

∣

∫Rd
h(sv + y)Q(dv)

∣

∣

∣

∣

.
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Thus we can bound the second term in (A.2) by c0
2
√

t
B. For simplicity we

re-label γ as the maximum of γ, γ2, and γc0, yielding that

sup
h∈H

|Eh(W ) −Eh(Z)| ≤ γ2
(

D log(t−1) + 1
2Bt

−1/2 + C + a
√
t
)

,

with D from (3.2). The minimum with respect to t is attained for T =

1
a2

(

D +
√

aB
2 +D2

)2

, which gives the assertion.

A.5. Proof of Corollary 3.2. We standardise Y = Σ−1/2W. From
Condition (2) we have that for any d× d matrix A and any vector b ∈ Rd,
h(Ax + b) ∈ H, so in particular h(Σ−1/2x) ∈ H. Hence the above bounds
(A.1) can be applied directly. The proof now continues along the lines of the
proof of Corollary 3.1, but with the standardised variables, yielding

∣

∣E(h− Φh)t(W )
∣

∣

≤ γ

2
log(t−1)

∑

i,j

λ̂(i)
√

VarEY (Y ′
i − Yi)(Y ′

j − Yj)

+
γ

2
√
t

∑

i,j,k

λ̂(i)E ∣∣∣(Y ′
i − Yi)(Y

′
j − Yj)(Y

′
k − Yk)

∣

∣

∣

+ γ
∑

i

λ̂(i)
(

√E(Σ−1/2R)2i + d log(t−1)
√E(Σ−1/2R)2i

)

=
γ

2

{

log(t−1)
∑

i,j

λ̂(i)
√

VarEW
∑

k,ℓ

Σ
−1/2
i,k Σ

−1/2
j,ℓ (W ′

k −Wk)(W
′
ℓ −Wℓ)

+
1√
t

∑

i,j,k

λ̂(i)E∣∣∣
∣

∑

r,s,t

Σ
−1/2
i,r Σ

−1/2
j,s Σ

−1/2
k,t (W ′

r −Wr)(W
′
s −Ws)(W

′
t −Wt)

∣

∣

∣

∣

+ γ
∑

i

λ̂(i)
(

√

√

√

√E(∑
k

Σ
−1/2
i,k Rk

)2
+ d log(t−1)

√

√

√

√E(∑
k

Σ
−1/2
i,k Rk

)2
)}

.

The proof now follows the proof of Corollary 3.1. We omit the details.

A.6. Details for (5.3). In general, if h is twice continuously partially
differentiable, then for all a and for all i, j = 1, . . . , d, hi,j(a) = hj,i(a). If
∇g = Λ−t∇f , then, with B = (bi,j)

d
i,j=1 = Λ−t,

gi(x) =
∑

k

bi,kfk(x), gj(x) =
∑

ℓ

bj,ℓfℓ(x).
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If g is twice continuously partially differentiable, it follows that

∑

k

bi,kfk,j(x) =
∑

ℓ

bj,ℓfℓ,i(x).

For functions f which depend only on one coordinate, say j, we obtain for
i 6= j that bi,jfj,j(x) = 0, so that the off-diagonal elements of B all have to
vanish, giving that

bi,ifi,j(x) = bj,jfj,i(x).

If f is twice continuously partially differentiable, then it follows that all
diagonal elements of B have to be identical, yielding again B = λI, where
λ is a constant.

APPENDIX B: DETAILS OF THE APPLICATIONS

B.1. Details of the runs example. The following lemma may be use-
ful when the non-diagonal entries of Λ are small compared to the diagonal-
entries.

Lemma B.1. Assume that Λ is lower triangular and assume that there

is a > 0 such that |Λi,j | 6 a for all j < i. Then, with γ := infi |Λii|,

sup
i
λ(i)

6
(a/γ + 1)d−1

γ

Proof. Note that
|V ′

i − Vi| 6 d+ i− 2 (B.1)

almost surely.
Write Λ = ΛEΛD, where ΛD is diagonal with the same diagonal as Λ

and ΛE is lower triangular with diagonal entries equal to 1 and (ΛE)i,j :=
Λi,j/Λj,j. Denote by ‖ · ‖p the usual p-norm for matrices and recall that for
any matrix A, ‖A‖1 = supj

∑

i |Ai,j |. Then,

λ(i)
6 ‖Λ−1‖1 6 ‖Λ−1

D ‖1‖Λ−1
E ‖1.

Noting that |(ΛE)i,j| 6 a/γ for all j < i, we have from Lemeire (1975) that

‖Λ−1
E ‖1 6 (a/γ + 1)d−1.

Now, as ‖Λ−1
D ‖1 = γ−1, the claim follows.
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From (4.2), it is easy to see that for every i and j there is a function νi,j

such thatEξ(V ′
i − Vi)(V

′
j − Vj) =

1

n

n
∑

m=1

νi,j(ξm−i∨j+1, . . . , ξm+d+i∨j−3),

and ‖νi,j‖ 6 (d + i − 2)(d + j − 2) 6 4d2 from (B.1). Write νi,j(m) :=
νi,j(ξm−i∨j+1, . . . , ξm+d+i∨j−3). As νi,j(m) and νi,j(m

′) are independent if
|m−m′| > 3d, this implies

VarEW (W ′
i −Wi)(W

′
j −Wj)

6
1

n2pi+j(1 − p)2
VarEξ(V ′

i − Vi)(V
′
j − Vj)

=
1

n4pi+j(1 − p)2

n
∑

m,m′=1

Cov
(

νi,j(m), νi,j(m
′)
)

6
96d5

n3p2d(1 − p)2
.

For the second summand in (2.2) we use (B.1) to obtain the simple estimateE∣∣(W ′
i −Wi)(W

′
j −Wj)(W

′
k −Wk)

∣

∣ 6
(d+ i− 2)(d + j − 2)(d+ k − 2)

n3/2p3d/2(1 − p)3/2

6
8d3

n3/2p3d/2(1 − p)3/2
.

Applying Lemma B.1 to the matrix nΛ with a = 2 and γ = d − 1, we
obtain

λ(i)
6
n
(

2
d−1 + 1

)d−1

(d− 1)
6

15n

d
.

Combining all estimates with Theorem 2.1 proves the claim.

B.2. Details of the U-statistics example. As Λ is lower triangular,
so is Λ−1 and, if l 6 k,

(Λ−1)k,l = n/l,

thus, for l = 1, . . . , d,
λ(l)

6 dn. (B.2)

Define now ηj,k(α) := ψ′
j,k(α) − ψk(α). Then we have for every k, l =

1, . . . , d,EX,X′{

(U ′
k − Uk)(U

′
l − Ul)

}

=
1

n

n
∑

j=1

(

∑

|α|=k,|β|=l,
α∩β∋j

ηj,k(α)ηj,l(β)

)

(B.3)
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andE(EX,X′{

(U ′
k − Uk)(U

′
l − Ul)

})2

=
1

n2

n
∑

i,j=1

∑

|α|=k,|β|=l,
α∩β∋i

∑

|γ|=k,|δ|=l,
γ∩δ∋j

E{ηi,k(α)ηi,l(β)ηj,k(γ)ηj,l(δ)
}

. (B.4)

Note now that, if the sets α∪β and γ∪δ are disjoint (which can only happen
if i 6= j),E{ηi,k(α)ηi,k(β)ηj,l(γ)ηj,l(δ)

}

= E{ηi,k(α)ηi,k(β)
}E{ηj,l(γ)ηj,l(δ)

}

(B.5)

due to independence. The variance of (B.3), that is (B.4) minus the square
of the expectation of (B.3), contains only summands where α∪ β and γ ∪ δ
are not disjoint. Recall now that ρ = Eψ(X1, . . . ,Xd)

4. Bounding all the
non-vanishing terms simply by 32ρ, it only remains to count the number of
non-vanishing terms. Thus,

VarEX,X′
(U ′

k − Uk)(U
′
l − Ul)

6
1

n2

n
∑

i,j=1

∑

|α|=k,|β|=l,
α∩β∋i

∑

|γ|=k,|δ|=l,
γ∩δ∋j,(γ∪δ)∩(α∪β) 6=∅

32ρ

=
1

n2

n
∑

i=1

∑

|α|=k,|β|=l,
α∩β∋i

(

∑

j∈α∪β

∑

|γ|=k,|δ|=l,
γ∩δ∋j

32ρ+
∑

j 6∈α∪β

∑

|γ|=k,|δ|=l,
γ∩δ∋j,(γ∪δ)∩(α∪β) 6=∅

32ρ

)

=: Ak,l +Bk,l,

where the equality is just a split of the sum over j into the cases whether or
not j ∈ α∪β. In the former case we automatically have (α∪β)∩ (γ∪δ) 6= ∅.
It is now not difficult to see that

Ak,l 6
32ρ(k + l − 1)

n

(

n− 1

k − 1

)2(
n− 1

l − 1

)2

.

Noting that, for fixed j, k, l, α and β,
{|γ| = k, |δ| = l : γ ∩ δ ∋ j, (γ ∪ δ) ∩ (α ∪ β) 6= ∅}

=
{|γ| = k, |δ| = l : γ ∩ δ ∋ j

}

\ {|γ| = k, |δ| = l : γ ∩ δ ∋ j, (γ ∪ δ) ∩ (α ∪ β) = ∅},
we further have

Bk,l 6
32ρ(n − 1)

n

(

n− 1

k − 1

)(

n− 1

l − 1

)

×

×
{

(

n− 1

k − 1

)(

n− 1

l − 1

)

−
(

n− k − l + 1

k − 1

)(

n− k − l + 1

l − 1

)

}

,
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where we also used that
(n−|α∪β|

k−1

)

>
(n−k−l+1

k−1

)

. The following statements are
straightforward to prove:

(

n− 1

k − 1

)(

n

k

)−1

=
k

n
, (B.6)

(

n− k − l + 1

k − 1

)(

n

k

)−1

>
k

n

(

n− 2k − l + 3

n

)k

>
k

n

(

1 − k(2k + l − 3)

n

)

.

(B.7)

Thus, from (B.6),

n2

(

n

k

)−2(
n

l

)−2

Ak,l 6
32ρ(k + l − 1)k2l2

n3
6

64ρd5

n3
. (B.8)

From (B.6) and (B.7),

n2

(

n

k

)−2(
n

l

)−2

Bk,l 6
32ρk2l2

(

k(2k + l − 3) + l(k + 2l − 3)
)

n3
6

192ρd6

n3
.

Thus, for all k and l,

VarEW (W ′
k −Wk)(W

′
l −Wl) 6 VarEX,X′

(W ′
k −Wk)(W

′
l −Wl)

6
256ρd6

n3
.

(B.9)

Notice further that for any m = 1, . . . , d,E|U ′
m − Um|3 =

1

n

n
∑

j=1

E∣∣∣ ∑

|α|=|β|=|γ|=m
α∩β∩γ∋j

ηj,m(α)ηj,m(β)ηj,m(γ)
∣

∣

∣

6 8ρ3/4

(

n− 1

m− 1

)3

,

using (B.22); hence, along with (B.6),E|(W ′
i −Wi)(W

′
k −Wk)(W

′
l −Wl)| 6 max

m=i,k,l
E|W ′

m −Wm|3

6 8ρ3/4n3/2 max
m=i,k,l

(

n

m

)−3(
n− 1

m− 1

)3

6 8ρ3/4d3n−3/2.

(B.10)

Applying Theorem 2.1 with the estimates (B.2), (B.9) and (B.10) proves the
claim.
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B.3. Details of the random graph example.

B.3.1. Calculation of the covariance matrix. To calculate the covariance
matrix Σ, we put

Ĩi,j = Ii,j − p

as the centralised edge indicator, and similarly we centralise

T̃ =
∑

i<j

Ĩi,j,

Ṽ =
1

2

∑

i,j,k distinct

Ĩi,j Ĩj,k =
∑

i<j<k

, (Ĩi,j Ĩj,k + Ĩi,j Ĩi,k + Ĩj,kĨi,k),

Ũ =
∑

i<j<k

Ĩi,j Ĩj,kĨi,k.

Then, by independence, all these quantities have mean zero.
For the variances, the expectation of the product of centralised indicators

vanish unless all the centralised indicators involved are raised to an even
power. Hence

Var T̃ =

(

n

2

)

p(1 − p), (B.11)

Var Ṽ = 3

(

n

3

)

p2(1 − p)2, (B.12)

Var Ũ =

(

n

3

)

p3(1 − p)3. (B.13)

Moreover, for the same reason, all covariances between the centralised vari-
ables vanish. Expressing T, V and U , we have T̃ = T −ET so that

T = T̃ +ET = T̃ +

(

n

2

)

p (B.14)

and

Var T =

(

n

2

)

p(1 − p) = 3

(

n

3

)

1

n− 2
p(1 − p).

Next,

Ṽ =
∑

i<j<k

(Ĩi,j Ĩj,k + Ĩi,j Ĩi,k + Ĩj,kĨi,k)

= V − 2p
∑

i<j<k

(Ii,j + Ij,k + Ii,k) + 3p2

(

n

3

)

.
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Now

∑

i<j<k

(Ii,j + Ij,k + Ii,k) = (n− 2)T.

Hence

Ṽ = V − 2p(n − 2)T + 3p2

(

n

3

)

so that

V = Ṽ + 2(n− 2)pT̃ + 3

(

n

3

)

p2. (B.15)

As Ṽ and T̃ are uncorrelated, this gives that

Var V = Var Ṽ + 4(n− 2)2p2 Var(T̃ )

= 3

(

n

3

)

p2(1 − p){1 − p+ 4(n − 2)p}.

For U , we have

Ũ =
∑

i<j<k

Ĩi,j Ĩj,kĨi,k

=
∑

i<j<k

{Ii,jIj,kIi,k − p(Ii,jIj,k + Ii,jIi,k + Ij,kIi,k)

+p2(Ii,j + Ij,k + Ii,k) − p3}

= U − pV + p2(n− 2)T − p3

(

n

3

)

.

Using the above expressions (B.14) and (B.15) for T and V we obtain

U = Ũ + pṼ + p2(n − 2)T̃ + p3

(

n

3

)

. (B.16)

This gives for the variance

VarU = Var(Ũ) + p2 Var(Ṽ ) + (n− 2)2p4 Var(T̃ )

=

(

n

3

)

p3(1 − p)
{

(1 − p)2 + 3p(1 − p) + 3(n− 2)p2
}

.
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We can now also calculate the covariances. Again we use that the centralised
variables are uncorrelated to obtain

Cov(T, V ) = Cov
(

T̃ , Ṽ + 2(n− 2)pT̃
)

= 2(n− 2)pVar(T̃ )

= 6

(

n

3

)

p2(1 − p).

Similarly, Cov(T,U) = 3
(n
3

)

p3(1 − p), and, lastly, Cov(V,U) = 3
(n
3

)

p3(1 −
p) (1 − p+ 2(n− 2)p) . With the notation n̄ = n− 2 we obtain the variance-
covariance matrix

3

(

n

3

)

p(1 − p) ×







1
n̄ 2p p2

2p p (4n̄p+ 1 − p) p2 (2n̄p+ 1 − p)

p2 p2 (2n̄p+ 1 − p) p2
{

n̄p2 + 1
3(1 + p− 2p2)

}






,

(B.17)
and re-scaling yields the variance-covariance matrix (4.8).

B.3.2. Bounding A. As mentioned in the sketch of the proof of Propo-
sition 4.6, for simplicity we use the uniform bound

|λ(i)| ≤ 3

2
n2, i = 1, 2, 3.

The conditional variances involving T ′ − T can be calculated exactly. As
I2
i,j = Ii,j,EW (T ′ − T )2 =

1
(n
2

)

∑

i<j

EW (I ′i,j − Ii,j)
2

=
1
(n
2

)

∑

i<j

{

p− pEW Ii,j + (1 − p)EW Ii,j
}

= p+ (1 − 2p)
1
(n
2

)T,

so that, with Var T given in (B.17),

Var(EW (T ′ − T )2) =
1
(n
2

)(1 − 2p)2p(1 − p)

and

Var(EW (T ′
1 − T1)

2) =
(n− 2)4

n8
(n
2

) (1 − 2p)2p(1 − p) < n−6,
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where we used that p(1 − p) ≤ 1/4 for all p. Thus

√

Var(EW (T ′
1 − T1)2)) < n−3.

Next,EW (T ′ − T )(V ′ − V )

= − 1
(n
2

)

∑

i<j, k 6=i,j

EW (I ′i,j − Ii,j)
2(Ii,k + Ij,k)

= − 1
(n
2

)

∑

i<j, k 6=i,j

EW{p(Ij,k + Ii,k) + (1 − 2p)(Ii,jIj,k + Ii,jIi,k)
}

=
1
(n
2

)(−2(n− 2)pT − 2(1 − 2p)V ).

So here we can also calculate the variance of the conditional expectation
explicitly. With (B.15),EW (T ′ − T )(V ′ − V )

= − 2
(n
2

)

(

(n− 2)pT̃ + (n − 2)

(

n

2

)

p2 + (1 − 2p)Ṽ + 2(n − 2)p(1 − 2p)T̃

+3

(

n

3

)

p2(1 − 2p)

)

,

so that

VarEW (T ′ − T )(V ′ − V )

=
4(n − 2)
(n
2

) p(1 − p)
{

(n− 2)p2(3 − 4p)2 + (1 − 2p)2p(1 − p)
}

< 4,

where we used that p3(1 − p) ≤ 27
256 and that n ≥ 4. Thus

√

VarEW (T ′ − T )(V ′ − V ) < 2n−3.

Similarly,EW (T ′ − T )(U ′ − U)

=
1
(n
2

)

∑

i<j, k 6=i,j

{

pEW Ij,kIi,k + (1 − 2p)EW Ii,jIj,kIi,k
}

=
1
(n
2

)

(

pV + 3(1 − 2p)U
)

.
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Using (B.15) and (B.16) we obtainEW (T ′ − T )(U ′ − U)

=
1
(n
2

)

(

3(1 − 2p)Ũ + p(4 − 6p)Ṽ + (n− 2)p2(5 − 6p)T̃

+ 6

(

n

3

)

p3(1 − p)

)

.

Thus we calculate that

VarEW (T ′ − T )(U ′ − U)

=
n− 2
(n
2

) p3(1 − p)
(

3(1 − 2p)2(1 − p)2

+p(1 − p)(4 − 6p)2 + (n− 2)p2(5 − 6p)2
)

.

Using that p(5 − 6p) ≤ 25
24 and p3(1 − p) ≤ 27

256 , again we obtain

√

VarEW (T ′ − T )(U ′ − U) < n−3.

For VarEW (V ′ − V )2 we introduce the notation

Ni =
∑

j:j 6=i

Ii,j, Mi,j =
∑

k:k 6=i,j

Ii,kIk,j. (B.18)

Then

T =
1

2

∑

i

Ni, (B.19)

V =
1

2

∑

i6=j

Mi,j =
1

2

∑

i6=j

Ii,jNi − T =
1

2

∑

i

N2
i − T, (B.20)

U =
1

6

∑

i6=j

Ii,jMi,j. (B.21)

We haveEW (V ′ − V )2

=
1
(n
2

)

∑

i<j

EW (Ii,j − I ′i,j)
2 (Nj +Ni − 2Ii,j)

2

=
1

2
(n
2

)

∑

i6=j

{

pEW (Nj +Ni − 2Ii,j)
2 + (1 − 2p)EW Ii,j (Nj +Ni − 2Ii,j)

2
}
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=
1

2
(n
2

)

{

pEW
(

4(n − 2)(V + T ) − 8T + 8T 2 − 16V )
)

+ (1 − 2p)EW
(

2
∑

i6=j

Ii,jN
2
i − 8T + 2

∑

i6=j

Ii,jNiNj − 16V )

)

}

,

where we used (B.19) and (B.20) for the last equation. Note that

∑

i

N2
i =

∑

i

∑

j:j 6=i

∑

k:k 6=i

Ii,jIi,k = 2T + 2V

and
∑

i6=j

NiNj = 4T 2 −
∑

i

N2
i = 4T 2 − 2T − 2V

as well as
∑

i6=j

Ii,jN
2
i =

∑

i,j,k,ℓ distinct

Ii,jIi,kIi,ℓ + 6V + 2T,

and
∑

i6=j

Ii,jNiNj =
∑

i,j,k distinct

∑

ℓ:ℓ 6=i,j

Ii,jIi,kIj,ℓ + 2
∑

i6=j

Ii,j
∑

k:k 6=i,j

Ii,k +
∑

i6=j

Ii,j

=
∑

i,j,k,ℓ distinct

Ii,jIi,kIj,ℓ + 4V + 6U + 2T,

so thatEW (V ′ − V )2

=
1
(n
2

)

{

2p(n − 4)T + 2V (np− 10p+ 2) + 6(1 − 2p)U + 4pT 2

+(1 − 2p)
∑

i,j,k,ℓ
distinct

EW Ii,jIi,k(Ii,ℓ + Ij,ℓ)

}

.

With the notation T̃ for the centralised variable, we have that

VarEW (V ′ − V )2

=
1
(n
2

)2 Var

{

p(2n− 8 + 4pn2 − 4pn)T + 2V (np− 10p + 2) + 6(1 − 2p)U

+4pT̃ 2 + (1 − 2p)
∑

i,j,k,ℓ
distinct

EW Ii,jIi,k(Ii,ℓ + Ij,ℓ)

}
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≤ 5
1
(n
2

)2

{

p2(2n − 8 + 4pn2 − 4pn)2 Var(T ) + 4(np− 10p + 2)2 Var(V )

+36(1 − 2p)2 Var(U) + 16p2 Var(T̃ 2)

+(1 − 2p)2 Var
(

∑

i,j,k,ℓ
distinct

EW Ii,jIi,k(Ii,ℓ + Ij,ℓ)
)

}

,

where we used that in general Var
∑k

i=1Xi ≤ k
∑k

i=1 VarXi and (B.11) for
the last inequality. Here, the variances for T, V and U are given in (B.17).
To simplify the expression, we use that p3(1 − p) ≤ 27/256 to bound

p2(2n − 8 + 4pn2 − 4pn)2 Var(T ) ≤ 27

64

(

n

2

)

n2(n+ 2)2.

Similarly, we bound with p2(1 − p) ≤ 4/27 and n ≥ 4

4(np− 10p + 2)2 Var(V ) ≤ 16

27
n3(n− 1)(n − 2)(n + 1),

and

36(1 − 2p)2 Var(U) ≤ 81

256
n(n− 1)(n − 2)(3n + 2).

We note that EĨi,j Ĩu,vĨs,tĨk,ℓ = 0 unless either all pairs of indices are the
same, or the product is made up of two distinct index pairs only. Hence

Var T̃ 2 =
∑

i<j

∑

u<v

∑

s<t

∑

k<ℓ

EĨi,j Ĩu,vĨs,tĨk,ℓ

< n2

(

n

2

)

p(1 − p),

giving

16p2 Var T̃ 2 ≤ 27

32
n3(n− 1).

For the last variance term, we use that conditional variances can be bounded
by unconditional variances, giving

Var
∑

i6=j

∑

k:k 6=i,j

∑

ℓ:ℓ 6=i,j,k

EW Ii,jIi,k(Ii,ℓ + Ij,ℓ)

≤ Var
∑

i,j,k,ℓ
distinct

Ii,jIi,k(Ii,ℓ + Ij,ℓ)
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=
∑

i,j,k,ℓ
distinct

Var Ii,jIi,k(Ii,ℓ + Ij,ℓ)

+
∑

i,j,k,ℓ distinct

∑

r,s,t,u distinct

1((i, j, k, ℓ) 6= (r, s, t, u))

×1(|{i, j, k, ℓ} ∩ {r, s, t, u}| ≥ 2)

×Cov(Ii,jIi,k(Ii,ℓ + Ij,ℓ), Ir,sIr,t(Ir,u + Is,u)))

≤ 2

(

n

4

)(

p3(1 − p3) + 4

(

4

2

)(

n

2

)

p2(1 − p4)

)

< 3n2

(

n

4

)

.

Here we used the independence of the edge indicators. For the last bound
we employed that p3(1 − p3) ≤ 1/4, that p2(1 − p4) ≤ (

√
3 − 1)/3, and that

n ≥ 4. Collecting the variances and using that n ≥ 4,

Var(EW (V ′ − V )2)

≤ 5
1
(n
2

)2

{

27

64

(

n

2

)

n2(n + 2)2 +
16

27
n3(n− 1)(n − 2)(n+ 1)

+
81

256
n(n− 1)(n − 2)(3n + 2) +

27

32
n3(n− 1) + 3n2

(

n

4

)}

< 33n2.

This gives that
√

Var(EW (V ′
1 − V1)2) < 6n−3.

For EW (V ′ − V )(U ′ − U), we haveEW (V ′ − V )(U ′ − U)

=
1
(n
2

)

∑

i<j

EW (Ii,j − I ′i,j)
2(Ni +Nj − 2Ii,j)Mi,j

=
1

2
(n
2

)

∑

i6=j

{

pEW (Ni +Nj − 2Ii,j)Mi,j

+(1 − 2p)EW Ii,j(Ni +Nj − 2Ii,j)Mi,j

}

.

Recall (B.21), so thatEW (V ′ − V )(U ′ − U)

=
1
(n
2

)

(

p
∑

i6=j

EWNiMi,j − 6(1 − p)U + (1 − 2p)
∑

i6=j

EW Ii,jNiMi,j

)

.
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Now

∑

i6=j

NiMi,j = 2V + 6U +
∑

i,j,k,ℓ
distinct

Ii,kIk,jIi,ℓ, and

∑

i6=j

Ii,jNiMi,j = 12U +
∑

i,j,k,ℓ
distinct

Ii,jIi,kIi,ℓIℓ,j,

so thatEW (V ′ − V )(U ′ − U)

=
1
(n
2

)

(

2pV + 6(1 − 2p)U + p
∑

i,j,k,ℓ
distinct

Ii,kIk,jIi,ℓ

+(1 − 2p)
∑

i,j,k,ℓ
distinct

Ii,jIi,kIi,ℓIℓ,j

)

.

Furthermore, as before,

Var
∑

i,j,k,ℓ distinct

EW Ii,kIk,jIi,ℓ <

(

n

4

)

n2.

Similarly as for (B.22),

Var
∑

i,j,k,ℓ
distinct

EW Ii,jIi,kIi,ℓIj,ℓ ≤ Var
∑

i,j,k,ℓ
distinct

Ii,jIi,kIi,ℓIj,ℓ

≤
(

n

4

)(

p4(1 − p4) + 6

(

n

2

)

p2(1 − p6)

)

<

(

n

4

)(

1

256
+

1

16

(

n

2

))

.

As p < 1, we obtain that

VarEW (V ′ − V )(U ′ − U)

< 4
1
(n
2

)2

{

12
27

256

(

n

3

)

(

16(n − 2) + 1) + 9n+ 9
)

+

(

n

4

)

n2 +

(

n

4

)(

1

256
+

1

16

(

n

2

))}

< n2 + 108
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so that
√

Var (EW (V ′
1 − V1)(U

′
1 − U1)) < n−3 + 11n−4.

Finally,EW (U ′ − U)2 =
1

2
(n
2

)

∑

i6=j

(

pEWM2
i,j + (1 − 2p)EW Ii,jM

2
i,j

)

.

We have that

M2
i,j =

∑

k:k 6=i,j

∑

ℓ:ℓ 6=i,j

Ii,kIk,jIi,ℓIℓ,j = Mi,j +
∑

k:k 6=i,j

∑

ℓ:ℓ 6=i,j,k

Ii,kIk,jIi,ℓIℓ,j,

and

Ii,jM
2
i,j = Ii,jMi,j +

∑

k:k 6=i,j

∑

ℓ:ℓ 6=i,j,k

Ii,jIi,kIk,jIi,ℓIℓ,j,

so that EW (U ′ − U)2

=
1

2
(n
2

)

{

2pV + 6(1 − 2p)U + p
∑

i,j,k,ℓ
distinct

EW Ii,kIk,jIi,ℓIℓ,j

+(1 − 2p)
∑

i,j,k,ℓ
distinct

EW Ii,jIi,kIk,jIi,ℓIℓ,j

}

.

As for (B.22), we obtain

Var
∑

i,j,k,ℓ
distinct

EW Ii,kIk,jIi,ℓIj,ℓ ≤
(

n

4

)(

p4(1 − p4) + 6

(

n

2

)

p2(1 − p6)

)

and

Var
∑

i,j,k,ℓ
distinct

EW Ii,jIi,kIk,jIi,ℓIj,ℓ ≤
(

n

4

)(

p5(1 − p5) + 6

(

n

2

)

p2(1 − p8)

)

.
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Again using our variance inequalities, we thus obtain that

Var
(EW (U ′ − U)2

)

≤ 1
(n
2

)2

{

3

(

n

3

)

p3(1 − p)

(

4p(4(n − 2)p+ 1 − p)

+36(1 − 2p)2((n − 2)p2 +
1

3
(4 − 5p + p2))

)

+ p2

(

n

4

)(

p4(1 − p4) + 6

(

n

2

)

p2(1 − p6)

)

+ (1 − 2p)2
(

n

4

)(

p5(1 − p5) + 6

(

n

2

)

p2(1 − p8)

)}

≤ 22 + 2n2,

so that
√

Var (EW (U ′ − U)2) < 5n−3 + 2n−4.

Collecting these bounds we obtain for A in Theorem 2.1 that

A < 35n−1 + 36n−2.

B.3.3. Bounding B. We use the generalised Hölder inequalityE 3
∏

i=1

|Xi| ≤
3
∏

i=1

{E|Xi|3}
1
3 ≤ max

i=1,2,3
E|Xi|3. (B.22)

Firstly, E|T ′ − T |3 =
1
(n
2

)

∑

i<j

E|Ii,j − I ′i,j|3 = 2p(1 − p) <
1

2
,

so that E|T ′
1 − T1|3 =

(n− 2)3

n6
2p(1 − p) <

1

2
n−3.

Similarly,E|V ′ − V |3

=
1
(n
2

)

∑

i<j

E|Ii,j − I ′i,j|3
∑

k,ℓ,s:k,ℓ,s 6=i,j

(Ij,k + Ii,k)(Ij,ℓ + Ii,ℓ)(Ij,s + Ii,s)

= 2p(1 − p)(n− 2)×
×
(

8p2 + 2p(1 − p) + 2(n − 3)(2p2 + 2p3) + 8(n− 3)(n − 4)p3
)

,
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so that E|V ′
1 − V1|3 <

64

27

(

n−3 + n−4 + n−5
)

.

Lastly,E|U ′ − U |3

=
1
(n
2

)

∑

i<j

E|Ii,j − I ′i,j|3
∑

k:k 6=i,j

∑

ℓ:ℓ 6=i,j

∑

s:s 6=i,j

Ij,kIi,kIj,ℓIi,ℓIj,sIi,s

= 2p(1 − p)(n− 2)
(

p2 + (n− 3)p4 + (n− 3)(n − 4)p6
)

,

so that E|U ′
1 − U1|3 <

54

256

(

n−3 + n−4 + n−5
)

.

Thus for B in Theorem 2.1 we have

B <
3

2
n2 × 9 × 64

27

(

n−3 + n−4 + n−5
)

= 32
(

n−1 + n−2 + n−3
)

.

Collecting the bounds gives the result.
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